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Abstract We show that any two functions which are real-valued, bounded, com-
pactly supported and whose integer translates each form a partition of unity lead to
a pair of windows generating dual Gabor frames for L2(R). In particular we show
that any such functions have families of dual windows where each member may be
written as a linear combination of integer translates of any B-spline. We introduce
functions of Hilbert-Schmidt type along with a new method which allows us to asso-
ciate to certain such functions finite families of recursively defined dual windows of
arbitrary smoothness. As a special case we show that any exponential B-spline has
finite families of dual windows, where each member may be conveniently written as
a linear combination of another exponential B-spline. Unlike results known from the
literature we avoid the usual need for the partition of unity constraint in this case.

Keywords Gabor frames · Dual frame pairs · Dual windows · Exponential
B-splines
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1 Introduction and preliminaries

It is well-known that any real-valued, bounded and compactly supported function that
satisfies the partition of unity constraint
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∑

k∈Z
g(x + k) = 1, a.e. x ∈ [0, 1], (1.1)

generates a Gabor frame, to which one can associate a dual frame generated by a
window which may be conveniently written as a simple linear combination of the
integer translates of the function g itself. See [1, 3] and [4]. We generalize this
fact by showing that any two real-valued, bounded and compactly supported func-
tions which satisfy Eq. 1.1 lead to a pair of windows generating dual Gabor frames
for L2(R). As a consequence we show that any such functions have dual windows
which may be written as a linear combination of any classical B-spline. In par-
ticular this holds for any B-spline itself. In contrast to the constructions known
from the literature we can therefore associate to any B-spline a dual window of
arbitrary finite smoothness. Only relatively few concrete examples of functions sat-
isfying Eq. 1.1 are known. The classical B-splines are one such example. However
it was recently shown by O.Christensen and P.Massopust that certain exponential
B-splines also satisfy the partition of unity constraint [4]. They used this to con-
struct pairs of dual Gabor frames for L2(R). We introduce the notion of functions
of Hilbert-Schmidt type and show that any exponential, as well as classical B-
spline can be considered as such a function allowing us to treat both cases as one.
As opposed to [1, 3] and [4] this allows us to associate to any (exponential) B-
spline a family of dual windows of Hilbert-Schimidt type which are compactly
supported and belong to Ck(R), k ∈ N. In particular we show that any (expo-
nential) B-spline has a dual window of arbitrary finite smoothness which may be
conveniently written as a linear combination of another exponential B-spline. In con-
trast to the constructions in [4] we therefore circumvent the need for the partition of
unity constraint. Other and quite different approaches which do not rely on Eq. 1.1
have been proposed by R.S Laugesen [13] and I. Kim [12]. Our approach differs
by offering a unified approach to constructing dual pairs of Gabor frames for any
exponential, as well as classical B-spline by means of functions of Hilbert-Schmidt
type.

The paper is organized as follows. In Section 2 we prove that any two real-
valued, bounded and compactly supported functions which satisfy Eq. 1.1 lead to
a pair of windows generating dual Gabor frames for L2(R). We introduce func-
tions of Hilbert-Schmidt type and establish key properties which will be needed
throughout the paper. We state sufficient conditions on a function of Hilbert-
Schmidt type to generate a Gabor frame for appropriate parameters a, b > 0.
In Section 3 we present the new method for constructing pairs of dual Gabor
frames generated by functions of Hilbert-Schmidt type. Finally in Section 4 we
apply this method to the (exponential) B-splines constructing dual pairs of Gabor
frames.

In the remaining part of this section we give a short introduction to Gabor frames.
For a, b ∈ R we consider the translation operator (Taf )(x) = f (x − a) and mod-
ulation operator (Ebf )(x) = e2πibxf (x), both acting on L2(R). The collection of
functions {EmbTnag}m,n∈Z is referred to as the Gabor system generated by the func-
tion g and the parameters a, b. In particular we will consider frames having Gabor
structure:
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Definition 1.1 Given g ∈ L2(R), a, b ∈ R, we say that the collection of functions
{EmbTnag}m,n∈Z is a Gabor frame for L2(R) if there exist constants A, B > 0, such
that

A‖f ‖2 ≤
∑

n,m∈Z
|〈f,EmbTnag〉|2 ≤ B‖f ‖2, ∀ f ∈ L2(R).

If at least the upper frame condition is satisfied {EmbTnag}m,n∈Z is called a Bessel
sequence.

Gabor frames allow convenient representations of functions f ∈ L2(R) similar to
those of orthonormal bases for L2(R) :

Theorem 1.2 Assume that {EmbTnag}m,n∈Z is a Gabor frame. Then there exists a
function h ∈ L2(R), such that

f =
∑

m,n∈Z
〈f,EmbTnah〉EmbTnag, ∀ f ∈ L2(R). (1.2)

It can be shown that any two Bessel sequences {EmbTnag}m,n∈Z and
{EmbTnah}m,n∈Z satisfying Eq. 1.2 are in fact frames. Such frames are said to be dual
frames. The function g is referred to as the generator or window function, whereas
the function h is called the dual generator or dual window. Gabor frames and their
dual generators have been characterized by Ron and Shen [18], resp. Janssen [11]:

Theorem 1.3 Two Bessel sequences {EmbTnag}m,n∈Zand{EmbTnah}m,n∈Z form dual
frames for L2(R) if and only if

∑

k∈Z
g(x − n/b − ka)h(x − ka) = bδn,0, a.e. x ∈ [0, a].

For more on Gabor frames and frames in general we refer to the monographs
[8, 9] and [10]. In the following we focus on Gabor frames, however we note that the
exponential B-splines have also been used in the construction of wavelets and wavelet
frames (see resp. [14] and [5]). For more on exponential B-splines and their appli-
cations to the theory of approximation and interpolation we refer to the following
extensive, however incomplete, list of references [6, 7, 15–17, 19–21].

2 Functions of Hilbert-Schmidt type

In the following we consider functions g ∈ L2(R) which are real-valued, bounded
and compactly supported. For any N1, N2 ∈ Z we denote the set of all such functions
with supp g ⊆ [N1, N2] by VN1,N2 . By this notation we have chosen to put emphasis
on the support of the functions as it will play a key role in the construction of the
associated dual windows. In this context we will throughout the paper tacitly assume
N1 < N2. Functions g ∈ VN1,N2 which satisfy Eq. 1.1 will be of special interest and
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we define

WN1,N2 :=
{

g ∈ VN1,N2 |
∑

k∈Z
g(x + k) = 1, a.e. x ∈ [0, 1]

}
.

It is well-known that any g ∈ WN1,N2 generates a Gabor frame and has a dual frame
generated by a window, given as a linear combination of the integer translates of the
function itself. See [1, 3]. The following theorem generalizes this fact stating that any
two functions g ∈ WN1,N2 and L ∈ WQ1,Q2 give rise to a pair of windows generating
dual Gabor frames for L2(R).

Theorem 2.1 Let N1, N2, Q1, Q2 ∈ Z. Let g ∈ WN1,N2 and L ∈ WQ1,Q2 . Let
b ∈]0, 1

N2−N1+Q2−Q1−1 ] and define

h(x) := b

N2−(Q1+1)∑

j=N1−(Q2−1)

L(x − j), x ∈ R.

Then h is compactly supported and the functions g, h generate dual frames
{E�bTjg}�,j∈Z and {E�bTjh}�,j∈Z for L2(R).

Proof By assumption g, L are real-valued, bounded and compactly supported
functions. The same is therefore also true for the function h. It follows that g, h gen-
erate Bessel sequences {E�bTjg}�,j∈Z and {E�bTjh}�,j∈Z. By Theorem 1.3 it will
therefore suffice to prove that

∑

k∈Z
g(x − j/b − k)h(x − k) = bδj,0, a.e. x ∈ [0, 1]. (2.1)

By assumption g is compactly supported with supp g ⊆ [N1, N2]. We therefore see
that Eq. 2.1 is satisfied for all j 	= 0 whenever 1

b
≥ N2 − N1 + Q2 − Q1 − 1.

Let j = 0. By assumption L satisfies Eq. 1.1. Furthermore since
supp L ⊂ [Q1, Q2] it follows that for a.e. y ∈ [N1, N2] we have

∑

j∈Z
L(y − j) =

N2−(Q1+1)∑

j=N1−(Q2−1)

L(y − j) = 1.

Let x ∈ [0, 1]. By the compact support of g we only obtain non-zero contributions to
the sum Eq. 2.1 whenever x + k ∈ [N1, N2]. We therefore see that

∑

k∈Z
g(x − k)h(x − k) =

∑

k∈Z
g(x + k)

⎛

⎝b

N2−(Q1+1)∑

j=N1−(Q2−1)

L(x + k − j)

⎞

⎠

= b
∑

k∈Z
g(x + k)

N2−(Q1+1)∑

j=N1−(Q2−1)

L([x + k] − j)

= b
∑

k∈Z
g(x + k) = b.
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As an immediate consequence of Theorem 2.1 simple linear combinations of
a fixed function L ∈ WQ1,Q2 act as dual generators for all other functions g ∈
WN1,N2 , N1, N2 ∈ Z. In particular we can associate to any such function g a family
of dual windows where each member is given as a linear combination of the integer
translates of a classical B-spline

Bm+1 = Bm ∗ B1, B1 = χ[0,1], m ∈ N.

Corollary 2.2 Let N1, N2 ∈ Z and g ∈ WN1,N2 . Let m ∈ N and let Bm denote the
classical B-spline of order m. Let bm ∈]0, 1

N2−N1+m−1 ] and define

hm(x) = bm

N2−1∑

j=N1−(m−1)

Bm(x − j), m ∈ N.

For each m ∈ N the functions g, hm generate dual frames {E�bmTjg}�,j∈Z and
{E�bmTjhm}�,j∈Z for L2(R).

In particular the result of Corollary 2.2 holds for any B-spline itself. In contrast to
the constructions known from the literature, we may for any B-spline Bm, m ∈ N,

construct a dual window of arbitrary finite smoothness given as a linear combination
of (possibly) another B-spline.

Example 2.3 We consider the classical B-spline

B2(x) =
⎧
⎨

⎩

x, x ∈ [0, 1[
2 − x, x ∈ [1, 2]
0, x /∈ [0, 2].

Let bm ∈]0, 1
m+1 ]. By Corollary 2.2 we can associate to B2 the dual windows

hm(x) = bm

N2−1∑

j=N1−(m−1)

Bm(x − j), m ∈ N. (2.2)

In other words B2 is a common dual generator for all functions (2.2). Since Bm ∈
Cm−2(R) for all m ∈ N it follows that we can make these dual windows arbitrarily
smooth by considering sufficiently large m ∈ N.

The result of Corollary 2.2 suffers one major insufficiency. As the smoothness
of the dual window increases so does its support and the domain of the modulation
parameter b becomes smaller. The following lemma resolves this issue.

Lemma 2.4 Let N1, N2 ∈ Z and K ∈ WN1,N2 . Define

g(x) :=
∫ 1

0
K(x − y)f (y)dy, x ∈ R, (2.3)
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for some f ∈ V0,1 such that
∫ 1
0 f (y)dy = C. Then the following hold

(i) The function g belongs to VN1,N2+1. If C = 1 then g belongs to WN1,N2+1.
(ii) Let k ∈ N ∪ {∞}. If f ∈ V0,1 ∩ Ck(R) then g belongs to Ck(R).

Proof We begin by proving (i). By definition the functions K and f are both real-
valued. Thus g is real-valued. Furthermore by the compact support of K we see that
supp K(· − y) ⊆ [N1, N2 + 1], ∀ y ∈ [0, 1]. Thus whenever x > N2 + 1 or x < N1
we have K(x − y) = 0, ∀ y ∈ [0, 1] and we therefore see that

g(x) =
∫ 1

0
K(x − y)f (y)dy = 0, ∀ x ∈ ] − ∞, N1[ ∪ ]N2 + 1, ∞[.

Using the support of g we have

sup
x∈R

|g(x)| = sup
x∈[N1,N2+1]

∣∣∣∣∣

∫ 1

0
K(x − y)f (y)dy

∣∣∣∣∣ ≤ sup
(x,y)∈I×[0,1]

|K(x − y)|
(∫ 1

0
|f (y)|dy

)
,

and we conclude that g is bounded. Assuming that C = 1 we now show that g

satisfies Eq. 1.1. The function K is assumed to satisfy Eq. 1.1. Hence

∑

k∈Z
g(x + k) =

∫ 1

0

∑

k∈Z
K(x − y + k)f (y)dy =

∫ 1

0
f (y)dy = 1.

This proves (i). We now prove (ii). Let k ∈ N∪{∞} and assume that f ∈ Ck(R). Let
x0 ∈ R and let {xn} be any sequence converging to x0. By the mean-value theorem

∣∣∣∣
f (xn − y) − f (x0 − y)

xn − x0

∣∣∣∣ |K(y)| ≤ sup
x∈R

∣∣∣∣
df

dx
(x − y)

∣∣∣∣ |K(y)] = C|K(y)| < ∞, ∀ y ∈ R.

Since K is compactly supported it follows that CK(·) ∈ L1(R). By the dominated
convergence theorem we therefore obtain

lim
n→∞

∫ [
f (xn − y) − f (x0 − y)

xn − x0

]
K(y)dy

=
∫

lim
n→∞

[
f (xn − y) − f (x0 − y)

xn − x0

]
K(y)dy =

∫
f ′(x0 − y)K(y)dy.

Noting that g(x) = (K ∗ f )(x) = (f ∗ K)(x), we conclude that
g′(x0) = ∫

f ′(x0 − y)K(y)dy. The general result follows by induction.

By Lemma 2.4 we see that functions of the type (2.3) provide a convenient way
of constructing numerous new examples of compactly supported functions satisfying
Eq. 1.1. Furthermore by an appropriate choice of the function f ∈ V0,1 we may
control the smoothness properties of the function g independently of the associated
kernel K , avoiding the issue of increased support.

Example 2.5 Let k ∈ N and consider the function

fk(y) = yk(1 − y)kχ[0,1](y), y ∈ R.
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Then fk belongs to Ck−1(R). Let Ck := ∫ 1
0 fk(y)dy and K := χ[0,1]. Now define

gk(x) = 1

Ck

∫ 1

0
K(x − y)fk(y)dy, x ∈ R.

By Lemma 2.4 it follows that gk ∈ Ck−1(R). Furthermore gk satisfies Eq. 1.1 and is
compactly supported in I = [0, 2]. In the concrete case k = 3 we have

g3(x) =
⎧
⎨

⎩

−20x7 + 70x6 − 84x5 + 35x4, x ∈ [0, 1[
20x7 − 210x6 + 924x5 − 2205x4 + 3080x3 − 2520x2 + 1120x − 20x, x ∈ [1, 2]
0, x /∈ [1, 2].

Let B2 denote the classical B-spline of order 2. Let � ∈ N and consider

f̃�(x) := sin(πx)�χ[0,1](x).

We see that f̃� ∈ C�−1(R), � ∈ N. Let C̃� := ∫ 1
0 sin(πy)�dy and define

L�(x) = 1

C̃�

(B2 ∗ f̃�)(x) =
∫ 1

0
B2(x − y) sin(πy)�dy.

In the concrete case of � = 2 we have

L2(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
2
cos(πx)2−1+(πx)2

π2 , x ∈ [0, 1[
− 1

2
π2(2x2−6x+3)+2 cos(πx)2−2

π2 , x ∈ [1, 2[
1
2

π2(x2−6x−1)+cos(πx)2+9π2

π2 , x ∈ [2, 3]
0, x /∈ [0, 3].

By Lemma 2.4 we have for each � ∈ N that L ∈ C�−1(R), supp L ⊆ [0, 3] and
L satisfies Eq. 1.1. By Theorem 2.2 it follows that for any b ∈]0, 1

4 ] the functions

gk and h2 defined by h2(x) := b

1∑

j=−2

L2(x − j), x ∈ R generate frame pairs

{EmbTng}m,n∈Z and {EmbTnh}m,n∈Z for L2(R).

Motivated by Lemma 2.4 we will consider functions of the type (2.3) in more
detail. We refer to these as functions of Hilbert-Schmidt type or simply functions of
typeHS.

Definition 2.6 Let N1, N2 ∈ Z and K ∈ VN1,N2 . A function g is of Hilbert-Schmidt
type if it has a representation of the form

g(x) =
∫ 1

0
K(x − y)f (y)dy, (2.4)

for some real-valued function f ∈ V0,1.

We note that the (exponential) B-splines

Em,a = Em−1,a ∗ eam(·)χ[0,1], E1,a = ea1(·)χ[0,1],
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where a = (a1, a2, ..., am) is some m-tuple of real numbers, are functions of type
HS. Indeed by repeated use of Lemma 2.4 each member of the recursively defined
family

gn(x) =
∫ 1

0
gn−1(x − y)fn(y)dy, n ∈ N, g0(x) := K(x), (2.5)

is a function of type HS. Also, by appropriate choices of the functions fn and
the kernel K in Eq. 2.5, the result of Lemma 2.4 ensures that each member gn

satisfies Eq. 1.1 and that gn can be made arbitrarily smooth. Further the proof of
Lemma 2.4 implies that any function of type HS is bounded and compactly sup-
ported. Any such function g will generate a Bessel sequence {EmbTnag}m,n∈Z, for
any choices of a, b > 0. We now state a sufficient condition on the kernel K such
that g for appropriate parameters a, b > 0 generates a frame {EmbTnag}m,n∈Z for
L2(R).

Proposition 2.7 Let N1, N2 ∈ Z and K ∈ VN1,N2 .
Let (a, b) ∈]0, N2 − N1 + 1[×]0, 1

N2−N1+1 ] and assume that K is continuous and
strictly positive on the open interval I =]N1, N2[. Choose f ∈ V0,1 such that f (y) >

0, ∀ y ∈]0, 1[. Now define g by Eq. 2.4. Then g is a function of Hilbert-Schimidt
type and generates a frame {EmbTnag}m,n∈Z for L2(R).

Proof Since g ∈ L2(R) is the convolution of K, f ∈ L1(R) it follows that g is con-
tinuous on R. By Lemma 2.4 supp g ⊆ [N1, N2 + 1]. Thus by Theorem 9.1.5 in [2]
it suffices to prove that g(x) > 0, ∀ x ∈]N1, N2 + 1[. Consider x ∈]N1, N2 + 1[.
Then there exists at least one y0 ∈]0, 1[ such that x − y0 ∈]N1, N2[. By assumption
this implies that ε := K(x − y0) > 0. By continuity of K on the open interval I=
[N1, N2][, it follows that there exists a δ1 > 0 such that |K(x −y)−K(x −y0)| < ε,
whenever|y − y0| < δ1. Since y0 ∈]0, 1[ there exists a δ2 > 0 such that
|y0 + h ∈]0, 1[, ∀ |h| < δ2. Let δ = min(δ1, δ2). When |y − y0| < δ it now fol-
lows that |K(x − y) − K(x − y0)| < ε. We therefore conclude that K(x − y) > 0,
∀y ∈]y0−δ, y0+δ[⊆[0, 1]. SinceK is non-negative and f is strictly positive on the in-
terval I =]0, 1[ it follows that g(x) = ∫ 1

0 K(x−y)f (y)dy > 0∀x ∈]N1, N2+1[.

By Proposition 2.7 we may construct families {gn}n∈N of functions of
type HS by Eq. 2.5, such that each member generates a Gabor frame
for L2(R). In particular any (exponential) B-spline EN,a of order N ∈
N is covered by the proposition, which follows since any such spline is
given recursively by Eq. 2.5, where fn = ean(·)χ[0,1], for some N-tuple
a = (a1, a2, ..., aN).

3 Pairs of dual Gabor frames generated by functions of Hilbert-Schmidt type

By Lemma 2.4 any (exponential) B-spline of the form

Em,a := χ[0,1] ∗ ea1(·)χ[0,1] ∗ ea2(·)χ[0,1] ∗ ... ∗ eam(·)χ[0,1], m ∈ N, ai ∈ R ∀ i ∈ {1, ..., m},
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satisfies the partition of unity constraint (up to a multiplicative constant). By virtue
of this property one knows how to construct dual generators. See [1, 3] and [4]. The
result of Lemma 2.4 explains why such B-splines satisfy Eq. 1.1 directly in terms
of the kernel K(x) := χ[0,1](x), x ∈ R. It therefore seems reasonable to presume
that the dual properties of functions of type HS are related to the properties of their
kernels and not directly to Eq. 1.1 in itself.

The following is dedicated to formalize this idea in the general setting of functions
of type HS. Preliminary and technical results are presented in Lemmas 3.1-3.3 and
Proposition 3.4, composing the building blocks of the main result (Theorem 3.5). The
theorem allows us to construct dual windows of arbitrary finite smoothness associ-
ated with certain functions of typeHS, including any exponential, as well as classical
B-spline. In the case of exponential B-splines we therefore avoid the usual need of
Eq. 1.1.

Lemma 3.1 Let N1, N2, Q1, Q2 ∈ Z. Let K̃ ∈ WN1,N2 and L ∈ WQ1,Q2 . Let M ∈
N, a ∈ R and F(x) := e−ax, G(x) := eax, x ∈ R.

Let {f̃n}Mn=1, f̃n ∈ V0,1 be such that
∫ 1

0
F(y)f̃n(y)dy = 1, ∀ n ∈ {1, ...,M} and

define

F̃n(yn) =
∫

[0,1]n−1
F(y1 + ... + yn)

n−1∏

j=1

f̃j (yj )dyj .

K(x, y) := G(x − y)K̃(x − y), x, y ∈ R.

L(x, z) := F(x − z)

N2+M−(Q1+1)∑

j=N1−M−(Q2−1)

L(x − z − j), x, z ∈ R.

Then the following hold

(i)
∑

k∈Z
K(x + k, y)L(x + k, z) = F(y)G(z), a.e. x ∈ [0, 1], y, z ∈ [0, M].

(ii)
∫ 1

0
F̃n(yn)f̃ (yn)dyn = 1, ∀ n ∈ {1, ...,M}.

Proof We begin by proving (i). By assumption we have supp L ⊂ [Q1, Q2]. Com-
bined with the partition of unity property it follows that for a.e. y ∈[N1−M, N2+M]
we have

∑

j∈Z
L(y − j) =

N2+M−(Q1+1)∑

j=N1−M−(Q2−1)

L(y − j) = 1. (3.1)

By assumption we have supp K ⊆ [N1, N2].
Since |(x − z + k) − (x − y + k)| = |y − z| ≤ M,

it follows that if x + k − y ∈ [N1, N2], then x + k − z ∈ [N1 − M, N2 + M].
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By the partition of unity property and Eq. 3.1 we see that
∑

k∈Z
K(x + k, y)L(x + k, z)

=
∑

k∈Z
ea(x+k−y)K(x + k − y)e−a(x+k−z)

N2+M−(Q1+1)∑

j=N1−M−(Q2−1)

L([x + k − z] − j)

= e−ayeaz
∑

k∈Z
K(x + k − y)

N2+M−(Q1+1)∑

j=N1−M−(Q2−1)

L([x + k − z] − j)

= e−ayeaz
∑

k∈Z
K([x − y] + k) = e−ayeaz, a.e. x ∈ [0, 1], y, z ∈ [0, M].

This proves (i). We now prove (ii). By assumption∫ 1
0 e−ayf̃n(y)dy = 1, ∀ n ∈ {1, ...,M}. We therefore see that

∫ 1

0
F̃n(yn)f̃n(yn)dy =

∫ 1

0

⎛

⎝
∫

[0,1]n−1
F(y1 + ... + yn)

n−1∏

j=1

f̃j (yj )dyj

⎞

⎠ f̃n(yn)dyn

=
∫

[0,1]n
F (y1 + ... + yn)

n∏

j=1

f̃j (yj )dyj

=
∫

[0,1]n
e−a(y1+...+yn)

n∏

j=1

f̃j (yj )dyj

=
∫

[0,1]n
e−ay1 . . . e−ayn

n∏

j=1

f̃j (yj )dyj

=
n∏

j=1

(∫ 1

0
e−ayj f̃j (yj )dyj

)
= 1.

For any fixed M ∈ N we now consider families {gn}Mn=1, {hn}Mn=1, of the type
(2.5). Our goal is to show that dual properties of members gn, hm are related to their
initial kernels. More precisely we set out to find sufficient conditions on the initial
kernels to ensure that any member of the family {hn}Mn=1 will act as a common dual
generator for each function gn, n ∈ {1, ...,M} and vice versa.

Lemma 3.2 Let M ∈ N and N1, N2 ∈ Z. Let g, h be functions of Hilbert-Schmidt
type. Let K ∈ VN1,N2 and L ∈ VM1,M2 denote their respective kernels and f̃ , g̃ the
associated V0,1 functions, where

M1 = N1 − M − Q + 1, M2 = N2 + M + Q − 1,

for some Q ∈ N. Let b ∈]0, 1
N2−N1+M+Q

] and F,G ∈ V0,1. Assume that
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(i)
∑

k∈Z
K(x + k, y)L(x + k, z) = bF(y)G(z), a.e. x ∈ [0, 1], y, z ∈ [0, M].

(ii)
∫ 1
0 F(y)f̃ (y)dy = ∫ 1

0 G(z)g̃(z)dz = 1.

Then the functions g, h generate dual frames {E�bTjg}�,j∈Z and {E�bTjh}�,j∈Z for
L2(R).

Proof By construction g, h are real-valued, bounded and compactly supported func-
tions. It follows that {E�bTjg}�,j∈Z and {E�bTjh}�,j∈Z are Bessel sequences. By
Theorem 1.3 these sequences form pairs of dual frames if and only if

∑

k∈Z
g(x − j/b − k)h(x − k) = bδj,0, a.e. x ∈ [0, 1]. (3.2)

Let j 	= 0. By construction we have supp g ⊆ [N1, N2 + 1] and
supp h ⊆ [N1 −M −Q+ 1, N2 +M +Q]. We therefore see that Eq. 3.2 is satisfied
whenever 1

b
≥ N2 −N1 +M +Q. Let j = 0. Since g, h are compactly supported we

can interchange the order of summation and integration in Eq. 3.2. We thereby obtain

∑

k∈Z
g(x + k)h(x + k) =

∑

k∈Z

(∫ 1

0
K(x + k, y)f̃ (y)dy

)(∫ 1

0
L(x + k, z)g̃(z)dz

)

=
∑

k∈Z

∫ 1

0

∫ 1

0
K(x + k, y)L(x + k, z)f̃ (y)g̃(z)dydz (3.3)

=
∫ 1

0

∫ 1

0

(
∑

k∈Z
K(x + k, y)L(x + k, z)

)
f̃ (y)g̃(z)dydz.

Combining Eq. 3.3 with assumptions (i) and (ii) it follows that for
a.e. x ∈ [0, 1] we have

∑

k∈Z
g(x + k)h(x + k) = b

(∫ 1

0
F(y)f̃ (y)dy

)(∫ 1

0
G(z)g̃(z)dz

)
= b.

We now provide a convenient way of constructing families of functions of type
HS satisfying Lemma 3.2(i):

Lemma 3.3 Let M ∈ N and N1, N2 ∈ Z. Let g0 ∈ VN1,N2 and h0 ∈ VM1,M2 satisfy
the conditions of Lemma 3.2 with b > 0. For n ∈ {1, ...,M} define

gn(x) =
∫ 1

0
gn−1(x − y)f̃n(y)dy, hn(x) =

∫ 1

0
hn−1(x − z)g̃n(z)dz, (3.4)
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for some f̃n, g̃n ∈ V0,1 and let

F̃n(yn) :=
∫

[0,1]n−1
F(y1 + ... + yn)

n−1∏

j=1

f̃j (yj )dyj , G̃n(zn)

:=
∫

[0,1]n−1
G(z1 + ... + zn)

n−1∏

j=1

g̃j (zj )dzj . (3.5)

Let n,m ∈ {1, ...M}. Then
∑

k∈Z
gn−1(x+k−y)hm−1(x+k−z) = bF̃n(y)G̃m(z), a.e. x ∈ [0, 1], y, z ∈ [0, M].

Proof We begin by establishing the formulas

gn(x) =
∫

[0,1]n
g0(x −

n∑

j=1

yj )

n∏

j=1

f̃j (yj )dyj , hm(x)

=
∫

[0,1]m
h0(x −

m∑

j=1

zj )

m∏

j=1

g̃j (zj )dzj .

We do so by induction. When n = 1 we have g1(x) =
∫

g0(x − y1)f̃1(y1)dy1.

Now assume that the formula holds for some n ∈ {1, ...,M − 1}. We then obtain

gn+1(x) =
∫

gn(x − yn+1)f̃n+1(yn+1)dyn+1

=
∫ 1

0

⎛

⎝
∫

[0,1]n
g0(x − yn+1 −

n∑

j=1

yj )

n∏

j=1

f̃j (yj )dyj

⎞

⎠ f̃n+1(yn+1)dyn+1

=
∫

[0,1]n+1
g0(x −

n+1∑

j=1

yj )

n+1∏

j=1

f̃j (yj )dyj .

The formula for hm holds by a similar argument. Combining the results we see that

∑

k∈Z
gn−1(x + k − yn)hm−1(x + k − zm)

=
∑

k∈Z

⎛

⎝
∫

[0,1]n−1
g0(x + k −

n∑

j=1

yj )

n−1∏

j=1

f̃j (yj )dyj

⎞

⎠

⎛

⎝
∫

[0,1]m−1
h0(x + k −

m∑

j=1

zj )

m−1∏

j=1

g̃j (zj )dzj

⎞

⎠

=
∫

[0,1]n+m−2

∑

k∈Z
g0(x + k −

n∑

j=1

yj )h0(x + k −
m∑

j=1

zj )

n−1∏

j=1

f̃j (yj )

m−1∏

j=1

g̃j (zj )dyj dzj .
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Let y :=
n∑

j=1

yj , z :=
m∑

j=1

zj . Since n,m ≤ M it follows that y, z ∈ [0, M].
By the assumptions (i) and (ii) we therefore obtain

∑

k∈Z
gn−1(x + k − yn)hm−1(x + k − zm)

= b

∫

[0,1]n+m−2
F(y1 + ... + yn)G(z1 + ... + zm)

n−1∏

j=1

f̃ (yj )

m−1∏

j=1

g̃(zj )dyj dzj

= b

⎛

⎝
∫

[0,1]n−1
F(y1 + ... + yn)

n−1∏

j=1

f̃ (yj )dyj

⎞

⎠

⎛

⎝
∫

[0,1]m−1
G(z1 + ... + zn)

m−1∏

j=1

g̃(zj )dzj

⎞

⎠

= bF̃n(yn)G̃m(zm).

Combining Lemmas 3.2 and 3.3 we get sufficient conditions on the kernels g0, h0
for any two members gn, hm of the families (2.5) to form pairs of dual generators:

Proposition 3.4 Let M ∈ N and N1, N2 ∈ Z. Let g0 ∈ VN1,N2 and h0 ∈ VM1,M2

satisfy the conditions of Lemma 3.2 with b ∈]0, 1
N2−N1+2M+Q−1 ].

Choose f̃n, g̃n ∈ V0,1, n ∈ {1, ...,M}, such that
∫ 1

0
F̃n(y)f̃n(y)dy =

∫ 1

0
G̃n(z)g̃n(z)dz = 1,

where F̃n and G̃n are given by Eq. 3.5. Define gn, hn recursively by Eq. 3.4. Let
n,m ∈ {1, ...M}. Then the functions gn, hm generate dual frames {E�bTjgn}�,j∈Z
and {E�bTjhm}�,j∈Z for L2(R).

Proof Let n,m ∈ {1, ...,M}. By repeated use of Lemma 2.4 it follows that
supp gn ⊆ [N1, N2 + n] and supp hm ⊆ [N1 − M − Q + 1, N2 + M + m + Q − 1].
Let j 	= 0. Since n,m ≤ M we see that

∑

k∈Z
gn(x − j/b − k)hm(x − k) = bδj,0, a.e. x ∈ [0, 1]

is satisfied whenever 1
b

≥ N2 − N1 + 2M + Q − 1. Furthermore by Lemma 3.3 we
have
∑

k∈Z
gn−1(x+k−y)hm−1(x+k−z) = bF̃n(y)G̃m(z), a.e. x ∈ [0, 1], y, z ∈ [0, M].

Since
∫ 1
0 F̃n(y)f̃n(y)dy = ∫ 1

0 G̃m(z)g̃m(z)dz = 1 the result follows by Lemma 3.2.

Finally, combining Lemma 3.1 and Proposition 3.4 we obtain the main result
describing how to construct finite families of dual windows associated with certain
functions of typeHS :
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Theorem 3.5 Let M ∈ N, N1, N2, Q1, Q2 ∈ Z. Let K ∈ WN1,N2 and L ∈ WQ1,Q2 .
Let a ∈ R, b ∈]0, 1

N2−N1+2M+Q2−Q1−1 ] and define

g0(x) := eaxK(x), h0(x) = be−ax

N2+M−(Q1+1)∑

j=N1−M−(Q2−1)

L(x − j), x ∈ R.

Now define gn, hn recursively by Eq. 3.4 for some f̃n, g̃n ∈ V0,1 such that∫ 1
0 e−ayf̃n(y)dy = ∫ 1

0 eayg̃n(y)dy = 1. Let n,m ∈ {1, ...,M} and k ∈ N ∪ {∞}.
Then the following hold

(i) The functions gn, hm are compactly supported and if f̃n, g̃m belong to Ck(R)

then gn, hm belong to Ck(R).
(ii) The functions gn, hm generate dual frames {E�bTjgn}�,j∈Z and

{E�bTjhm}�,j∈Z for L2(R).

Proof By assumption we have supp L ⊆ [Q1, Q2]. We therefore see that h0 is
compactly supported with

supp h0 ⊆ [N1 − M − (Q2 − Q1 − 1), N2 + M + Q2 − Q1 − 1].
Combined with Lemma 2.4 this proves (i). By Lemma 3.1 we have

(i)
∑

k∈Z
g0(x + k − y)h0(x + k − z) = be−ayeaz, a.e. x ∈ [0, 1], y, z ∈ [0, M],

(ii)
∫ 1

0
F̃n(yn)f̃n(yn)dyn =

∫ 1

0
G̃n(zn)g̃n(zn)dzn = 1, ∀ n ∈ {1, ...,M}.

By Proposition 3.4 this proves duality of gn and hm.

In the next section we apply Theorem 3.5 to derive the results proclaimed at
the beginning of this section, i.e. we associate to any (exponential) B-spline finite
families of compactly supported dual windows of arbitrary finite smoothness.

4 Gabor frames generated by (exponential) B-splines

It has recently been shown in [4] that if ai 	= 0 ∀ ∈ {1, ..., N} then the
exponential B-spline EN,a cannot satisfy Eq. 1.1. Using Theorem 3.5 we now
show that any exponential B-spline EN,a can be associated with a finite fam-
ily of dual windows. We therefore avoid the usual need for the partition of
unity property. Prior to formally stating the result we fix some notation. For
any N ∈ N and any N-tuple a = (a1, a2, ..., aN) of real numbers we let
Qm,a = {j ∈ {2, ..., m + 1} |aj − a1 	= 0}, m ∈ {1, ..., N − 1}. For each
m ∈ {1, ..., N − 1} we define the corresponding constants

Cm,a =
⎧
⎨

⎩

∏

j∈Qm

aj − a1

eaj −a1 − 1
, Qm,a 	= ∅

1, Qm,a = ∅.
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Furthermore for any n ∈ {2, ..., N} we shall write En,a to denote the exponential
B-spline associated with the n-tuple an = (a1, a2, ..., an), i.e.

En,a := ea1(·)χ[0,1] ∗ ea2(·)χ[0,1] ∗ ... ∗ ean(·)χ[0,1].

Theorem 4.1 Let N ∈ N and a = (a1, a2, ..., aN). Let En,a denote the exponen-
tial B-spline of order n, n ∈ {2, ..., N}. Let Q1, Q2 ∈ Z and L ∈ WQ1,Q2 . Let
b ∈]0, 1

2(N−1)+Q2−Q1
] and define

h0(x) = Cn,abe−a1x

N−(Q1+1)∑

j=−N+1−(Q2−1)

L(x − j). (4.1)

Take {g̃m}N−1
m=1 such that

∫ 1
0 ea1yg̃m(y)dy = 1, ∀ m ∈ {1, ..., N − 1} and define

hm, m ∈ {1, ..., N − 1} recursively by Eq. 3.4. Then the functions En,a, hm generate
dual frames {E�bTjEn,a}�,j∈Z and {E�bTjhm}�,j∈Z for L2(R).

Proof For any m ∈ {1, ..., N − 1} we let

f̃m(y) =
{

am+1−a1

eam+1−a1−1
eam+1y, m ∈ Qm,a

1, m /∈ Qm,a.

A straightforward calculation shows that
∫ 1
0 ea1yf̃m(y)dy = 1. By Theorem 3.5 it

follows that the scaled exponential B-splines Ẽm,a = Cm,aEm,a have dual windows

hm(x) =
∫ 1

0
hm−1(x − z)g̃m(z)dz, m ∈ {1, ..., N − 1}, (4.2)

where h0 is given by Eq. 4.1. By Theorem 1.3 we therefore have
∑

k∈Z
Em,a(x − n/b − k)Cn,ahm(x − k) =

∑

k∈Z
Ẽm,a(x − n/b − k)hm(x − k) = bδn,0.

Appealing to Theorem 1.3 once more concludes the proof.

By Theorem 4.1 any exponential B-spline has dual windows which may be
conveniently written as simple linear combinations of other exponential B-splines:

Theorem 4.2 Let N ∈ N and a = (a1, a2, ..., aN). Let En,a denote the exponential
B-spline of order n, n ∈ {2, ..., N}. Take any b = (b1, b2, ..., bN), where b1 := −a1.
Let b ∈]0, 1

2N−1 ] and define

hm(x) := bCn,aCm,b

N−1∑

j=−N+1

e−a1jEm+1,b(x − j), m ∈ {1, .., N − 1}.

Then En,a and hm generate dual frames {E�bTjEn,a}�,j∈Z and {E�bTjhm}�,j∈Z for
L2(R).
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Proof For any m ∈ {1, ..., N − 1} we let

g̃m(z) =
{

bm+1−a1

ebm+1−a1−1
ebm+1z, m ∈ Qm

1, m /∈ Qm.

By Theorem 4.1 the exponential B-splines En,a, n ∈ {2, ..., N} have dual windows
(4.2) where h0 is given by Eq. 4.1 withL = χ[0,1]. We now find an explicit expression
for Eq. 4.2. We see that

h1(x) = bCn,a

∫ 1

0
h0(x − z)g̃1(z)dz

= bCn,a

∫ 1

0
e−a1(x−z)

N−1∑

j=−N+1

χ[0,1](x − z − j)g̃1(z)dz

= bCn,a

N−1∑

j=−N+1

∫ 1

0
e−a1(x−j−z)e−a1jχ[0,1](x − z − j)g̃1(z)dz,

= bCn,aC1,b

N−1∑

j=−N+1

e−a1j

∫ 1

0
e−a1(x−j−z)χ[0,1](x − z − j)eb2zdz

= bCn,aC1,b

N−1∑

j=−N+1

e−a1jE2,b(x − j).

By repetition of the above argument we obtain the desired result

hm(x) = bCn,aCm,b

N−1∑

j=−N+1

e−a1jEm+1,b(x − j), m ∈ {1, .., N − 1}.

We note that the results of Theorems 4.1 and 4.2 encompass the classical
B-splines. Indeed let a = b = (0, 0, ..., 0)︸ ︷︷ ︸

N zeros

. We then see that

En,a = ea1(·)χ[0,1] ∗ ea2(·)χ[0,1] ∗ ... ∗ ean(·)χ[0,1] = χ[0,1] ∗ χ[0,1] ∗ ... ∗ χ[0,1]︸ ︷︷ ︸
n terms

= Bn.

By Theorem 4.1 and Lemma 2.4 any (exponential) B-spline has a finite family of
dual windows of arbitrary finite smoothness. Also, by Theorem 4.2 any (exponential)
B-spline has a dual window h ∈ Ck(R), k ∈ N which may be written as a linear
combination of another B-spline.

Example 4.3 We consider the exponential B-spline

E2,a(x) = ea1xχ[0,1](x) ∗ ea2xχ[0,1](x), x ∈ R, a1 − a2 	= 0.
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In Theorem 4.1 let N = 2 and take L(x) := χ[0,1](x), x ∈ R. We may then choose
b ∈]0, 1

3 ]. We then get the associated kernel

h0(x) = C2,abe−a1x

1∑

j=−1

χ[0,1](x − j) = a2 − a1

ea2−a1 − 1

1∑

j=−1

χ[0,1](x − j).

Let k ∈ N and consider f̃k(x) := xk(1 − x)kχ[0,1](x), x ∈ R. Then fk belongs to

Ck−1(R). Letting Ck = ∫ 1
0 ea1yyk(1 − y)kdy we obtain for each k ∈ N the (k −

1)-times continuously differentiable dual window

h1,k(x) =
∫ 1

0
h0(x − y)fk(y)dy.

In the concrete case a1 := 3, a2 := −3, b = 1/3 and k = 2 we obtain

h1,2(x) = 1

3

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−26
81 e−3x +

(−2
81 + 1

3x4 + 2
9x3 + 1

9x3 − 2
127x

)
e3 x ∈ [−1, 0[

2
81 e3−3x − 26

81 e−3x x ∈ [0, 2[
1
81

(−27x4 + 2e9−3x + 306x3 − 1305x2 + 2490x − 1802
)
e−6 x ∈ [2, 3]

0 x /∈ [−1, 3].

Example 4.4 We consider once again the exponential B-spline

E2,a(x) = ea1xχ[0,1](x) ∗ ea2xχ[0,1](x), x ∈ R, a1 − a2 	= 0.

By Theorem 4.2 it follows that E2,a has finite families of dual windows {hm}Nm=1
where N ∈ N, n ≥ 2 is kept fixed and b ∈]0, 1

2N−1 ]. Here each member hm can be
written as a linear combination of another exponential B-spline. In the concrete case
of N = 4, a = (2, 3) we take b = (−2, 1, −1, 2) and let b = 1

7 . We then obtain the
dual windows

hm(x) = bCn,aCm,b

3∑

j=−3

e−2jEm+1,b(x − j), m ∈ {1, 2, 3}.

These can all be written out explicitly using the formula given in [4]. For simplicity
we only write out h1 which is given explicitly by

h1(x) = b
a2 − a1

ea2−a1 − 1

b2 + a1

eb2+a1 − 1

3∑

j=−3

e−2jE2,b(x − j) = 1

7

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ex+9−e−2x

(e3−1)(e−1)
x ∈ [−3, −2[

e−2x+3−e−2x

(e3−1)(e−1)
x ∈ [−2, 4[

e−2x+3−e−12+x

(e3−1)(e−1)
x ∈ [4, 5]

0 x /∈ [−3, 5].
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