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Abstract In this work we derive and analyze variational integrators of higher order
for the structure-preserving simulation of mechanical systems. The construction
is based on a space of polynomials together with Gauss and Lobatto quadrature
rules to approximate the relevant integrals in the variational principle. The use of
higher order schemes increases the accuracy of the discrete solution and thereby
decrease the computational cost while the preservation properties of the scheme
are still guaranteed. The order of convergence of the resulting variational integra-
tors is investigated numerically and it is discussed which combination of space of
polynomials and quadrature rules provide optimal convergence rates. For particular
integrators the order can be increased compared to the Galerkin variational integra-
tors previously introduced in Marsden and West (Acta Numerica 10:357–514 2001).
Furthermore, linear stability properties, time reversibility, structure-preserving prop-
erties as well as efficiency for the constructed variational integrators are investigated
and demonstrated by numerical examples.
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1 Introduction

During the last years the development of geometric numerical integrators has been
of high interest in numerical integration theory. Geometric integrators are structure-
peserving integrators with the goal to capture the dynamical system’s behavior in a
most realistic way [7, 20, 27]. Using structure-preserving methods for the simulation
of mechanical systems, specific properties of the underlying system are handed down
to the numerical solution, for example, the energy of a conservative system shows no
numerical drift or the first integrals induced by symmetries are preserved exactly. One
particular class of structure-preserving integrators is the class of variational integra-
tors, introduced in [20] and [33] and which has been further developed and extended
to different systems and applications during the last years. Variational integrators
[20] are based on a discrete variational formulation of the underlying system, e.g.
based on a discrete version of Hamilton’s principle for conservative mechanical sys-
tems. The resulting integrators are symplectic and momentum-preserving and have
an excellent long-time energy behavior.

By choosing different variational formulations (e.g. Hamilton, Lagrange-
d’Alembert, Hamilton-Pontryagin, etc.), variational integrators have been developed
for a large class of problems: These involve classical conservative mechanical
systems (for an overview see [15, 16]), forced and controlled systems [9, 24], con-
strained systems (holonomic [18, 19] and nonholonomic systems [4, 10]), nonsmooth
systems [5], stochastic systems [2], multiscale systems [17, 30, 34] and Lagrangian
PDE systems [14, 21]. The applicability of variational integrators is not restricted
to mechanical systems. In [25] variational integrators have been developed for the
structure-preserving simulation of electric circuits.

Of special interest is the construction of higher order symplectic integrators: To
ensure moderate computational costs for long-time simulations, typically first or sec-
ond order integrators are used. However, many applications, in particular problems
in space mission design, demand more accurate discretization schemes. There are
mainly three different ways of constructing symplectic integrators of higher order (cf.
[12]): (i) By applying composition methods, higher order symplectic schemes can be
constructed in a systematic way based on a splitting of the Hamiltonian into explicitly
solvable subproblems (for an overview see [22, 35]). (ii) For (partitioned) Runge-
Kutta methods there is a well-developed order theory which can be used to identify
higher order symplectic Runge-Kutta methods (order conditions on the coefficients
have first been introduced by [11, 29, 31, 32]). However, the identification of the
coefficients for a symplectic Runge-Kutta scheme of desired order is not trivial and
quite involved. (iii) In contrast, generating functions (see e.g. [1]) can be constructed
that automatically guarantee the symplecticity of the associated numerical method.
Since variational integrators rely on the approximation of the action, a generating
function of first kind (cf. [20]), we focus on the latter approach for the construction
of higher order methods.

Of particular interest are Galerkin variational integrators which have been already
studied in e.g. [8, 13, 20]. They rely on the approximation of the action based on
a choice of a finite-dimensional function space and a numerical quadrature for-
mula. In [13], Galerkin and shooting-based constructions for discrete Lagrangian are



Construction and analysis of higher order Galerkin variational integrators 957

presented. Rather than choosing an infinite-dimensional function space, the shooting-
based construction depends on a choice of a numerical quadrature formula together
with a one-step method. In [8] a convergence analysis for Galerkin type variational
integrators is established showing that under suitable assumptions the integrators
inherit the order of convergence given by the finite-dimensional approximation space
used in the construction. More detailed, it is shown that a Galerkin variational inte-
grator based on an (s + 1)-dimensional function space (e.g. the space of polynomials
of degree s) and a quadrature rule of order s has convergence oder s.

In this contribution, we numerically demonstrate that the convergence order of
the variational integrator can even be increased if higher order quadrature rules
are used. We focus on a particular class of Galerkin variational integrators: As
finite-dimensional function space we choose the space of polynomials of degree s.
Furthermore, as quadrature rules we focus on the Gauss and Lobatto quadrature for-
mula. However, in contrast to [20] we do not restrict the number r of quadrature
points being equal to the polynomial order s. For two numerical examples we inves-
tigate which combination of space of polynomials, quadrature rules and number of
quadrature points provide optimal convergence rates.1 In particular, the numerical
results indicate that the order of the higher order variational integrator constructed
by a polynomial of degree s and a quadrature rule of order u is min (2s, u). This
convergence order is in agreement with already known results for the special case of
variational integrator with r = s. Thus, the integrator order can be increased to 2s for
sufficiently accurate quadrature rules. While the focus in this work lies on numerical
investigations, a formal proof of this superconvergence result for arbitrary combina-
tions of polynomial degree and number of quadrature points is still subject of ongoing
research. Based on the numerical results, we perform a numerical analysis regarding
efficiency versus accuracy (see also [28]). Furthermore, we investigate analytically
and numerically preservation properties, time reversibility and linear stability of the
constructed integrators. Whereas preservation properties and time reversibly have
also been subject of previous works for particular Galerkin variational integrates (see
e.g. [13]), the stability analysis provides another new contribution.

Outline In Section 2 we recall the basic definitions and concepts of variational
mechanics and variational integrators. In Section 3 the higher order integrators are
constructed following the Galerkin approach introduced in [20]. Properties of the
Galerkin variational integrators are presented in Section 4. In Section 4.1 preservation
properties, such as symplecticity and preservation of momentum maps are discussed.
In Section 4.2 it is shown under which conditions the constructed integrators are time-
reversible. Furthermore, in Section 4.3 a linear stability analysis is performed for
specific examples showing in which region the constructed higher order variational
integrators are asymptotically stable (in the sense that the growth of the solution is
asymptotically bounded (cf. [12]). A-stability for a particular class of variational inte-
grators is shown. In Section 5 the numerical convergence analysis by means of two

1The generalization r �= s is also described in [8], however the influence of the relation of the number of
quadrature points and the polynomial degree is not investigated.
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numerical examples, the harmonic oscillator and the Kepler problem, is performed
using different combinations of the polynomial degree s and the number r of quadra-
ture points. Furthermore, the relation of computational efficiency and accuracy for
two different classes of variational integrators is investigated. Finally, we conclude
with a summary of the results and an outlook for future work in Section 6.

2 Variational mechanics

2.1 Hamilton’s principle and Euler-Lagrange equations

Consider a mechanical system defined on the n-dimensional configuration manifold
Q with corresponding tangent bundle T Q and cotangent bundle T ∗Q. Let q(t) ∈ Q

and q̇(t) ∈ Tq(t)Q, t ∈ [0, T ] be the time-dependent configuration and velocity of
the system.

The actionS : C2([0, T ], Q) → R of a mechanical system is defined as the time
integral of the Lagrangian, i.e.,

S(q) =
∫ T

0
L(q(t), q̇(t))dt (1)

where the C2-Lagrangian L : T Q → R consists of kinetic minus potential energy.
Hamilton’s principle seeks curves q ∈ C2([0, T ], Q) with fixed initial value q(0)

and fixed final value q(T ) satisfying

δS(q) = 0 (2)

for all variations δq ∈ TqC2([0, T ], Q). This leads to the Euler-Lagrange equations

d

dt

∂L

∂q̇
− ∂L

∂q
= 0 (3)

which are second-order differential equations describing the dynamics for conserva-
tive systems.

2.2 Discrete Hamilton’s principle and discrete Euler-Lagrange equations

The concept of variational integrators is based on a discretization of the variational
principle (2). Consider a time grid Δt = {tk = kh|k = 0, . . . , N}, Nh = T , where
N is a positive integer and h the step size. We replace the configuration q(t) by a
discrete curve qd = {qk}Nk=0 with qk = qd(tk) as approximations to q(tk). We define
a discrete Lagrangian Ld : Q × Q → R

Ld(qk, qk+1) ≈
∫ tk+1

tk

L(q(t), q̇(t))dt (4)
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that approximates the action on [tk, tk+1] based on two neighboring discrete configu-
rations qk and qk+1. The discrete actionSd : QN+1 → R is defined as

Sd(qd) =
N−1∑
k=0

Ld(qk, qk+1).

The discrete Hamilton principle is formulated by finding stationary points of the
discrete action given by

δSd(qd) = 0 (5)

with δq0 = δqN = 0. This gives the discrete Euler-Lagrange equations (DEL)

D1Ld(qk, qk+1) + D2Ld(qk−1, qk) = 0 (6)

for k = 1, . . . , N − 1 and with Di being the derivative w.r.t. the i-th argument.
Equation 6 provides a discrete iteration scheme for (3) that determines qk+1 for given
qk−1 and qk. It is also known as the discrete Lagrangian map FLd : Q×Q → Q×Q,
given by FLd (qk−1, qk) = (qk, qk+1) and (qk−1, qk), (qk, qk+1) satisfy (6). The
discrete iteration schemes derived by a discrete variational principle are called vari-
ational integrators and are well-known to be symplectic and momentum-preserving
and exhibit excellent long-time energy behavior (cf. Section 4.1).

The discrete Legendre transforms F
±Ld : Q × Q → T ∗Q provide discrete

expressions for the conjugate momenta by

F
−Ld : (qk, qk+1) → (qk, p−

k ) = (qk, −D1L(qk, qk+1)) and

F
+Ld : (qk−1, qk) → (qk, p+

k ) = (qk, D2L(qk−1, qk)).

Note that (6) can be equivalently written as p−
k = p+

k and the discrete Hamiltonian

map F̃Ld : T ∗Q → T ∗Q defined by

F̃Ld : (qk, pk) → (qk+1, pk+1) = F
±Ld ◦ FLd ◦ (F±Ld)−1(qk, pk).

is equivalent to the discrete Lagrangian map.

3 Higher order variational integrators

3.1 Approximation of the action integral

The approximation of the action integral consists of two approximation steps: the
approximation of the space of trajectories and the approximation of the integral of
the Lagrangian by appropriate quadrature rules.

We approximate the space of trajectories C([0, h], Q) = {q : [0, h] → Q|q(0) =
qa, q(h) = qb} by a finite-dimensional approximation Cs([0, h], Q) ⊂ C([0, h], Q)

of the trajectory space given by

Cs ([0, h], Q) = {q ∈ C([0, h], Q)|q ∈ Πs },
with Πs being the space of polynomials of degree s. Given s + 1 control points
0 = d0 < d1 < · · · < ds−1 < ds = 1 and s + 1 configurations q0 =
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(
q0

0 , q1
0 , q2

0 , . . . , qs−1
0 , qs

0

) ∈ Qs+1 with q0
0 = qa and qs

0 = qb, the degree s polyno-
mial qd(t; q0, h) which passes through each qν

0 at time dνh, that is, qd(dνh) = qν
0 for

ν = 0, . . . , s, is uniquely defined.
With the Lagrange polynomial lν,s : [0, 1] → R

lν,s (τ ) =
∏

0≤i≤s,i �=ν

τ − di

dν − di

we obtain qd(t; q0, h) with t ∈ [0, h] as

qd(t; q0, h) =
s∑

ν=0

qν
0 lν,s

(
t

h

)
.

With

lν,s (di) =
{

1 , i = ν

0 , i �= ν

for all i = 0, . . . , s, we have qd(dih; q0, h) = qi
0. The derivative of qd(t; q0, h) w.r.t.

t provides an approximation of q̇ on [0, h] as

q̇d(t; q0, h) = 1

h

s∑
ν=0

qν
0 l̇ν,s

(
t

h

)
.

To approximate the trajectory q : [0, T ] → Q, we divide the time interval [0, T ] in
N = T/h sub intervals of length h as

[0, T ] =
N−1⋃
k=0

[kh, (k + 1)h].

On all sub intervals we approximate q : [0, T ] → Q piecewise by the polynomials
qd,k : [kh, (k + 1)h] → Q defined by

qd,k(t; qk, h) := qd(t − kh; qk, h) t ∈ [kh, (k + 1)h]
with qk = (

q0
k , q1

k , . . . , qs−1
k , qs

k

)
and k = 0, . . . , N − 1. To obtain a continuous

approximation on [0, T ], we set qs
k = q0

k+1 for all k = 0, . . . , N − 2.
For the approximation of the action integral (1) we replace the curves q(t) and

q̇(t) by the piecewise polynomials qd,k(t; qk, h) and q̇d,k(t; qk, h), k = 0, . . . , N ,
and approximate

∫ (k+1)h

kh

L(qd,k(t; qk, h), q̇d,k(t; qk, h))dt (7)

on each time interval [kh, (k + 1)h], k = 0, . . . , N − 1, by choosing a numerical
quadrature rule (bi , ci)

r
i=1 w.r.t. the time interval [0, 1] with quadrature points ci ∈

[0, 1] and weights bi, i = 1, . . . , r . The choice of quadrature rule should be adapted
to the desired order of accuracy of the integrator since the order of the quadrature
rule provides an upper bound for the order of the variational integrator (cf. e.g. [13]).
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By applying the quadrature rule (bi, ci)
r
i=1 to the integral (7) we define the discrete

Lagrangian Ld,k as

Ld,k = Ld

(
qk = (

q0
k , . . . , qs

k

)
, h

) = h

r∑
i=1

biL(qd,k(cih + kh; qk, h), q̇d,k(cih + kh; qk, h))

= h

r∑
i=1

biL(qd(cih; qk, h), q̇d (cih; qk, h))

which provides an approximation of the action on the interval [kh, (k + 1)h] as
Ld,k ≈ ∫ (k+1)h

kh
L(q(t), q̇(t))dt . Note that the discrete Lagrangian depends on s + 1

configurations qk and the step size h. In the following, we write Ld(qk) for Ld(qk, h).
Finally, we define the discrete action sum over the entire trajectory to be

Sd(q0, . . . , qN−1) =
N−1∑
k=0

Ld(qk) (8)

which is an approximation of the action sum on [0, T ] as Sd(q0, . . . , qN−1) ≈ S(q).

3.2 Discrete Hamilton’s principle

For the discrete action Sd defined in Eq. 8 we can apply discrete Hamilton’s principle
as described in Section 2.2. Since we want to determine discrete approximations
of curves for which the discrete action is stationary, the derivatives of the action
w.r.t. qν

k have to vanish for all k = 0, . . . , N − 1 and ν = 0, . . . , s. This leads for
k = 0, . . . , N − 1 and ν = 1, . . . , s − 1 to

0 = ∂Sd

∂qν
k

(q0, . . . , qN−1) = ∂Ld

∂qν
k

(qk)

= h

r∑
i=1

bi

(
∂L

∂q
(cih; qk)

∂qd

∂qν
k

+ ∂L

∂q̇
(cih; qk)

∂q̇d

∂qν
k

)

= h

r∑
i=1

bi

(
∂L

∂q
(cih; qk)lν,s(ci) + ∂L

∂q̇
(cih; qk)

1

h
l̇ν,s(ci)

)
.

Note that we use the short notation ∂L
∂q

(cih; qk) = ∂L
∂q

(qd(cih; qk, h), q̇d(cih; qk, h))

and that we have ∂qd

∂qν
k

= ∂qd(cih;qk,h)

∂qν
k

= lν,s(ci). The analog holds for ∂L
∂q̇

(cih; qk) and
∂q̇d

∂qν
k

. With qs
k−1 = q0

k for all k = 1, . . . , N − 1 we obtain for ν = 0 and ν = s

0 = ∂Sd

∂qs
k−1

(q0, . . . , qN−1) = ∂Sd

∂q0
k

(q0, . . . , qN−1) = ∂Ld(qk−1)

∂qs
k−1

+ ∂Ld(qk)

∂q0
k

= h

r∑
i=1

bi

(
∂L

∂q
(cih; qk−1)ls,s(ci) + ∂L

∂q̇
(cih; qk−1)

1

h
l̇s,s(ci)

)

+ h

r∑
i=1

bi

(
∂L

∂q
(cih; qk)l0,s(ci) + ∂L

∂q̇
(cih; qk)

1

h
l̇0,s(ci)

)
.
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With the notation DiLd

(
q0
k , . . . , qs

k

) := ∂Ld(qk)

∂qi−1
k

we obtain the discrete Euler-

Lagrange equations

Ds+1Ld

(
q0
k−1, . . . , qs

k−1

)
+ D1Ld

(
q0
k , . . . , qs

k

)
= 0, (9)

DiLd

(
q0
k , . . . , qs

k

)
= 0 ∀i = 2, . . . , s, (10)

for k = 1, . . . , N−1. A sequence {qk}N−1
k=0 = {(

q0
k , . . . , qs

k

)}N−1
k=0 that satisfies (9–10)

and the transition condition is a solution of the discrete Euler-Lagrange equations.
We denote the left hand side of Eqs. 9 and 10 by DDELLd(qk−1, qk) such that we
have

(DDELLd(qk−1, qk))1 = Ds+1Ld

(
q0
k−1, . . . , qs

k−1

)
+ D1Ld

(
q0
k , . . . , qs

k

)

(DDELLd(qk−1, qk))2 = D2Ld

(
q0
k , . . . , qs

k

)

...

(DDELLd(qk−1, qk))s = DsLd

(
q0
k , . . . , qs

k

)
.

As in [20] we can introduce the standard discrete Lagrangian that depends only on
two configurations as

Ld

(
q0
k , qs

k

)
= Ld(qk),

where q1
k , . . . , qs−1

k are implicitly determined by satisfying the internal stage
equations (10). Alternatively, one can characterize the discrete Lagrangian in the
following way (see [20]),

Ld

(
q0
k , qs

k

) = ext
qν
k ∈Q

ν∈{1,...,s−1}

h

r∑
i=1

biL(qd(cih; qk)), q̇d(cih; qk)),

meaning that (s − 1) configurations q1
k , . . . , qs−1

k are determined by extremizing the
discrete Lagrangian. As for the discrete Lagrangian, we neglect here the argument h

of qd . The Lagrangian Ld

(
q0
k , qs

k

)
provides the same iteration scheme as the discrete

Lagrangian Ld(qk).
Let qk = (

q0
k , . . . , qs

k

)
and let α(qk, qk+1) = qk+1 be the translation operator

and π(qk, qk+1) = qk the projection operator. The discrete Lagrangian evolution
operator XLd : Qs+1 → Qs+1 × Qs+1 satisfies

XLd (qk−1) = (qk−1, qk) with qs
k−1 = q0

k ,

π ◦ XLd (qk−1) = qk−1 and DDELLd ◦ XLd (qk−1) = 0.

The discrete Lagrangian map FLd : Qs+1 → Qs+1 is defined by

FLd (qk−1) = α ◦ XLd (qk−1) = qk
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and generates the sequence of configurations that is denoted as the solution of the
Euler-Lagrange equations. The discrete Legendre transforms F±Ld : Q×Q → T ∗Q
are defined as

F
−Ld

(
q0
k , qs

k

)
=

(
q0
k , p0−

k

)
=

(
q0
k , −D1Ld

(
q0
k , qs

k

))
,

F
+Ld

(
q0
k−1, qs

k−1

)
=

(
q0
k , p0+

k

)
=

(
q0
k , Ds+1Ld

(
q0
k−1, qs

k−1

))
.

From the discrete Euler-Lagrange equations it follows that along the solution of the
discrete Euler-Lagrange equations we have

p0
k := p0−

k = p0+
k .

Note that the discrete Lagrangian flow is well-defined, if the discrete Lagrangian
is regular, i.e., if the discrete Legendre transforms are local isomorphisms what is
assumed in the following. As shown in Fig. 1, the discrete Hamiltonian map F̃Ld :
T ∗Q → T ∗Q is given by

F̃Ld = F
±Ld ◦ FLd ◦ (F±Ld)−1.

With the proposed method different variational integrators can be constructed.
We use the following notation: (P sNrQu) is an integrator constructed as described
above with a polyomial of degree s with s +1 control points (di)

s
i=0 and a quadrature

formula of order u with r quadrature points. Note that u depends on r . If explicitly
given, we denote by three letters the quadrature rule in use, i.e. Lob for Lobatto
quadrature (u = 2r − 2) and Gau for Gauss quadrature (u = 2r).

Fig. 1 Correspondence between the discrete Lagrangian and the discrete Hamiltonian map
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Example 1 To keep the notation simple, we neglect the second and third argument of
qd and simply write qd(t) instead of qd(t; q0, h).

(i) The integrator (P 1N1Q2Gau) is based on a polynomial with control points
d0 = 0, d1 = 1 and the quadrature approximation

∫ h

0
L(q(t), q̇(t)) dt ≈ Ld((q0

0 , q0
1 ), h) = hL(qd (h/2) , q̇d (h/2))

= hL

(
q0

0 + q0
1

2
,
q0

1 − q0
0

h

)

and thus results in the midpoint rule discrete Lagrangian.
(ii) If the trapezoidal rule is applied as quadrature formula, we obtain the

variational integrator (P 1N2Q2Lob) with discrete Lagrangian

Ld

((
q0

0 , q0
1

)
, h

)
= h

2
L(qd(0), q̇d(0)) + h

2
L(qd(h), q̇d(h))

= h

2
L

(
q0

0 ,
q0

1 − q0
0

h

)
+ h

2
L

(
q0

1 ,
q0

1 − q0
0

h

)

which is the discrete Lagrangian of the Störmer-Verlet method with factor 1
2

for a Lagrangian of the form L(q, q̇) = 1
2 q̇T Mq̇ − V (q).

(iii) For a second order polynomial (s = 2) with control points d0 = 0, d1 = 1
2

and d2 = 1 and by applying Simpson’s rule, which is a Lobatto quadrature of
order four, we obtain the variational integrator (P 2N3Q4Lob) with discrete
Lagrangian given by

Ld

(
(q0

0 , q1
0 , q2

0 ), h
)

= h

6
L(qd(0), q̇d (0)) + 2h

3
L(qd (h/2) , q̇d (h/2)) + h

6
L(qd(h), q̇d (h))

= h

6
L

(
q0

0 ,
−3q0

0 + 4q1
0 − q2

0

h

)
+ 2h

3
L

(
q1

0 ,
q2

0 − q0
0

h

)

+h

6
L

(
q2

0 ,
q0

0 − 4q1
0 + 3q2

0

h

)
.

Remark 1 (Implementation) For given configurations q0
0 , . . . , qs−1

0 , q0
1 we compute

the unknown configuration q0
2 by performing one step of the discrete Lagrangian

evolution (
q0

0 , . . . , qs−1
0 , q0

1

) FLd−→
(
q0

1 , . . . , qs−1
1 , q0

2

)
.

To this end, the system of s nonlinear (9–10) is solved for the s unknowns
(
q1

1 , . . . ,

qs−1
1 , q0

2

)
. For the numerical solution, a Newton method can be used. For given ini-

tial configuration q(0) and momentum p(0), in the first step, (9) is replaced by the
discrete Legendre transform

p(0) = −D1Ld

(
q0

0 , . . . , qs
0

)
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and the system of equations is solved for
(
q1

0 , . . . , q0
1

)
. For the quadrature rules con-

sidered here, (9–10) typically provide an implicit scheme for nonlinear systems that
has to be solved by an iterative solver all at once.

Remark 2 (Galerkin methods) For the Galerkin variational integrators as introduced
in [20], Section 2.6.6, the number of quadrature points of the quadrature formula
(bi, ci)

r
i=1 is fixed to r = s, where s is the degree of the polynomial qd . In our

notation that means that only the methods (P sNsQu) are investigated, which are
shown to be equivalent to partitioned symplectic Runge-Kutta methods. In partic-
ular, it is pointed out that the integrator (P sNsQ2sGau), which uses the Gauss
quadrature formula, corresponds to the collocation Gauss-Legendre rule, whereas
(P sNsQ2s − 2Lob) yields the standard Lobatto IIIA-IIIB partitioned Runge-Kutta
method. For both methods the order is determined by the order of quadrature rule,
i.e., (P sNsQ2sGau) is of order 2s and (P sNsQ2s − 2Lob) is of order 2s − 2 (cf.
[7]). Although the Gauss quadrature formula leads to higher order schemes, in par-
ticular for stiff systems the choice of a quadrature rule involving cs = 1 leads to
better numerical performance (cf. [7, 20]). If, in addition, one wishes to use a sym-
metric quadrature rule, i.e., c1 = 0, the Legendre-Lobatto quadrature rule provides
the highest possible order.

4 Properties of Galerkin variational integrators

In this section properties of the Galerkin variational integrators, such as symplectic-
ity, momentum-preservation, time reversibility and linear stability are studied.

4.1 Preservation properties of variational integrators

As already mentioned in Section 2 variational integrators are structure-preserving, in
particular they are symplectic and momentum-preserving. In this section we briefly
repeat the notion of symplecticity and first integrals and their discrete counterparts.

4.1.1 Symplecticity and energy behavior

In the case of conservative systems (as considered here), the flow on T ∗Q of the
Euler-Lagrange equations preserves the canonical symplectic form Ω = dqi ∧dpi =
dθ of the Hamiltonian system, where θ = pidqi is the canonical one-form.2 It is
well known (cf. e.g. [20]) that variational integrators are symplectic, that is the same
property holds for the discrete flow of the discrete Euler-Lagrange equations. As
a consequence, the canonical discrete symplectic form Ω = dqi

0 ∧ dpi
0 is exactly

preserved for the discrete solution which is in particular true for the variational
integrators presented in this work.

By using techniques from backward error analysis it is shown (cf. e.g. [7]) that
symplectic integrators have excellent energy properties, meaning that for long-time

2The upper index i corresponds to the ith component of q and p, respectively.
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integrations there is no artificial energy growth or decay due to numerical errors. This
property is demonstrated numerically in Section 5 and illustrates the advantage of
variational integrators over e.g. nonsymplectic Runge-Kutta integrators in particular
for long-time simulations.

4.1.2 Preservation of first integrals

The Noether theorem provides first integrals of the Euler-Lagrange equations which
are also called momentum maps. The discrete Noether theorem states that these
invariants are also preserved for the discrete solution. The following two theorems
are taken from [7].

Theorem 1 (Noether theorem) Let L(q, q̇) be a regular Lagrangian. Suppose G =
{gv : v ∈ R} is a one-parameter group of transformations (gv ◦ gw = gv+w) which
leaves the Lagrangian invariant such that

L(gv(q), g′
v(q)q̇) = L(q, q̇) ∀v ∈ R ∀(q, q̇) ∈ T Q.

Let a(q) = d
dv

gv(q)|v=0 be defined as the vector field with flow gv(q). Then

I (q, p) = pT a(q) (11)

is a first integral of the Euler-Lagrange equations.

The discrete analog of the Noether theorem is stated as follows.

Theorem 2 (Discrete Noether theorem) Suppose the one-parameter group of trans-
formations G = {gv : v ∈ R} leaves the discrete Lagrangian Ld

(
q0

0 , q0
1

)
invariant,

that means

Ld

(
gv

(
q0

0

)
, gv

(
q0

1

))
= Ld

(
q0

0 , q0
1

)
∀v ∈ R ∀

(
q0

0 , q0
1

)
∈ Q × Q.

Then (11) is an invariant of the discrete Hamiltonian map F̃Ld , i.e.,

I ◦ F̃Ld

(
q0
k , p0

k

)
= I

(
q0
k , p0

k

)
.

Proofs of Theorems 2 and 2 can be found in [7].
Note that the invariant of the discrete Hamiltonian map only equals the first

integral of the Euler-Lagrange equations if the discrete Lagrangian Ld inherits the
invariance of the Lagrangian L. In the following we show under which condition this
invariance is inherited.

Definition 1 (Equivariance) Let {gv : v ∈ R} be a one-parameter group of transfor-
mation. The interpolation polynomial qd of (P sNsQu) is equivariant w.r.t. {gv : v ∈
R} if

gv

(
qd

(
t;

(
q0

0 , . . . , qs
0

)))
= qd

(
t;

(
gv

(
q0

0

)
, . . . , gv

(
qs

0

)))
, (12)

g′
v

(
qd

(
t;

(
q0

0 , . . . , qs
0

)))
q̇

(
t;

(
q0

0 , . . . , qs
0

))
= q̇d

(
t;

(
gv

(
q0

0

)
, . . . , gv

(
qs

0

)))
. (13)
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Note that (13) follows from Eq. 12 by applying the chain rule.

Theorem 3 (Invariance of discrete Lagrangian) Suppose that the interpolation poly-
nomial qd of (P sNrQu) is equivariant and that the regular Lagrangian L is
invariant w.r.t. the one-parameter group G = {gv : v ∈ R}. Then the discrete
Lagrangian Ld of (P sNrQu) is invariant w.r.t. G.

Proof Let q0 = (
q0

0 , . . . , qs
0

)
with qs

0 = q0
1 and gv · q0 = (

gv

(
q0

0

)
, . . . ,

gv

(
qs−1

0

)
, gv

(
q0

1

))
. Let (bi, ci)

r
i=1 be the quadrature formula that corresponds to

(P sNrQu). With the invariance of L and the equivariance of qd we have that

Ld

(
gv

(
q0

0

)
, gv

(
q0

1

))
= ext

gv(qν
0 )∈Q

ν∈{1,...4,s−1}

h

r∑
i=1

biL(qd(cih; gv · q0), q̇d (cih; gv · q0))

= ext
qν

0 ∈Q

ν∈{1,...,s−1}

h

r∑
i=1

biL(gv(qd(cih; q0)), g
′
v(qd(cih; q0))q̇d(cih; q0))

= ext
qν

0 ∈Q

ν∈{1,...,s−1}

h

r∑
i=1

biL(qd(cih; q0)), q̇d (cih; q0))

= Ld

(
q0

0 , q0
1

)
.

A general form of the statement of Theorem 3 for Galerkin Lie group variational
integrators can also be found in [13].

Remark 3 From Theorem 3 it follows that for linear group transformations the dis-
crete Lagrangian Ld of (P sNrQu) inherits the invariance of the Lagrangian L

(cf. [20]).

The properties described in Section 4.1 are valid for all variational integrators. In
the following we present special properties of the variational integrators constructed
in this work.

4.2 Time reversibility

A further geometric property of Hamiltonian systems is the time reversibility. It
seems likely to use numerical methods that produce a reversible numerical flow
when they are applied to a reversible Hamiltonian system. Furthermore, the numer-
ical solution has a long-time behavior similar to the exact solution (see [7]),
and thus time reversibility is a desirable property also for the variational inte-
grators presented in this work. In the following, we repeat the definitions of
time reversibility and the adjoint discrete Lagrangian (following [7] and [20])
und show, under which conditions the variational integrators (P sNrQu) are time-
reversible.
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Definition 2 (Time reversibility and adjoint [7]) A numerical one-step method Φd is
called symmetric or time-reversible if it satisfies

Φh
d ◦ Φ−h

d = id or equivalently Φh
d =

(
Φ−h

d

)−1
.

The adjoint method denoted by Φ∗
h is defined by

(
Φh

d

)∗ = (
Φ−h

d

)−1
.

A method is called self-adjoint if we have

Φ∗
d = Φd.

Thus, symmetric, time-reversible, and self-adjoint are equivalent notions. In the
following, we show that the integrators (P sNrQ2rGau) and (P sNrQ2r − 2Lob)

are self-adjoint and thus time-reversible methods where s is not necessarily equal to
r . Note that the special case of Lobatto quadrature with r = s leads to Lobatto IIIA-
IIIB partitioned Runge-Kutta methods which are known to be time-reversible (see
e.g. [7]).

Definition 3 (Adjoint of the discrete Lagrangian [20]) The adjoint discrete
Lagrangian L∗

d of the discrete Lagrangian is given by

L∗
d

(
q0

0 , q0
1 , h

)
= −Ld

(
q0

1 , q0
0 , −h

)
.

The discrete Lagrangian is self-adjoint if

Ld

(
q0

0 , q0
1 , h

)
= L∗

d

(
q0

0 , q0
1 , h

)
.

The following well-known theorem (see e.g. [20]) connects the adjoint of the
discrete Lagrangian with the adjoint of the discrete Hamiltonian flow.

Theorem 4 If the discrete Lagrangian Ld has a discrete Hamiltonian map F̃Ld ,
then the discrete Hamiltonian map of the adjoint discrete Lagrangian L∗

d equals the
adjoint map, i.e. F̃L∗

d
= F̃ ∗

Ld
. If the discrete Lagrangian is self-adjoint, then the

method is self-adjoint. Conversely, if the method is self-adjoint, then the discrete
Lagrangian is equivalent3 to a self-adjoint discrete Lagrangian.

A proof of this theorem can be found in [20], Theorem 2.4.1. To show the time
reversibility, we first show that the discrete Lagrangian is self-adjoint.

Theorem 5 Let Ld be the discrete Lagrangian of (P sNrQu) with symmetric
quadrature formula (bi , ci)

r
i=1 and interpolation polynomial qd with symmetrically

distributed control points (di)
s
i=0, i.e., bi = br+1−i , ci + cr+1−i = 1, i = 1, . . . , r ,

and di = 1 − ds−i , i = 0, . . . , s. Then Ld is self-adjoint.

3Two discrete Lagrangian are equivalent if their discrete Hamiltonian map are the same.
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Proof We have

qd(−t; q0, −h) =
s∑

ν=0

qν
0 lν,s (t/h) = qd(t; q0, h), (14)

q̇d(−t; q0, −h) = 1

−h

s∑
ν=0

qν
0 l̇ν,s (t/h) = −q̇d (t; q0, h). (15)

Due to the symmetry of the control points di it follows for the Lagrange-polynomials
lν,s with τ ∈ [0, 1]

lν,s (1 − τ) =
∏

0≤i≤s,i �=ν

(1 − τ) − di

dν − di

=
∏

0≤i≤s,i �=ν

(−τ) + (1 − di)

(−1 + dν) + (1 − di)

=
∏

0≤i≤s,i �=ν

(−τ) + ds−i

−ds−ν + ds−i

=
∏

0≤i≤s,i �=ν

τ − ds−i

ds−ν − ds−i

= ls−ν,s(τ ).

With q0 = (
q0

0 , . . . , qs
0

)
, qs

0 = q0
1 , and q̃0 = (

qs
0, . . . , q0

0

)
we have for t ∈ [0, h]

qd(t, q̃0, h) =
s∑

ν=0

qs−ν
0 lν,s

(
t

h

)
=

s∑
k=0

qk
0 ls−k,s

(
t

h

)

=
s∑

k=0

qk
0 lk,s

(
1 − t

h

)
=

s∑
k=0

qk
0 lk,s

(
h − t

h

)

= qd(h − t; q0, h)

and by taking the time derivative we have

q̇d(h − t; q0, h) = −q̇d(t; q̃0, h).

Thus, together with (14–15) we obtain

qd(−t; q̃0, −h) = qd(t; q̃0, h) = qd(h − t; q0, h),

q̇d(−t; q̃0, −h) = −q̇d(t; q̃0, h) = q̇d(h − t; q0, h).

By substituting these expressions in the adjoint discrete Lagrangian we have with the
symmetry of the quadrature formula (bi, ci)

r
i=0

−Ld

(
q0

1 , q0
0 ,−h

) = ext
qν

0 ∈Q

ν∈{1,...,s−1}
− (−h)

r∑
i=1

biL(qd(−cih; q̃0,−h)), q̇d (−cih; q̃0, −h))

= ext
qν

0 ∈Q

ν∈{1,...,s−1}

h

r∑
i=1

biL(qd(h − cih; q0, h)), q̇d (h − cih; q0, h))

= ext
qν

0 ∈Q

ν∈{1,...,s−1}
h

r∑
i=1

br+1−iL(qd(cr+1−ih; q0, h)), q̇d (cr+1−ih; q0, h))

= Ld

(
q0

0 , q0
1

)
.
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Corollary 1 The discrete Hamiltonian maps of (P sNrQ2rGau) and (P sNrQ2r −
2Lob) are self-adjoint and thus time-reversible.

Proof Since the Gauss and the Lobatto quadrature are symmetric and since the
control points of qd are chosen symmetrically, it follows with Theorem 5 that the dis-
crete Lagrangian of (P sNrQ2rGau) and (P sNrQ2r − 2Lob) are self-adjoint. The
statement follows with Theorem 4.

4.3 Linear stability analysis

In the following, we investigate the stability properties of the constructed variational
integrators. We restrict ourselves to a linear stability analysis. Following [12], we
consider the Lagrangian of a harmonic oscillator

L(q, q̇) = 1

2
q̇2 − 1

2
ω2q2 (16)

with ω, q ∈ R. The Hamiltonian equations read

ṗ = −ω2q, q̇ = p

and the exact solution is given by
(

p(t)

ωq(t)

)
=

(
cos (ωt) − sin (ωt)

sin (ωt) cos (ωt)

) (
p(0)

ωq(0)

)
= Mω

(
p(0)

ωq(0)

)

with det(Mω) = 1. The eigenvalues of Mω are λ1,2 = e±iwt and thus, we have that
|λ1,2| = 1.

By applying a variational integrator (P sNrQu) to the Lagrangian (16), the dis-
crete Euler-Lagrange equations form a linear system of equations such that the
discrete Hamiltonian map F̃Ld of (P sNrQu) can be written as linear map

(
p0

1
wq0

1

)
= Mh,w

(
p0

0
ωq0

0

)

with matrix Mh,ω.
Following [12], we call a numerical solution asymptotically stable if the growth of

the solution is asymptotically bounded. A sufficient condition for asymptotic stability
is that the eigenvalues of Mh,ω are in the unit disk of the complex plane and are simple
if they lie on the unit circle. We investigate this property for selected variational
integrators.

1. For the midpoint rule (P 1N1Q2Gau) we have

Mh,ω =
⎛
⎝ −h2ω2−4

h2ω2+4
− 4hω

h2ω2+4
4hω

h2ω2+4
−h2ω2−4

h2ω2+4

⎞
⎠ .

Since Mh,ωMT
h,ω = Id, Mh,ω is orthogonal with |λ(Mh,ω)| = 1. Thus, the

midpoint rule is asymptotically stable for all h, ω ∈ R.
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2. The Störmer-Verlet method (P 1N2Q2Lob) has the iteration matrix

Mh,ω =
(

1 − h2ω2

2
h3ω3

4 − hω

hω 1 − h2ω2

2

)
.

with eigenvalues

λ1,2 = 1 − h2ω2

2
± hω

√
h2ω2 − 4

2
,

thus, the method is stable for (hω)2 < 4 (cf. [12]).
3. For the (P 2N2Q4Gau) method we have

Mh,ω =
⎛
⎜⎝

h4ω4−60h2ω2+144
h4ω4+12h2ω2+144

− 12hω
(
h2ω2−12

)
h4ω4+12h2ω2+144

12hω
(
h2ω2−12

)
h4ω4+12h2ω2+144

h4ω4−60h2ω2+144
h4ω4+12h2ω2+144

⎞
⎟⎠ ,

and the method is stable for all q, ω ∈ R since Mh,ω is orthogonal.
4. The (P 2N3Q4Lob) scheme results in the iteration matrix

Mh,ω =
⎛
⎝ h4ω4−22h2ω2+48

2h2ω2+48
24hω−3h3ω3

h2ω2+24

−hω
(
h4ω4−36h2ω2+288

)
12h2ω2+288

h4ω4−22h2ω2+48
2h2ω2+48

⎞
⎠

with eigenvalues

λ1,2 = h4ω4 − 22h2ω2 + 48 ± hω
√

h6ω6 − 44 h4ω4 + 576h2ω2 − 2304

2h2 ω2 + 48
.

The stability region is shown in Fig. 2. The integrator is stable for |hω| < 2
√

2.

Fig. 2 Modulus of the eigenvalues of Mh,ω for the (P 2N3Q4Lob) integrator. The method is stable for
|hω| < 2

√
2
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5. The iteration matrix for (P 3N3Q6Gau) reads

Mh,ω =
⎛
⎜⎝ −h6ω6−264h4ω4+6480h2ω2−14400

h6ω6+24h4ω4+720h2ω2+14400
24hω

(
h4ω4−70h2ω2+600

)
h6ω6+24h4ω4+720h2ω2+14400

− 24hω
(
h4ω4−70h2ω2+600

)
h6ω6+24h4ω4+720h2ω2+14400

−h6ω6−264h4ω4+6480h2ω2−14400
h6ω6+24h4ω4+720h2ω2+14400

⎞
⎟⎠ .

The scheme is again stable for all q, ω ∈ R due to the orthogonality of Mh,ω.
6. The integrator (P 3N4Q6Lob) gives

Mh,ω =
⎛
⎜⎝ − h6ω6

2 −46h4ω4+840h2ω2−1800
h4ω4+60h2ω2+1800

6hω
(
h4ω4−40h2ω2+300

)
h4ω4+60h2ω2+1800

hω
(
h6ω6−144h4ω4+5760h2ω2−43200

)
24(h4ω4+60h2ω2+1800)

−h6ω6−92h4ω4+1680h2ω2−3600
2h4ω4+120h2w2+3600

⎞
⎟⎠ .

The eigenvalues are given as

λ1,2 = 3600 − 1680x2 + 92x4 − x6 ± x
√

x10 − 184x8 + 11820x6 − 316800x4 + 3456000x2 − 12960000

2x4 + 120x2 + 3600

with x := hω. In Figs. 3 and 4 (zoom of Fig. 3) the stability region is shown.

An interesting observation is that for the integrators (P sNsQ2sGau), s = {1, 2, 3}
the iteration matrices Mh,ω are orthogonal independent of the step size h and thus
asymptotically stable. Indeed, we can show that this unrestricted stability property
holds for general integrators of this type.

Lemma 1 (A-stability of (P sNsQ2sGau)) The variational integrator (P sNsQ2s

Gau) is A-stable.

Proof In [20] it is shown that the integrator (P sNsQ2sGau) is equivalent to the
collocation Gauss-Legendre rule (see also Remark 2) which is A-stable (see [6],
Theorem 5.2).

Fig. 3 Modulus of the eigenvalues of Mh,ω for the (P 3N4Q6Lob) integrator
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Fig. 4 Modulus of the eigenvalues of Mh,ω for the (P 3N4Q6Lob) integrator (zoom)

5 Numerical convergence analysis

In this section we numerically analyze the convergence order of the constructed
variational integrators (P sNrQu) for s, r, u ∈ N and the theoretical results on the
preservation properties are evaluated. To this end, we consider two examples, the har-
monic oscillator and the Kepler problem and we want to numerically determine the
maximal order of the variational integrator (P sNrQu).

In Section 3.2 we assume that the discrete Lagrangian is regular to obtain a well-
defined discrete Lagrangian flow. In [8] it is shown that the well-posedness depends
on the order of the quadrature rule that is used to approximate the action integral.
In particular, it is shown that for a Lagrangian of the form L = 1

2 q̇T Mq̇ − V (q)

with M symmetric positive-definite and ∇V Lipschitz continuous a unique solution
of the internal stage (10) exists if the used quadrature rule is of order at least 2s − 1
(with s the degree of the interpolation polynomial), i.e. u ≥ 2s − 1. For the Gauss
and Lobatto quadrature this means that we have to choose r ≥ s and r ≥ s + 1,
respectively, since this yields quadrature rules of order 2s. Note that the variational
integrator (P sNsQ2s − 2Lob) with r = s which yields the standard Lobatto IIIA-
IIIB partitioned Runge-Kutta method does not satisfy the condition u ≥ 2s − 1.
Nevertheless, the discrete Lagrangian flow is well-defined for this kind of integrator.
This is no contradiction since the condition u ≥ 2s − 1 is only a sufficient not
a necessary condition for uniqueness of solutions. Thus, to ensure a well-defined
discrete Lagrangian flow and to take the Lobatto IIIA-IIIB partitioned Runge-Kutta
method into consideration, we restrict to variational integrators with quadrature rule
of Gauss or Lobatto type and for which the polynomial degree is smaller or equal to
r(s ≤ r). The implementation is performed as described in Remark 1.

5.1 Harmonic oscillator

Consider the two-dimensional harmonic oscillator with mass being equal to one and
the Lagrangian L(q, q̇) = 1

2 q̇T q̇ − 1
2qT q with q, q̇ ∈ R

2. The Euler-Lagrange
equations are

q̈(t) = −q(t).
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Fig. 5 Harmonic oscillator: Log-log plot of the error for the configurations q and the momenta p (super-
imposed) by step size h; with the use of variational integrators (P sNrQ2rGau); divided into four
subplots, separated by applied Gauss quadrature

By the Legendre transform we obtain the Hamiltonian system

q̇(t) = p(t), ṗ(t) = −q(t). (17)

The total energy of the system is given by the Hamiltonian H(q, p) = 1
2pT p+ 1

2qT q

with q, p ∈ R
2.

5.1.1 Numerical convergence order

Let (qe, pe)(t) denote the exact solution consisting of configuration and momentum
of the Hamiltonian system (17). For the error calculations we use the global error
determined by

max
k∈{0,...,N}

i∈{1,2}
|q0

k,i − qe
i (hk)|, max

k∈{0,...,N}
i∈{1,2}

|p0
k,i − pe

i (hk)| (18)

with step size h and the index i denotes the components of the configuration and
momenta, respectively.

(
q0
k , p0

k

)N
k=0 is the discrete solution computed by a variational

integrator with q0
N = qs

N−1 and p0
N = ps

N−1. In Figs. 5 and 7 the global error for
the different variational integrators (P sNrQu) is shown in dependence of the step
size h. The numerically determined order is given in Figs. 6 and 8 and summarized
in the Tables 1 and 24. Note that the values for r = s in both tables correspond to the
convergence orders of the collocation Gauss-Legendre rule and the Lobatto IIIA-IIIB
partitioned Runge-Kutta method, respectively.

The first observation by considering the values in the Tables 1 and 2 is that the
convergence order for all combinations of polynomial degree s and number r of
quadrature points can be determined as min (2s, u) with u = 2r and u = 2r−2 being
the order of the Gauss and Lobatto quadrature rule, respectively. In particular, for the
Galerkin variational integrators based on the Gauss quadrature formula (Table 1), for

4Note that in Table 2 the numerical results for r = 2 are not shown in Figs. 7 and 8.



Construction and analysis of higher order Galerkin variational integrators 975

P1 P2
0

2

4

6

8

10

O
rd

er
Gauss quadrature of order 4

P1 P2 P3
0

2

4

6

8

10

O
rd

er

Gauss quadrature of order 6

P1 P2 P3 P4
0

2

4

6

8

10

O
rd

er

Gauss quadrature of order 8

P1 P2 P3 P4 P5
0

2

4

6

8

10

O
rd

er

Gauss quadrature of order 10

Fig. 6 Harmonic oscillator: Order of the variational integrators (P sNrQ2rGau) with respect to the con-
figurations q (left bar) and the momenta p (right bar). The title gives the order of the applied Gauss
quadrature which is 2r . The x-axis indicates the degree of the used polynomial
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Table 1 Numerical
convergence order of
(P sNrQ2rGau)

r\s s = 1 s = 2 s = 3 s = 4 s = 5

r = 2 2 4

r = 3 2 4 6

r = 4 2 4 6 8

r = 5 2 4 6 8 10

a given polynomial degree s the order of convergence can not be improved for any
quadrature rule based on more quadrature points than s. Thus, a reasonable combina-
tion of polynomial degree and number of quadrature points is r ≥ s. However, for the
Galerkin variational integrators based on the Lobatto quadrature formula (Table 2),
the order of convergence can be improved if the number of quadrature points is
increased by at least one, i.e. the best combinations satisfy r ≥ s + 1. This demon-
strates that the order of (P sNsQ2s − 2Lob) increases to 2s if a Lobatto quadrature
with s + 1 quadrature points is used, or, the order does not decrease if a polynomial
of degree s − 1 instead of s is used.

Based on this numerical results we can conclude that for a variational integrator
based on an approximation space of degree s polynomials the convergence order
2s is possible, i.e. the integrator is superconvergent. On the one hand, this maximal
order is reduced if the quadrature rules used for the approximation of the action is
not accurate enough. Thus, to guarantee the maximal convergence order we have to
choose u ≥ 2s. On the other hand, the order can not be increased by quadrature rules
of orders higher than 2s which indicates that once the quadrature rule yields exact
integration of a polynomial of degree 2s − 1, a higher order quadrature can not yield
improvements.

5.1.2 Computational efficiency

The numerical results also indicate which combination of quadrature rule and poly-
nomial degree leads to lowest computational effort for a given order. In Fig. 9
the run-time compared with the global error is given for the different integra-
tors (P sNrQ2r − 2Lob) with s = {1, . . . , 6} and r = {3, . . . , 6} and for
different step sizes h ∈ {1, 0.5, 0.25, 0.125, 0.1, 0.0625, 0.03125}. The step size
is reduced until the error is below 10−10. The integrators (P 2N3Q4Lob),

(P 2N4Q6Lob), (P 2N5Q8Lob), and (P 2N6Q10Lob), which are of order four,

Table 2 Numerical
convergence order of
(P sNrQ2r − 2Lob)

r\s s = 1 s = 2 s = 3 s = 4 s = 5 s = 6

r = 2 2 2

r = 3 2 4 4

r = 4 2 4 6 6

r = 5 2 4 6 8 8

r = 6 2 4 6 8 10 10
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Fig. 9 Harmonic oscillator: Global error against run-time for the integrators (P sNrQ2r − 2Lob) and
different step sizes h (Color figure online)

demonstrate that for an increasing number of nodes also the run-time increases. The
same behavior is also observable for the other integrators.

Further, a higher polynomial degree leads to an increasing number of Euler-
Lagrange equations that have to be solved for and thus to higher computational
effort. In Fig. 9 it is shown that this leads to an increasing run-time (compare
for example (P 2N3Q4Lob) and (P 3N3Q4Lob) which are both of order four; or
(P 5N6Q10Lob) and (P 6N6Q10Lob), which are of order ten). Since the order of
the integrator is min (2s, u), a reasonable choice for the polynomial degree is half of
the order of the quadrature formula, i.e., u = 2s. This guarantees a minimal number
of discrete Euler-Lagrange equations without an order reduction of the variational
integrator. For the Gauss and Lobatto quadrature rule the optimal combinations of
polynomial degree s and number r of quadrature points is r = s and r = s + 1,
respectively. That is, the integrators (P sNsQ2sGau) and (P sNs + 1Q2sLob) are
the most efficient integrators with view of run-time per order.

Note that the numerical results shown in Fig. 9 and already in Fig. 7 indicate that
the integrators (P s − 1NsQ2s − 2Lob) and (P sNsQ2s − 2Lob) are not just of the
same order, but provide exactly the same numerical solution. Indeed, it can be shown
(see [23]) that for the special case of a separable Lagrangian, the two schemes (P s −
1NsQ2s −2Lob) and (P sNsQ2s −2Lob) coincide whereas in our implementation
the integrator (P s − 1NsQ2s − 2Lob) is faster.

For a clearer illustration we omit in Fig. 10 the less efficient integrators which
are displayed in Fig. 9 and include the most efficient integrators constructed with
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Fig. 10 Harmonic oscillator: Global error against run-time for the integrators (P sNsQ2sGau) (dotted
line) and (P sNs + 1Q2sLob) (solid line) for s = {1, . . . , 6} and different step sizes h

the Gauss and Lobatto quadrature. It can be read off which of these integrators pro-
vide the desired accuracy with shortest run-time. Larger s means longer processing
time but also higher order. Notice that (P 1N1Q2Gau) and (P 1N2Q2Lob) are the
midpoint rule and the Störmer-Verlet method, respectively.

5.1.3 Conservation of angular momentum and long-time energy behavior

Positioning the system of the two-dimensional harmonic oscillator in the (x, y)-plane
of the three-dimensional space, the z-component of the angular momentum

I (p, q) = −p1q2 + p2q1

is a conserved quantity. This follows from Noether’s theorem because the Lagrangian
of the two-dimensional harmonic oscillator L = 1

2 q̇T q̇ − 1
2qT q is invariant under

the group of rotations SO(2) = {B ∈ R
2×2 | BT B = Id, det(B) = 1}. With

the linearity of Rv ∈ SO(2) and Remark 3 it follows that all variational integrators
(P sNrQu) conserve the z-component of the angular momentum. In Fig. 11 it is
shown that the z-component of the angular momentum, if the variational integrators
(P 2N3Q4Lob), (P 3N4Q6Lob) and (P 4N5Q8Lob) are used, is preserved up to
an error less than 10−14.5 In Fig. 11 (right) the behavior of a Runge-Kutta method

5Note that the accuracy is limited to machine precision and the accuracy of the applied Newton method to
solve the discrete Euler-Lagrange equations.



Construction and analysis of higher order Galerkin variational integrators 979

0 5 10 15 20

−4

−2

0

2

4

6

8

10

12

x 10−15

t

A
ng

ul
ar

 M
om

en
tu

m
 E

rr
or

0 5 10 15 20
−2

0

2

4

6

8

10

12

14
x 10−11

 P2N3Q4; h=0.5

t

A
ng

ul
ar

 M
om

en
tu

m
 E

rr
or

 P3N4Q6; h=0.5

 P4N5Q8; h=0.5

RK4; h=0.015625

Fig. 11 Harmonic oscillator: Left: Error of the z-component of the angular momentum for the variational
integrators (P 2N3Q4Lob) (dots), (P 3N4Q6Lob) (crosses) and (P 4N5Q8Lob) (squares) with step size
h = 0.5 Right: Same plot as on the left with non-variational integrator included (Runge-Kutta method of
order four with step size h = 2−6 (solid line))

of order four is included which is not symplectic nor momentum-preserving. Thus,
Noether’s theorem does not apply and the angular momentum is not preserved.

In Section 4.1 we mention the good long-time energy behavior of symplectic inte-
grators, in particular of variational integrators. In Fig. 12 the error of the total energy
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Fig. 12 Harmonic oscillator: Error of the energy for the integrators (P 3N4Q6Lob) with step size h =
0.25 (crosses), (P 4N5Q8Lob) with step size h = 0.5 (dots) and for a Runge-Kutta method of order four
with step size h = 2−6 (solid line)
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of the harmonic oscillator simulated by different integrators is shown. While the use
of the variational integrators (P 3N4Q6Lob) and (P 4N5Q8Lob) leads to an oscil-
lating but stable energy behavior, the use of a nonsymplectic Runge-Kutta method of
order four clearly shows an energy drift.

5.2 Kepler problem

The two-body problem, also known as Kepler problem, determines the motion of two
point particles with masses m1, m2 ∈ R. By assuming m1 = 1 with gravitational
constant γ and k = γm1m2 ∈ R we construct the Lagrangian of the Kepler problem

L(q, q̇) = 1

2
q̇T q̇ + k√

q2
1 + q2

2

(19)

and the Hamiltonian

H(q, p) = 1

2
pT p − k√

q2
1 + q2

2

with q = (q1, q2)
T , q̇, p ∈ R

2. The Hamiltonian equations provide the system of
differential equations which we solve with initial conditions (q0, p0). For the simu-
lations we set k = 1.016895192894334 · 103, q0 = (5, 0)T and p0 = (0, 17)T since
this results in a motion where the mass m1 describes an elliptic orbit around mass
m2 with period T = 5.0. Therefore, after 25

h
steps of step size h the simulated mass

should return the fifth time to the initial point (q0, p0).
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Fig. 13 Kepler problem: Log-log plot of the error for the configurations q (crosses) and momenta p

(dots) with step size h for the integrators (P sNrQ2rGau); divided into four subplots, separated by
applied Gauss quadrature. In the third subplot Ps denotes (P sN4Q8Gau) and in the fourth Ps denotes
(P sN5Q10Gau)
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Fig. 14 Kepler problem: Log-log plot of the error for the configurations q (crosses) and momenta p (dots)
with step size h for the integrators (P sNrQ2r − 2Lob); divided into four subplots, separated by applied
Lobatto quadrature. The values of (P s − 1NsQ2s − 2Lob) and (P sNsQ2s − 2Lob) are superimposed,
they are of the same order. In the last subplot Ps denotes (P sN6Q10Lob)

5.2.1 Numerical convergence order

As error we compute the maximal difference between the given initial value and the
value after N = 25

h
steps of integration given as

max
i∈{1,2}

|q0
N,i − q0,i | and max

i∈{1,2}
|p0

N,i − p0,i |

for configuration and momentum, respectively. The error is shown in Figs. 13 and
14 for the different variational integrators (P sNrQu) and for step sizes h ∈
{1, 0.5, 0.25, 0.125, 0.1, 0.0625, 0.03125, 0.015625}. The numerically determined
order is given in Figs. 15 and 16 and coincides nicely with the orders for the har-
monic oscillator as given in Tables 1 and 2. It can be observed in the plots that the
error of the integrators decreases not far below 10−10. Since the iteration is implicit
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Fig. 15 Kepler problem: Order of the variational integrators (P sNrQ2rGau) with respect to the con-
figurations q (left bar) and the momenta p (right bar). The title gives the order of the applied Gauss
quadrature which is 2r . The x-axis indicates the degree of the used polynomial. P 5 gives the numerically
determined order for h ∈ {1, 0.5, 0.25, 0.125, 0.1, 0.0625} whereas P 5∗ gives the numerically determined
order for h ∈ {1, 0.5, 0.25, 0.125, 0.1}



982 S. Ober-Blöbaum, N. Saake

P1 P2 P3
0

2

4

6

8

10

O
rd

er
Lobatto quadrature of order 4

P1 P2 P3 P4
0

2

4

6

8

10

O
rd

er

Lobatto quadrature of order 6

P1 P2 P3 P4 P5
0

2

4

6

8

10

O
rd

er

Lobatto quadratur of order 8

P1 P2 P3 P4 P5 P6
0

2

4

6

8

10

O
rd

er

Lobatto quadrature of order 10

Fig. 16 Kepler problem: Order of the variational integrators(P sNrQ2r − 2Lob) with respect to the con-
figurations q (left bar) and the momenta p (right bar). The title gives the order of the applied Lobatto
quadrature which is 2r − 2. The x-axis indicates the degree of the used polynomial

and has to be solved by a Newton method, the accuracy is limited by the machine
precision and the used solver (we used fsolve implemented in Matlab).

5.2.2 Conservation of angular momentum and long-time energy behavior

Since the Lagrangian (19) of the Kepler problem is invariant under the group of
rotations SO(2) = {B ∈ R

2×2 | BT B = Id, det(B) = 1}, the angular momentum

I (p, q) = −p1q2 + p2q1

is a conserved quantity in the system. The angular momentum is (up to numer-
ical accuracy) also preserved in the discrete solution using the variational inte-
grators (P sNrQu) (cf. Remark 3) as shown in Fig. 17 for the integrators
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Fig. 17 Kepler problem: Left: Error of the angular momentum for the variational integrators (P 2N2Gau)

(dots), (P 3N3Gau) (stars) and (P 4N4Gau) (squares) with step size h = 0, 25 Right: Same plot as on
the left with non-variational integrator added (Runge-Kutta method of order four with step size h = 2−6

(solid line))
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Fig. 18 Kepler problem: Error of the energy for (P 3N3Q6Gau) with step size h = 0.125 (squares),
(P 4N4Q8Gau) with step size h = 0.25 (diamonds) and for a Runge-Kutta method of order four with
step size h = 2−6 (solid line)

(P 2N2Q4Gau), (P 3N3Q6Gau) and (P 4N4Q8Gau). However, using a Runge-
Kutta integrator of order four, angular momentum is not preserved anymore as shown
in Fig. 17 (right).

The error in the energy is given in Fig. 18. As for the harmonic oscillator,
due to the symplecticity of the variational integrators the error of the integra-
tors (P 3N3Q6Gau) and (P 4N4Q8Gau) is oscillating but bounded whereas the
Runge-Kutta solution exhibits an energy drift.

6 Conclusion

In this work, variational integrators of higher order are constructed by following the
approach of Galerkin variational integrators introduced in [20]. Thereby, the solu-
tion of the Euler-Lagrange equations is approximated by a polynomial of degree s

and the action by a quadrature formula based on r quadrature points. The restric-
tion to r = s quadrature points (as assumed in [20]), which leads to symplectic
partitioned Runge-Kutta methods, is dropped. For the resulting methods the order
of convergence is determined numerically for two numerical examples. It is numer-
ically demonstrated that the order of convergence can be increased by adapting the
number of quadrature points to the polynomial degree. In particular, if the Lobatto
quadrature is used, the choice of r = s + 1 leads to an integrator of order 2s which
is of two orders higher compared to an integrator with r = s quadrature points
(order 2s − 2). Thus, the ideal ratio between the number of quadrature points r and
the polynomial degree s can be determined for different quadrature rules and the
numerical results predict that 2s is the maximal possible order of the constructed
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variational integrators. The structure-preserving properties such as symplecticity,
momentum-preservation and good long-time energy behavior are demonstrated by
numerical examples. In addition, for symmetrically distributed control points of the
polynomial, the variational integrators (P sNrQ2rGau) and (P sNrQ2r − 2Lob)

are shown to be time-reversible. Furthermore, a linear stability analysis is performed
for selected integrators and stability regions are determined. It is shown that the
integrators (P sNsQ2sGau) are A-stable, i.e. there are no stability restrictions on
the step size h.

In the future, a formal proof of the numerically determined convergence order of
min (2s, u) has to be performed. To this end, techniques of variational error anal-
ysis [8, 20] can be applied which are based on the following main idea: Rather
than considering how closely the trajectory of the discrete Hamiltonian map matches
the exact trajectory, one considers how closely the discrete Lagrangian matches the
action integral. It is shown in [20] and [26] that both order concepts are equivalent.
The analytical computation of the variational error defined in this way for the gen-
eral Galerkin variational integrators introduced in this work is still subject of ongoing
research. For the application of the constructed higher order variational integrators to
holonomic and nonholonomic integrators it is essential, where the constraints are ful-
filled, which might yield restrictions on the choice of control points and quadrature
points. Furthermore, a careful analysis has to be carried out to see if the predicted
orders also hold for these systems. Currently, the approach is used for the optimal
control of mechanical systems [3] and numerical results confirm that also the adjoint
resulting from the necessary optimality condition inherits the same order of the
variational scheme as it also does for symplectic partitioned Runge-Kutta methods
(cf. [24]). Another topic of interest is the construction of time-adaptive variational
integrators since naive time-adapting strategies destroy the structure-preserving prop-
erties (see e.g. [12]). The higher order integrators could be applied to adapt the order
rather than to adapt the step size, e.g. a higher order scheme can be deployed if
higher accuracy requirements have to be matched. Furthermore, for systems involv-
ing slow and fast time scales (see e. g. [17]) variational integrators of different orders
for the different subsystems can be used to increase the efficiency of the simulations.
Thereby, an investigation regarding preserved quantities and long-time behavior is
essential.
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Paderborn (2012)
29. Sanz-Serna, J.M.: Runge-Kutta schemes for Hamiltonian systems. BIT Numer. Math. 28, 877–883

(1988). doi:10.1007/BF01954907
30. Stern, A., Grinspun, E.: Implicit-explicit variational integration of highly oscillatory problems. SIAM

Multiscale Model. Simul. 7, 1779–1794 (2009)
31. Sun, G.: Symplectic partitioned Runge-Kutta methods. J. Comput. Math. 11(4), 365–372 (1993).

http://www.jcm.ac.cn/EN/abstract/article 8879.shtml
32. Suris, Y.B.: The canonicity of mappings generated by Runge-Kutta type methods when integrating
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