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Abstract A reduced-order method based on Approximated Lax Pairs (ALP) is
applied to the integration of electrophysiology models. These are often high-
dimensional parametric equation systems, challenging from a model reduction stand-
point. The method is tested on two and three dimensional test-cases, of increasing
complexity. The solutions are compared to the ones obtained by a finite element. The
reduced-order simulation of pseudo-electrocardiograms based on ALP is proposed in
the last part.
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1 Introduction

This work is devoted to application of a reduced-order method based on Approx-
imated Lax Pairs (ALP, see [12]) to cardiac electrophysiology. The ability of this
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method to handle propagation phenomena was considered in [12]. In the present
paper, we focus more specifically on its behavior for parametric problems.

From a Reduced-Order Modeling (ROM) standpoint, cardiac electrophysiology
is a challenging context. Indeed, the systems describing the electrical activation of
tissues are nonlinear, they exhibit front propagations, and they depend on many
parameters. For example, the possible presence of infarcted regions requires a modi-
fication of the space dependence of some reaction parameters. Similarly, the possible
initiation of ectopic stimulations yields source terms which can change in space and
in time. Consequently, a very large space of parameters has to be visited in order to
cover all the possible scenarios.

The ability to deal with parametric systems is one of the main issues in model
reduction. We refer for instance to [19] for a discussion on affinely parametrized
elliptic partial differential equation systems. The standard methods of model reduc-
tion are often based on the construction of a database of pre-computed simulations.
Proper Orthogonal Decomposition is a paradigmatic example, which is widely
used in many applications (see e.g.[1, 13, 15, 23]). The need of a database can
become an issue when dealing with high dimensional parametric spaces, since
the construction of the database can be extremely demanding both in time and
memory. The method ALP considered in this work does not rely on a database.
It therefore avoids the need of an off-line exploration of a large parametric space.
Instead, it makes a basis evolve in a way dependent on the dynamics of the solu-
tion. In all the examples given in this work, the method will be systematically
compared to a full-order model obtained by finite element. For illustration pur-
poses only, it will also be compared to the POD computed from a “simple” set of
precomputed solutions.

The structure of the work is as follows. In Section 2 the equations of the car-
diac electrophysiology are introduced. In Section 3, the ALP method is detailed.
The general principle of the method is recalled in Section 3.1, useful complements
are presented in Section 3.2, then the necessary steps to apply the method to the
monodomain and bidomain equations are presented in Sections 3.3 and 3.4 respec-
tively. In Section 4 various numerical experiments are proposed. The first example
is a 2D propagation in an isotropic uniform medium. Then, a synthetic infarction is
simulated and the problem of ectopic stimuli is investigated. The last case is the 3D
simulation of a pseudo-electrocardiogram. Some perspectives of the present study
are presented in the conclusion.

2 Electrophysiology

2.1 The bidomain equations

The electrical activity in the heart is modeled by the bidomain equations (see for
instance [18, 21, 25]). At the microscopic level, the cardiac muscle is subdivided into
an intracellular and an extracellular domain. The bidomain equations are obtained
at the macroscopic level through a homogenization process which leads to the
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definition of an intra- and an extra-cellular electrical potential, denoted by uI and uE

respectively. The bidomain equations read

Am

(
Cm

∂vm

∂t
+ Iion(vm, w)

)
− div( ¯̄σI∇vm) − div( ¯̄σI∇uE) = AmIapp

−div(( ¯̄σI + ¯̄σE)∇uE) − div( ¯̄σI∇vm) = 0
∂w

∂t
− g(vm, w) = 0 (1)

where vm = uI − uE is the transmembrane potential, w is a variable related to
the ionic activity, ¯̄σI,E denotes the intra- (resp. extra-) cellular conductivity tensor
(see for instance [24]), Am and Cm are the ratio of membrane area per unit volume
and the membrane capacitance per area respectively. Finally, the term Iion denotes a
nonlinear function representing the ionic current through the cell membrane and the
term Iapp is a given source term. More details are given in the numerical experiments
section.

The bidomain equations are coupled to a ionic model in order to define the cur-
rent Iion. For simplicity, in this study we use the FitzHugh-Nagumo model [11, 17]
defined by

Iion(u, w) = su(u − a)(u − 1) + w

g(u, w) = ε(γ u − w) (2)

where 0 < a < 1, s, ε, γ are parameters. The FitzHugh-Nagumo model is only
phenomenological and too crude to describe the current in cardiac cells. But it
is sufficient to investigate our method in configurations close to what would be
encountered in more realistic settings.

2.2 The monodomain equations

The bidomain equations are useful for some specific applications where the extra-
cellular potential is needed. This is the case for example for electrocardiogram
simulation (see e.g. [3] and Section 4.6 below) or to model complex electrophysio-
logical behaviors like the virtual electrode phenomenon (see e.g. [9]). But in many
cases, an approximation called “monodomain equations” proves to be sufficient [10].
These equations will be used in some of the numerical experiments presented below.
They read:

Am

(
Cm

∂vm

∂t
+ Iion(vm, w)

)
− div( ¯̄σm∇vm) = AmIapp

∂w

∂t
− g(vm, w) = 0, (3)

where ¯̄σm is an electrical conductivity.
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3 The ALP method in electrophysiology

In this section the reduced-order method used in the present work is detailed. It is
hereafter derived for a generic PDE of the form:

∂tu = F
(
u, ∂(n)

x u
)

, (4)

where u(x, t), x ∈ � ⊆ R
d , t ∈ (0, 1) is the solution of the PDE, with speci-

fied initial and boundary conditions. For simplicity, F
(
u, ∂

(n)
x u

)
will be denoted by

F(u).
The basic idea of the method, first proposed in [12], is to define a time evolving

modal expansion of the form:

û(x, t) =
NM∑
i=1

βi(t)ϕi(x, t), (5)

where û is the low dimensional approximation of the PDE solution, βi(t) is the repre-
sentation of û in the space defined by the NM modes ϕi(x, t). In order to completely
define the basis evolution, an equation and an initial condition for the modes have
to be specified. Other works in the literature deal with this type of decomposition:
recent examples are the dynamic low-rank decomposition (see for instance [14]), the
orthogonal field equations (see [22]) and the bi-orthogonal decomposition method
presented in [7, 8] to integrate stochastic PDEs.

The hypothesis and the governing equations of the ALP method are detailed in the
remainder of this section. It will be assumed that 〈ϕi, ϕj 〉 = δij , ∀t , where 〈·, ·〉 is the
standard L2(�) scalar product, δij is the Kronecker delta.

Among all the possible formalisms that allow us to define a time-travelling mode
expansion, an operator-based approach is chosen. The modes are retrieved in the set
of the eigenfunctions of a time varying operator Lχ which linearly depends upon the
solution of the partial differential equation. The operator is represented by its spec-
trum and its eigenfunctions, which evolve under the action of an evolution operator
(the same for all the eigenfunctions), denoted byM. When applied to integrable sys-
tems of equations, these operators are the representation of a Lax pair, as pioneered
in [16].

3.1 The ALP method

In this section, we gather the main results presented in [12]. The modes are, at every
time instant, a subset of the eigenfunctions of a linear operator of Schrödinger-type:

Lχ (u)ϕ := Lϕ − χu(x, t)ϕ, (6)

where χ is a real scalar parameter and L is typically −�, or any other linear self-
adjoint elliptic operator. Then, the modes ϕi are defined as the eigenfunctions of
Lχ (u):

Lχ (u)ϕi = λiϕi . (7)
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The choice of the operator is arbitrary (to some extent), and it will be commented
in the last part of this work. Let us assume that u has the regularity that justifies the
following steps of the derivation.

The operator evolves in time since it depends upon the solution of the PDE. This
has important consequences for parametric systems, as it will be investigated by
means of numerical experiments. Moreover, it is linear, selfadjoint with a compact
inverse for every time, i.e. it defines, for every time, an orthonormal basis which is a
complete basis of L2(�).

The basis evolution may be derived by taking the time derivative of the mode
definition (7): (

Lχ − λiI
)
∂tϕi = λ̇iϕi + χFϕi. (8)

This equation defines the modes evolution. Remark that the PDE expression enters
explicitly in the modes evolution. Since the whole modal set is a complete basis, this
equation provides a way to compute a smooth change of basis and the representation
of this change may be represented on the basis itself, at each time. Let us write:

∂tϕi = M(u)ϕi . (9)

The following proposition shows that it is possible to compute an approximate rep-
resentation ofM(u) and to derive an evolution equation satisfied by the eigenvalues
of Lχ (u).

Proposition 1 ([12]) Let u be a solution of Eq. 4. Let Lχ (u) be defined by Eq. 7.
Let NM ∈ N

∗. For m ∈ {1, . . . , NM }, let λm(t) be an eigenvalue of Lχ (u(x, t)),
and ϕm(x, t) an associated eigenfunction, normalized in L2(�). Let M(u) be the
operator defined in Eq. 9. Then the evolution of λm is governed by

∂tλm = −χ〈F(u)ϕm, ϕm〉, (10)

and the evolution of ϕm satisfies, for p ∈ {1, . . . , NM},
〈∂tϕm, ϕp〉 = Mmp(u), (11)

with {
Mmp(u) = χ

λp−λm
〈F(u)ϕm, ϕp〉, if p 	= m and λp 	= λm,

Mmp(u) = 0, if p = m or λp = λm.
(12)

We will denote by M(u) ∈ R
NM×NM the skew-symmetric matrix whose entries are

defined by Mmp(u).

The proof of this proposition is based on a direct computation and it is shown in
detail in [12]. The matrix M is a representation of the operator M on the modes
at time t . This representation is convenient from a computational standpoint since it
can easily be obtained from the expression F(u) defining the PDE (4), without any
a priori knowledge ofM(u). With this approximation ofM(u), the evolution of the
modes can be computed according to the nonlinear dynamics of the system. This is
an important difference with standard reduced-order methods, like POD, where the
modes are fixed once for all. To set up a reduced order integration method, only a
small number NM of modes will be retained.
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Equation 7 defines a Hilbert basis, which is used to approximate the solution u ∈
L2(�):

ũ(x) =
NM∑
m=1

βmϕm(x). (13)

Proposition 1 gives an approximated way to propagate the eigenmodes and the
eigenvalues. Function F(u) is approximated by F̃ (u) = ∑NM

m=1 γmϕm. Using these
approximations in the PDE (4), the following holds:

NM∑
m=1

β̇mϕm + βm∂tϕm =
NM∑
m=1

γmϕm.

Projecting this relation on ϕp, and using Eq. (11), the expression of the PDE on the
reduced basis is obtained:

β̇ + Mβ = γ

Defining 
ij = 〈F̃ (u)ϕj , ϕi〉, Eqs. 10 and 11 are approximated by

λ̇i = −χ
ii,

and, for λi 	= λj ,

Mij = χ

λj − λi


ij ,

respectively. The third order tensor 〈ϕkϕj , ϕi〉 is denoted by Tijk . By definition:


ij = 〈F̃ (u)ϕj , ϕi〉 =
NM∑
k=1

γkTijk.

Computing the time derivative of Tijk gives:

Ṫijk = 〈∂tϕkϕj , ϕi〉 + 〈ϕk∂tϕj , ϕi〉 + 〈ϕkϕj , ∂tϕi〉.
Thus

Ṫijk = {M, T }(3)ijk, (14)

where

{M, T }(3)ijk =
NM∑
l=1

(
MliTljk + MljTilk + MlkTijl

)
.

For the specific problem of interest, a relation linking γ and β will be also derived.
The set of equations which describes the dynamics in the reduced order space is:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

β̇i + ∑NM

m=1 Mimβm − γi = 0,
λ̇i + χ

∑NM

m=1 Tiimγm = 0,
Ṫijk = {M, T }(3)ijk,

Mij = χ
λj −λi

∑NM

m=1 Tijmγm,

γi = γi(β),

(15)

for i, j, k = 1 . . . NM .
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Remark The complexity of the resolution of system (15) scales with N3
M . As a

consequence, the method is only efficient when a small number of basis functions
is sufficient to reach the desired accuracy. This actually happens in many cases, as
shown in Section 4.3. For the cases when a higher number of modes is required, a
less expensive variant of the method is currently under investigation.

3.2 Complements on the ALP method

3.2.1 Evolution of more complex tensors

In the previous section, it was shown how the third order tensor Tijk evolves in time.
Depending on the partial differential equation of interest, other tensors may appear in
Eq. 155. For the electrophysiology problems considered in this work, it will be useful
to study the following type of tensor:

Ai1,...,ik :=
∫

�

�1(ϕ1) . . . �k(ϕk) d�, (16)

where the �i are linear operators which commute with time. The time evolution
equation for this tensor reads:

∂tAi1,...,ik =
k∑

h=1

∫
�

�i(∂tϕh) . . . �k(ϕk) d� =
k∑

h=1

NM∑
l=1

MhlAi1,...,il ,...,ik . (17)

Let us consider an example with a fourth-order tensor:

Dijkh =
∫

�

�1(ϕiϕj )�2(ϕkϕh) d�. (18)

Then, differentiating in time

∂tDijkh = {M, D}(4)ijkh =
NM∑
l=1

MilDljkh +
NM∑
l=1

MjlDilkh +
NM∑
l=1

MklDijlh +
NM∑
l=1

MhlDijkl . (19)

This will be used in Section 3.3.

3.2.2 Reconstruction in the high dimensional space

The reconstruction of the solution in the high dimensional space is now detailed. Con-
trary to standard approaches, this step is not trivial since the basis is time-evolving.

The derivative of the modes can be approximated in the space defined by the
modes at the current time instant as follows:

∂tϕi ≈
NM∑
h=1

Mhiϕh, (20)

where the matrices M ∈ R
NM×NM have been computed during the integration stage.
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The practical implementation of the algorithm is the following. The modes are
extracted at the very beginning by solving the spectral problem. The initial space is
�(0) := span{ϕ1(x, 0), ..., ϕNM

(x, 0)}.
Then, at every time instant a two-step scheme is applied. First, the modal space �

is updated:

�(n+1) = �(n) + �tH(M, ∂t�), (21)

where � ∈ R
N×NM andH denotes an integration scheme (that can be either explicit

or implicit).
For instance, if a second order Crank-Nicolson scheme is used, the update reads:

�(n+1) = �(n) + �t

2

(
�(n+1)M(n+1) + �(n)M(n)

)
. (22)

In general the scheme does not guarantee that the eigenfunctions at time t (n+1) are
orthonormal. Hence, in a second step, a Modified Gram-Schmidt orthogonalization is
applied to the space �. The cost of the operation scales as 2N ×(NM)2 and therefore
is linear in the high order dimension N . In this work this simple reconstruction was
adopted and proved to be sufficiently precise.

Remark For a better accuracy, the following alternative procedure could be used. An
orthogonal complement can be added to the approximation of the time derivative:

∂tϕi =
NM∑
h=1

Mhiϕh + ri, (23)

where 〈ri, ϕ〉 = 0. To compute it, the expression of the derivative is injected into the
equation governing the modes dynamics and projected on a basis orthogonal to the
modes. Let us introduce � = span

{
ψ1, ..., ψNk

}
such that � ⊥ �. At initial time

the orthogonal basis is chosen as � = span
{
ϕNM+1, ..., ϕNM+Nk

}
. Then:

NM∑
h=1

Mhi(Lχ − λiI)ϕh + (Lχ − λiI)ri = λ̇iϕi + Fϕi. (24)

The linear system determining ri is obtained by projecting the equation onto �:

〈(Lχ − λiI)ri, ψj 〉 = 〈Fϕi, ψj 〉. (25)

When this correction is taken into account, the cost of the method is higher. Indeed, at
each time step, the set of [�, �] have to be orthonormalized with the MGS method,
leading to a cost proportional to 2N × (NM + Nk)

2. For the test cases of the present
work, this variant did not significantly improve the results.

3.3 ALP for the monodomain equations

We are now interested in applying the ALP method to the electrophysiology equa-
tions. We first derive the ALP algorithm for the monodomain equations (3). In order
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to apply the technique described above we couple (3) to the FitzHugh-Nagumo ionic
model and write it as

AmCm∂tvm = f (vm, w),

∂tw = g(vm, w), (26)

where

f (vm, w) = Amsvm(vm − a)(1 − vm) − Amw + div( ¯̄σm∇vm) + AmIapp, (27)

and
g(vm, w) = ε(γ vm − w). (28)

The first step to apply the ALP method is to define a linear operator Lχ . For the
present work, the operator Lχ is defined as

Lχ (u)ϕ = −div( ¯̄σm∇ϕ) − χuϕ, (29)

and the modes ϕi are solutions of the eigenproblem

Lχ (u)ϕi = λiϕi . (30)

Let us remark that the conductivity ¯̄σm being a tensor, the modes set can account
for some physical anisotropy due to the presence of cardiac fibers.

The eigenproblem is symmetric positive definite. In the examples presented below
it is solved using a Krylov-Schur method with a Lanczos decomposition (resp. B-
Lanczos for the generalized eigenproblem). Although only NM modes have to be
computed, this step may be expensive. But it is worth noticing that it is solved only
once, before the resolution of the reduced order model. In addition, the initial basis
does not depend on the PDE parameters (except the conductivity tensor ¯̄σm). Thus,
the same initial basis can be used for different sets of parameters.

Let us now approximate the solution of Eq. 26 in the low dimensional space
defined by the NM modes ϕi(x, t) which are the first NM eigenfunctions defined by
Eq. 30. The transmembrane potential vm can be approximated by

v̂m =
NM∑
i=1

βi(t)ϕi(x, t). (31)

We choose to approximate the ionic variable in the same reduced order space and
write

ŵ =
NM∑
i=1

μi(t)ϕi(x, t), (32)

where ŵ is the low dimensional approximation of w, μi(t) is the representation of ŵ

in the reduced order space �.
Using these Galerkin approximations, we can write:

f (vm, w) ≈ −Amsa

NM∑
i=1

βiϕi + Ams(a + 1)
NM∑

i,j=1

βiβjϕiϕj − Ams

NM∑
i,j,k=1

βiβjβkϕiϕjϕk +

− Am

NM∑
i=1

μiϕi +
NM∑
i=1

βidiv( ¯̄σm∇ϕi) + AmIapp(x, t). (33)
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Using the approximation of vm in the reduced space �, from Eq. (29) we find

− div( ¯̄σm∇ϕi) − χ

NM∑
j=1

βjϕjϕi = λiϕi , ∀i = 1, . . . , NM. (34)

Let us substitute the first term of Eq. 34 in Eq. 33. Then the approximation of
f (vm, w) writes

f ≈ −Amsa

NM∑
i=1

βiϕi −
NM∑
i=1

λiβiϕi + Ams(a + 1)
NM∑

i,j=1

βiβjϕiϕj − χ

NM∑
i,j=1

βiβjϕiϕj +

− Ams

NM∑
i,j,k=1

βiβjβkϕiϕjϕk − Am

NM∑
i=1

μiϕi + AmIapp(x, t). (35)

We can now project expression (35) onto �. Then we define the projection of f ,
γp∀p = 1, . . . , NM , as

γp := − Ama

NM∑
i=1

βi〈sϕi, ϕp〉 −
NM∑
i=1

λiβi〈ϕi, ϕp〉 − Am

NM∑
i=1

μi〈ϕi, ϕp〉 +

+ Am(a + 1)
NM∑

i,j=1

βiβj 〈sϕiϕj , ϕp〉 − χ

NM∑
i,j=1

βiβj 〈ϕiϕj , ϕp〉 +

− Am

NM∑
i,j,k=1

βiβjβk〈sϕiϕj , ϕkϕp〉 + Am〈Iapp, ϕp〉. (36)

Let us assume that the applied stimulus is approximated by

Iapp(x, t) =
L∑

l=1

hl(t)zl(x).

If we use the orthonormality of �, Eq. 36 can be written as

γp = − λpβp − Amμp − Ama

NM∑
i=1

Bipβp + Am(a + 1)
NM∑

i,j=1

βiβjWijp +

− χ

NM∑
i,j=1

βiβjTijp − Am

NM∑
i,j,k=1

βiβjβkYijkp + Am

L∑
l=1

hl(t)〈zl, ϕp〉, (37)

where we define the matrix B, and the third and fourth order tensors T , W , Y as

Bij := 〈sϕi, ϕj 〉 ∀i, j = 1, . . . , NM,

Tijk := 〈ϕi, ζjk〉 ∀i, j, k = 1, . . . , NM,

Wijk := 〈sϕi, ζjk〉 ∀i, j, k = 1, . . . , NM,

Yijkh := 〈sζij , ζkh〉 ∀i, j, k, h = 1, . . . , NM,

(38)

and the functions ζ by

ζij := ϕiϕj ∀i, j = 1, . . . , NM.
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Note that these tensors are computed once for all at the initialization phase. Then
they are simply propagated according to their respective evolution equation.

Dealing with the second equation of Eq. 26, we write the projection of the
approximated function g(vm, w) as

ηp := 〈g, ϕp〉 = ε(γβp − μp), ∀p = 1, . . . , NM. (39)

Then, to solve Eq. 26 with the ALP method we have to compute at each time iteration
the quantities

β̇i +
NM∑
j=1

βjMji = γi,

μ̇i +
NM∑
j=1

μjMji = ηi, (40)

where γi , ηi , for i = 1, . . . , NM are defined by Eqs. 37 and 39. The complete set
of equations that describe the dynamics is defined by Eqs. 15–37–39, with Eq. 40
replacing the first equation of system (15).

Remark Note that in the derivation of the ALP equations presented above, the dif-
fusion term was eliminated in Eq. 35 by taking advantage of the modes definition in
terms of the Schrödinger operator. Roughly speaking, a third order tensor is intro-
duced, whose computation does not require modes differentiation. This is not the
only possibility. Indeed, if the second term of Eq. 34 is substituted in expression (33),
the approximation of f (vm, w) writes:

f ≈ −Amsa

NM∑
i=1

βiϕi − Ams(a + 1)

χ

NM∑
i=1

λiβiϕi − Ams

χ2

NM∑
i=1

λ2i βiϕi − Am

NM∑
i=1

μiϕi +

−Ams(a + 1)

χ

NM∑
i=1

βidiv( ¯̄σm∇ϕi) − Ams

χ2

NM∑
i=1

λiβidiv( ¯̄σm∇ϕi) +
NM∑
i=1

βidiv( ¯̄σm∇ϕi) +

+Ams

χ

NM∑
i,j=1

βiβjdiv( ¯̄σm∇ϕi)ϕj + AmIapp(x, t). (41)

Equation 41 is then projected onto �. Let us make the same assumptions as below,
i.e. separable form space-time sources. Then, the projection of f , γp∀p = 1, . . . , NM

is therefore defined as:

γp := −Amμp − Am

NM∑
i=1

(
a + a + 1

χ
λi + 1

χ2
λ2i

)
Bipβi +

NM∑
i=1

Am

(
a + 1

χ
+ 1

χ2
λi

)
βiVip +

−
NM∑
i=1

βiEip − Am

χ

NM∑
i,j=1

βiβjUijp + Am

L∑
l=1

hl(t)〈zl, ϕp〉, (42)
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where we define the matrices B, E, V and the third order tensors U as

Bij := 〈sϕi, ϕj 〉 ∀i, j = 1, . . . , NM,

Eij := 〈 ¯̄σm∇ϕi, ∇ϕj 〉 ∀i, j = 1, . . . , NM,

Vij := 〈s ¯̄σm∇ϕi, ∇ϕj 〉 ∀i, j = 1, . . . , NM,

Uijk := 〈 ¯̄σm∇ϕi, ∇(ζjk)〉 ∀i, j, k = 1, . . . , NM. (43)

This way to proceed is attractive from a reduced-order modeling standpoint, since
it allows to get rid of the fourth-order projection tensor appearing when the Galerkin
projection of the FitzHugh-Nagumo ionic current is considered. For standard ROM
based on Galerkin projection the scalability is of the order of N4

M , while for ALP,
by taking advantage of the definition of the potential in the Schrödinger operator,
the cost of the ROM is of the order of N3

M . A discussion on the cost and scalability
of other ROM approaches is provided in [5, 20]. An effective method to deal with
nonpolynomial nonlinearities and to avoid the computation of high-order projection
tensors could be inspired by the concept of empirical interpolation methods [2, 6]. A
comparison and an application of these methods to ALP will be the object of future
works.

3.4 ALP for the bidomain equations

To discretize the bidomain equations in the low dimension space � and apply the
ALP method, as in Section 3.3, we first choose the initial reduced order space. The
operator Lχ defined for this problem is given by

Lχ (u)ϕ = −div( ¯̄σI∇ϕ) − χuϕ (44)

where ¯̄σI is the intracellular conductivity tensor, indicated in the following as σI .
The second step is the discretization of Eq. 1. We can write the system as

AmCm∂tvm = f (vm, uE, w),

∂tw = g(vm, w),

q(vm, uE) = 0, (45)

where

f (vm, uE, w) = Amsvm(vm − a)(1 − vm) − Amw + div(σI ∇vm) + div(σI ∇uE) + AmIapp,

g(vm, w) = ε(γ vm − w),

q(vm, uE) = −div((σI + σE)∇uE) − div(σI ∇vm). (46)

The projection onto the space � of the first equation of Eq. 46 gives

γp := − λpβp − Amμp − λpξp − Ama

NM∑
i=1

βjBij + Am(a + 1)
NM∑

i,j=1

βiβjWijp − χ

NM∑
i,j=1

βiβj Tijp +

− χ

NM∑
i,j=1

βiξj Tijp − Am

NM∑
i,j,k=1

βiβjβkYijkp + Am

L∑
l=1

hl(t)〈zl , ϕp〉, ∀p = 1, . . . , NM, (47)
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and the projection of function g gives

ηp := ε(γβp − μp), ∀p = 1, . . . , NM. (48)

The projection of function q gives a low dimensional linear system defined by

NM∑
j=1

Qij ξj = −
NM∑
j=1

Eijβj , ∀j = 1, . . . , NM, (49)

where matrices Q and E are defined as

Qij := 〈(σI + σE)∇ϕi, ∇ϕj 〉 ∀i, j = 1, . . . , NM

Eij := 〈σI∇ϕi, ∇ϕj 〉 ∀i, j = 1, . . . , NM.
(50)

To summarize, the set of equations which describes the dynamics of system (1) in the
reduced order space is:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β̇ + Mβ − γ = 0,
μ̇ + Mμ − η = 0,

λ̇i + χ

NM∑
m=1

Tiimγm = 0, i = 1 . . . NM

Ṫ = {M, T }(3),
Ẏ = {M, Y }(4),
Q̇ = [M, Q],
Ė = [M, E],

Mij = χ

λj − λi

NM∑
m=1

Tijmγm, i, j = 1 . . . NM

γ = γ (β, ξ, μ),

η = η(β, μ),

Qξ = −Eβ.

(51)

4 Numerical experiments

This section is devoted to numerical experiments. First, we consider the propagation
of an electrical signal in a homogeneous tissue on a 2D domain. Then, some examples
of spatial and temporal heterogeneity in parameters and source terms are proposed.
The last application deals with pseudo-electrocardiograms and involve the bidomain
equations coupled to a diffusion problem on a 3D domain.

4.1 Preliminary comments about POD

In the following numerical simulations, our main objective is to compare ALP with
the finite element method (FEM). In some cases, we also compare ALP with the
Proper Orthogonal Decomposition (POD).

The POD method consists in defining an orthonormal basis that maximizes the L2

representation of a database of given snapshots, i.e. solutions computed in an off-line
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stage. The approach proposed in [23] is used to generate the basis. Let us recall its
main steps. Consider an approximation of the solution in the form

u(x, ti) ≈
∑
j

âj (t)ϕj (x), (52)

where ϕj is the j -th POD mode. The modes are such that 〈ϕi, ϕj 〉 = δij and:

ϕi = argmin
ϕ̃

∫ T

0

∫
�

⎛
⎝u(x, t) −

∑
j

âj (t)ϕj (x)

⎞
⎠

2

d�dt. (53)

Let ui(x) be a snapshot of the database of pre-computed solutions. The minimization
problem is solved by:

Aij := 〈ui, uj 〉, (54)

AB = BS, (55)

ϕi :=
∑

j Bjiuj

s
1/2
i

. (56)

An important remark is in order. POD is a way to approximate a space spanned by
off-line solutions, and the result strongly depends on this space. When the parame-
ters of the problems vary, it is necessary to consider a large number of configurations
in order to build an off-line space as rich as possible. In electrophysiology, this strat-
egy was carried out for example in [4]. In the present work, we only consider a
very simple set of precomputed solutions: the ones obtained with nominal values of
parameters. Thus, our POD results correspond to a best case scenario when the nom-
inal values are used to run the reduced-order model, but to a (possibly) very bad
scenario when the parameters are modified. In the latter case, it would be clearly
possible to improve the POD results by enlarging the off-line dataset, but this would
require to explore a huge number of configurations in the off-line stage. Although
possible, this was not done here since POD was not the main topic of this paper.

4.2 A few comments on the choice of χ .

The ALP basis depends upon a real positive scalar parameter χ , that influences the
spectrum and the eigenfunctions of the operator Lχ . The spectrum of the operator
is discrete (the domain is bounded), real, and it can be divided into two parts: one
corresponding to negative eigenvalues and one to positive (or null) eigenvalues. The
larger the value of χ , the higher is the number of negative eigenvalues. The larger the
value of χ , the more peaky the eigenfunctions corresponding to negative eigenval-
ues are. Thus, this parameter can be viewed as a characteristic length for the modes
corresponding to negative eigenvalues. Let us illustrate this with a 1D numerical test
case.

The domain is � = [0, 1], the potential is the Gaussian y =
exp

(−250(x − 0.5)2
)
. A piecewise linear finite element discretization is adopted,

with N = 256. In Fig. 1a the number of negative eigenvalues is shown for several
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Fig. 1 Properties when χ is varied

values of the parameter χ . For χ = 0, there are no negative eigenvalues. The num-
ber of negative eigenvalues increases with χ . In Fig. 1b the relative L2 error in the
reconstruction of the potential is shown when only the first mode is used, as a func-
tion of χ . There is a minimum for χ ≈ 2000. This is related to the the fact that, for
low values of χ the first mode has a characteristic length much higher than that of
the gaussian potential, so that the reconstruction is poor. On the opposite, when χ is
too large, the mode tends to a Dirac delta and it cannot represent the potential in a
good way. The behavior of the first mode, when χ is varied, is shown in Fig. 2a.

Let us comment on the difference between the eigenfunctions corresponding to the
negative spectrum and the eigenfunctions corresponding to the positive one. In Fig 2b
the first four modes are shown when χ = 2000. The first two modes correspond to
the negative spectrum. Their shape is soliton-like: it is featured by a characteristic



1118 J.-F. Gerbeau et al.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

x

φ 1

χ = 500
χ = 1500
χ = 2500
χ = 4000

(a)

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

3

4

x

φ

φ
1

φ
2

φ
3

φ
4

χ = 2000

(b) 

Fig. 2 Eigenfunctions behavior

length and localized in space. The modes 3 and 4 correspond to the positive spectrum.
They are sinus-like global modes, of increasing frequency, perturbed by the potential.

In practice, the value of χ is chosen after a preliminary numerical test, on a given
setup, and depends on the domain size as well as on the L2 norm of the potential. It
is chosen in such a way that the initial datum is represented with a low relative error
in the space spanned by few modes.

4.3 Homogeneous parameters 2D case

We consider a 2D square domain [0, 1]2, discretized with a P1 finite element
mesh composed of 5.878 vertices, and the monodomain equations (3) with the
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Table 1 Physical and ionic parameters

A2D
m

(
�.mV−1

)
A3D

m

(
�.mV−1

)
Cm

(
mA.ms.cm−2

)
σm s a ε γ

2000.0 500.0 0.1 1 0.2 0.075 0.04 0.2

parameters reported in Table 1. Concerning the ALP method, we solve the equations
presented in Section 3.3. ALP results are compared with those obtained with the full
order model (FEM) and the POD. The POD basis is generated by considering snap-
shots from the homogeneous 2D tissue propagation. For FEM simulations a second
order Backward Difference method is used with time step δt = 0.1 ms, while in the
reduced order cases an Explicit Euler method is considered (time step δt = 0.01 ms).

First we run a FEM simulation with the applied stimulus defined as

Iapp(x, t) = h(t)z(x), (57)

where h is defined by
h(t) = H(t) − H(t − 5), (58)

H denotes the Heaviside function, and z is defined by

z(x) = 0.04 · 1�c, �c = {(x, y) s.t. ‖(x − 0.25, y)‖ ≤ 0.25}. (59)

In order to build the initial time ALP basis �(0) we consider the solution vm of the
FEM simulation after 5 ms. The basis is computed solving Eq. 30 with χ = 15. POD
basis is generated by considering snapshots from the FEM simulation: 100 snapshots
are retained with a sampling time of 0.5 ms. The POD model is built by Galerkin
projection.

Let us compare FEM and ROM solutions for ROM dimension space NM = 25.
We observe good agreement between FEM solution and POD one (see first and last
columns of Fig. 3). ALP solution is in good accordance with FEM one, too (see first
and second columns of Fig. 3).

Then, we compare the relative L2
(
R
N )

norm errors between FEM solution and
ROM ones, computed by

error2(tn) =
∣∣∣u(n)

FEM − u
(n)
ROM

∣∣∣2∣∣∣u(n)
FEM

∣∣∣2
(60)

for each time iteration tn, n ≥ 0, where | · |2 denotes the discrete norm |v|2 = ∑
i v2i ,

and u
(n)
FEM , u

(n)
ROM , represents the FEM, respectively ROM, solution at time tn in

the high dimensional space RN . We compute the errors varying the dimension of
ALP space: NM = 15, 20, 25, 30. In Fig. 4 we observe the decreasing values of
ALP error with respect to the space dimension. In particular, each continuous curve
(ALP errors) has a relative minimum after 20 ms, i.e. when the depolarization front
is already gone and the repolarization has not started yet. The relative error increases
for any value of NM after 30 to 35 ms, which represents the exit of the repolarization
from the domain, this is due to some boundary effects caused by the low dimensional
approximation. We observe the same behavior for the POD curve, too (dotted line).
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Fig. 3 Comparison between FEM (left column), ALP (χ = 15, NM = 25) in the center and POD (NM =
25) on the right for the homogeneous tissue test case (Section 4.3). Four different times are considered,
namely t = 5, 15, 20, 25 ms

Finally, we remark that ALP relative error with 25−30 modes is less than 10 percent
during the whole simulation. We point out that the POD method gives an optimal
solution because of the basis is build ad hoc. As we observe in next sections, the POD
basis is not as efficient for any perturbation of the signal.

Concerning the computational costs of the algorithm, the gain of the ALP method
for the monodomain equations (3) with NM = 25 modes was investigated. When a
full reconstruction in the physical space is performed, the gain is about 20% com-
pared to the FEM, including all the stages of the method. This speedup is clearly
insufficient, and its improvement is the object of an on-going work. However, it is
worth noticing that, in many applications, the reconstruction in the FE space is not
necessary. As will be shown in Section 4.6, this is for example the case when only
an output of interest depending linearly on the solution is needed. In this case, the
update of the basis can be avoided and the ALP method has a computational cost
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Fig. 4 Relative errors in L2 norm for the homogeneous tissue test case (Section 4.3), varying the number
of modes used, for ALP method (continuous lines, χ = 15) and POD (dotted line)

which is one order of magnitude smaller than that of FEM (a speedup of about 8 was
observed in our simulations).

4.4 Heterogeneous ionic parameters

A test case with heterogeneous ionic parameter s is presented in this section, which
is challenging from a ROM point of view. Indeed, s(x) is a function of the space, it
is a distributed parameter that belongs to a high dimensional (infinite dimensional)
space. For the reduced-order techniques that rely on the pre-computation of solu-
tions, this would increase in a significant way the database dimension and the cost
of the offline phase. In particular, for the test case considered, the expression of
s(x) reads:

s(x) = s0 · 1�/�s + s1(x) · 1�s , (61)

�s = {(x, y) | (0 ≤ x ≤ 0.5), (0.25 ≤ y ≤ 0.75)} , (62)

s1(x) = s0
36y − 7

20
. (63)

The value of the parameter s0 is reported in Table 1. There is a square subdomain in
which the ionic parameter s is modified, its value is linear with respect to y: being
only 1/10 with respect to the nominal one in the inferior border (y = 0.25) and s0 in
the upper boundary (y = 0.75). This can be seen as a schematic representation of an
obstacle for the depolarization waves.

The ALP method was applied to this scenario. It is worth noting that the ini-
tial condition for this simulation is the same as for the homogeneous test case, so
that the initial modes set is exactly the same. The ALP ROM was integrated, tak-
ing χ = 15 and a time step δt = 0.01 ms. In Fig. 5 the L2 relative error between
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Fig. 5 Relative errors in L2 norm for the heterogeneous ionic parameter test case (Section 4.4), varying
the number of modes used, for ALP method (continuous lines, χ = 15) and POD (dotted line)

the FEM solution and the reconstruction of the ALP-ROM one is shown as func-
tion of time, varying the number of modes used. The errors are larger with respect
to those observed for the homogeneous test case presented in the previous section.
This can be explained by considering that in presence of an obstacle the dynamics
is complex and a larger number of modes is needed to render it. As expected the
error decreases when the number of modes is increased and it is less than 10% when
NM = 30 modes are used. The error globally increases in time, but it is not mono-
tonically increasing. The peaks observed corresponds to boundary interactions of the
depolarization wave. The dashed lines are the relative errors of the POD reduced-
order model when N

(POD)
M = 30 and N

(POD)
M = 60. The error has peaks larger

than 100% in both cases, and for N
(POD)
M = 60 it is overall comparable to ALP

when NM = 15.
A qualitative comparison between ALP and POD solutions is proposed in Fig. 6,

at four different instants: t = 15, 20, 25, 30 ms. The FEM solution is represented
on the left column, ALP is in the center and POD on the right. The POD model
is not accurate enough out of database and it is not able to account for the dynam-
ics in the presence of an obstacle, if this has not been taken into account in the
database. The POD modes number has to be increased up to N

(POD)
M = 60 in order

to start having a realistic behavior. On the contrary, ALP performance is remark-
able, all the features of the solution are represented. The errors mainly concern
the front shape (which is often less sharp than the FEM one) and the boundary
interactions.

In Fig. 7 the time evolution of the first Schrödinger mode is considered, at four
different times, t = 5, 10, 25, 30 ms. The mode basically evolves as the solution
does. Indeed, the modification in the ionic parameter s(x)makes the modal set evolve
in order to match the dynamics of the system.
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Fig. 6 Comparison between FEM (left column), ALP (χ = 15, NM = 25) in the center and POD
(NM = 25) on the right for the heterogeneous parameter test case (Section 4.4). Four different times are
considered, namely t = 15, 20, 25, 30 ms

4.5 Source terms

In this section space-time sources are considered. The synthetic test presented here-
after is a schematized example of a realistic ectopic pacemaker. The proposed test
case is as follows. The wave starts from the same initial condition as for the previous
test cases. At t = 60 ms a source term is applied of the form:

Iapp(x, t) = [H(t − 60) − H(t − 65)]z(x),
z(x) = 0.04 · 1�c,

(64)

where H denotes the heaviside function and

�c = {(x, y) s.t. ‖(x, y − 0.75)‖ ≤ 0.25}.
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Fig. 7 Evolution of the first mode for ALP-ROM when heterogeneous parameter test case (Section 4.4)
is integrated, at four different times: t = 5, 15, 25, 30 ms

This is a challenging test case from a model-reduction point of view. Indeed, for a
method relying on a database construction, a large number of stimulation locations
and times should be pre-computed and the ROM usually performs poorly out-of-
database.

The test was performed by varying the number of modes used. The initial
condition for the modal set was extracted by taking χ = 15.

The relative error in L2 norm was computed (see Fig. 8). For t < 60 ms the curve
is the same as for the homogeneous tissue test case presented in section 4.3. Let us
comment the behavior of the scheme for t > 60 ms. The error increases when the
current is applied. After a transient phase the modal set adapts and the scheme is able
to reproduce the dynamics of the system. As for the previous test cases, the error
decreases as the number of modes is increased. The error is in general higher with
respect to what observed in the homogeneous test case, with the same number of
modes. This is another case for which the POD performances are poor. Indeed, when
the sources are not precomputed the POD is not able to reproduce the correct results
even with a high number of modes (see Fig. 9). On the contrary, the ALP method
errors are comparable to those obtained in the homogeneous test case (Section 4.3).

In Fig. 9, the FEM solution (left column) was compared to the solutions obtained
with ALP (center column) and POD (right column) when NM = 25. Four different
times are considered, namely t = 65, 80, 85, 90 ms. Between t = 60 ms and t = 65
ms the current source (dash-circle in the first row of the plots) has been applied. Its
effect is not represented in the POD modes space since the snapshots were com-
puted without it. Hence, at subsequent times, the polarization cannot propagate and



Approximated Lax pairs in cardiac electrophysiology 1125

Fig. 8 Relative error in L2 norm for ALP (χ = 25) and POD with NM = 30 for the distributed source
test case (see Section 4.5)

the POD model is not able to provide the solution of the system. In spite of some
errors in the position and the shape of the front, ALP is able to account for the wave
propagation induced by the source.

4.6 Pseudo-electrocardiograms

We are now interested in an application related to electrocardiograms (ECG) compu-
tation. ECG represents an convenient and efficient medical test to control the heart
behavior, it consists in measuring the electrical potential onto 9 skin points. From a
mathematical point of view, the bidomain equations (1) are coupled to a diffusion
problem in the torso:

div(σT ∇uT ) = 0, in �T , (65)

where uT represents the torso electrical potential and σT the torso conductivity,
an heterogeneous parameter which takes into account for instance bones and lungs
conductivities. Equation 65 can be coupled to Eq. 1 by imposing the continuity of
the extracellular potential and current. In this study, we consider a weak coupling
between heart and torso potential, i.e. only the potential continuity is imposed. Then
the boundary conditions for Eq. 65 are

uT = uE, on �

σT ∇uT · n = 0, on ∂�ext
T (66)

where � = ∂�H represents the external boundary of the heart domain and ∂�ext
T

indicates the external boundary of the torso domain �T .
Since we now consider the bidomain equations, we have to treat the extracellular

variable. In Section 3.3 the ionic variable w was approximated in the same reduced
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Fig. 9 Comparison between FEM (left column), ALP (χ = 15, NM = 25) in the center and POD (NM =
25) on the right for the source test case (Section 4.5). Four different times are considered, namely t =
65, 80, 85, 90 ms. For the first part of the simulation, t < 60 ms, see Fig. 3 (test case of Section 4.3)

order space as the transmembrane potential. We do the same for the extracellular
potential uE and write

ûE =
NM∑
i=1

ξi(t)ϕi(x, t), (67)

where ûE is the low dimensional approximation of uE , ξi(t) is the representation of
ûE in the reduced order space �.

We denote by y =
(
uT

(
xECG
1

)
, . . . , uT

(
xECG
NECG

))
the values of uT at NECG

locations on the boundary of the torso. The measurement y is the output of interest
of this problem. It is related to uE by the relation

y = S�u (68)
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Fig. 10 FEM heart-torso equations solution at time t = 25 ms

where � : RN �→ R
N� denotes the boundary restriction operator, N� is the number

of vertices on heart/torso interface, S ∈ R
NECG×N� denotes the heart-torso transfer

matrix, and u ∈ R
N denotes the degrees of freedom of the extracellular potential uE

in the finite element space. If we consider the representation of u in the reduced-order
space, u = �ξ , then the ECG measurements can be written as

y = Xξ, (69)

where
X := S�� ∈ R

NECG×NM (70)

is a very small matrix. This linear operator X commutes with time, so we can apply
the same technique as in Section 3.1 in order to compute its time derivative:

Ẋij =
NM∑
l=1

XilMlj . (71)

So, the ECG measurement y is computed at each time iteration using the low dimen-
sional vector ξ and the matrix X whose update is easily computed using Eq. 71,
without any reconstruction of the solution in the finite element space.

For the numerical simulations, we consider an ellipsoid, representing the heart,
embedded in a cylinder, represented the torso. The mesh of the ellipsoid has 22.140
vertices, while the external one has 338.920 vertices, of which 7.572 are on the
interface � between the two domains.
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Fig. 11 Comparison between FEM electrodes measures (blue line) and ALP ones (red line) for χ = 50,
NM = 60

We first solve the bidomain equations Eq. 1 in the ellipsoid using FEM and a
second order Backward Difference method to integrate in time. The conductivity
tensors σI and σE are considered isotropic, their values are σI = 1, σE = 4. Then,
we solve the torso diffusion problem Eq. 65 with boundary conditions (66) where the
extracellular potential is taken from the bidomain solution in the ellipsoid. A snapshot
of the solution at time t = 20 ms is shown in Fig. 10. In particular we are interested in
the torso potential measured by 6 electrodes positioned in the black points of Fig. 10.

Concerning the ALP resolution, we compute the initial basis � using the operator
Lχ defined in Eq. 44 where u is the FEM solution at time t = 5 ms and χ = 50. We
solve then Eq. 51 and we compute by Eq. 69 the 6 torso measures we are interested
in. We remark that, as the only output we want to show are the 6 electrodes measures,
no reconstruction in the FEM space is needed.

Figure 11 compares FEM measures with ALP results run for NM = 60. We
observe that ALP curves (red lines) are in good accordance with FEM ones (blue
lines), the signal is well reproduced on every leads.

5 Conclusions and perspectives

The ALP method can be seen as a technique to propagate a basis in a way related to
the dynamics of the solution. In this paper, ALP was applied to the simulation of high-
dimensional parametric systems arising in cardiac electrophysiology. The approach
was assessed in a wide range of different situations, including 2D and 3D complex



Approximated Lax pairs in cardiac electrophysiology 1129

configurations. The main advantage with respect to standard approaches consists in
the fact that no database of solutions has to be built to define the reduced-order model.

Several perspectives are in order. The first one is the choice of the basis to prop-
agate, that is, the choice of the operator Lχ . To derive the method, Lχ has to be
selfadjoint, with a compact inverse and linear in u. In this paper, we chose a specific
expression for Lχ but many others are possible and would lead to different results
and performances. This aspect deserves further investigation. Another important per-
spective is the possibility to deal with nonpolynomial nonlinearities. To do so, we are
currently working on an extension of ALP using the concepts of empirical interpo-
lation, as introduced in [2, 6]. This approach will allow us to consider more realistic
models of electrophysiology, including physiological ionic models. The N3

M com-
plexity, due to the propagation of tensor T , is another limitation of the current version
of ALP. It is expected that the use of empirical interpolation will also overcome this
issue. Last but not least, the analysis of the stability and accuracy of the method is
still missing and deserves to be addressed in future works.
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