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Abstract We introduce new methods for the numerical solution of general
Hamiltonian boundary value problems. The main feature of the new formulae is to
produce numerical solutions along which the energy is precisely conserved, as is the
case with the analytical solution. We apply the methods to locate periodic orbits in
the circular restricted three body problem by using their energy value rather than their
period as input data. We also use the methods for solving optimal transfer problems
in astrodynamics.
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1 Introduction

We are concerned with the numerical solution of the general autonomous Hamilto-
nian boundary value problem{

ẏ(t) = J∇H(y(t)), t ∈ [t0, tf ],
g(y(t0), y(tf )) = 0.

(1)

The scalar function H : � ⊂ R
2m → R is the Hamiltonian of the problem,

J =
(

0 Im

−Im 0

)
(here and in the sequel Ir will denote the identity matrix of

dimension r), and the vector function g : R2m × R
2m → R

2m defines the bound-
ary conditions. Hereafter, both H and g will be assumed to be suitably regular. For
existence and uniqueness results concerning general (not necessarily Hamiltonian)
two-point boundary value problems we refer the reader to [22]. As is well known, the
value of the Hamiltonian function is constant along the solution of (1). An easy man-
ner to see this is to consider the line integral associated with the vector field ∇H(y)

evaluated along the path defined by the solution y(t) of (1), which equals the varia-
tion of H along the end-points of the path. Exploiting the skew-symmetry of matrix
J , we have, for t0 ≤ t ≤ tf ,

H(y(t)) − H(y(t0)) =
∫ t

t0

ẏ�(τ )∇H(y(τ))dτ

=
∫ t

t0

∇�H(y(τ))J�∇H(y(τ))dτ = 0.

(2)

The state vector y splits in two vectors of length m, y� = [q�, p�] referred
to as generalized coordinates and conjugate momenta. The numerical treatment of
Hamiltonian problems is thoroughly discussed in the monographs [18, 25, 31].

The aim of the present work is to construct energy-conserving methods for prob-
lem (1), that is methods producing numerical solutions {yi} along which the value of
the energy is the same: H(yi) = H(yi−1).

Interest in problems such as (1) arises in several research areas. In this paper (see
Section 5), we focus our attention on some applications in celestial mechanics and
astrodynamics. In particular, we consider the dynamics of a massless object (plan-
etoid) subject to the gravitational field induced by two massive bodies (primaries)
revolving in circular orbits about their center of mass. Such a dynamical system,
referred to as the circular restricted three-body problem, together with its general-
izations, has been deeply studied since Poincaré. Its renewed interest is motivated by
the fundamental role it plays in the context of space mission design and control prob-
lems in aerospace engineering, such as the nonlinear trajectory optimization and the
spacecraft orbit transfer [6, 23].

The paper is organized as follows. In the next section we briefly recall the def-
inition of the energy-conserving methods named HBVMs and describe their main
features. For a detailed description of HBVMs, and their properties when applied to
Hamiltonian IVPs, see [9–11]. The implementation of HBVMs to solve problem (1)
are discussed in Sections 3 and 4. In particular, in the latter section we study the more



Energy-conserving methods for Hamiltonian BVPs 883

delicate case of periodic boundary conditions: as is well known, the detection of peri-
odic orbits takes on great importance in the context of Hamiltonian systems. Section 5
is devoted to the description of specific problems related to the circular restricted
three-body system, and their numerical treatment. A few concluding remarks are then
reported in Section 6. For an introduction on the solution of general boundary value
problems by using one-step methods see, for example, [5].

2 Definition of the methods

In this section we recall the definition of HBVMs. These are Runge–Kutta methods
characterized by a low-rank coefficient matrix.

The main prerogative of a HBVM is to reproduce, in the discrete setting, property
(2) of conservative vector fields. To this end, we consider the approach discussed in
[11] and exploit a Fourier expansion of the continuous problem ẏ(t) = J∇H(y(t))

restricted to the interval t ∈ [t0, t0 + h], where h = tf −t0
n

> 0 will act as the
stepsize of integration in the one-step method that will finally arise from this analysis.
The procedure is then iterated on adjacent intervals [ti , ti+1] with ti+1 = ti + h,
i = 0, . . . , n − 1, until the overall integration interval [t0, tf ] is covered.

Let us then consider the Legendre polynomials Pi shifted on the interval [0, 1],
and scaled in order to be orthonormal:

degPi = i,

∫ 1

0
Pi(x)Pj (x)dx = δij , ∀i, j ≥ 0, (3)

where δij is the Kronecker symbol. The roots {c1, . . . , ck} of Pk(x) are all dis-
tinct and symmetrically distributed on the interval (0, 1). Usually, they are referred
to as the Gauss-Legendre abscissae on [0, 1] and generate the well-known Gauss-
Legendre quadrature formulae, whose weights we denote bi , i = 1, . . . , k. The
infinite sequence {Pi(t)} forms an orthonormal basis of L2([0, 1]). Expanding the
right-hand side of (1) along this basis and truncating the series after s terms changes
the original differential equation ẏ(t) = J∇H(y(t)) to

ω̇(t0 + ch) =
s−1∑
j=0

Pj (c)

∫ 1

0
Pj (x)J∇H(ω(t0 + xh))dx, c ∈ [0, 1]. (4)

Notice that the solution ω(t0 + ch) of (4) is indeed a polynomial of degree s. In
[11, Theorem 1] it has been shown that

y(t0 + h) − ω(t0 + h) = O(h2s+1),

so that, iterating the procedure (4) sequentially over the intervals [ti , ti+1], i =
0, . . . , n−1, provides an approximation of order 2s to the true solution, on the whole
interval [t0, tf ]. One interesting aspect of formula (4) is that it inherits the energy
conservation property of the original problem. In fact, by setting

γj (ω) =
∫ 1

0
Pj (x)J∇H(ω(t0 + xh))dx, j = 0, . . . , s − 1, (5)
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we have

H(ω(t1)) − H(ω(t0)) = h

∫ 1

0
ω̇(t0 + ch)�∇H(ω(t0 + ch))dc

= h

s−1∑
j=0

γj (ω)�J�γj (ω) = 0.

(6)

A drawback of formula (4) is the presence of the integrals defining the scalar products
(5), which make it unusable for a direct implementation. To circumvent this problem,
a quadrature formula is introduced to approximate such integrals. In particular, we
consider the Gauss-Legendre quadrature based at k ≥ s abscissae ci and weights bi ,
i = 1, . . . , k, introduced earlier, thus obtaining the following approximation to (5):

γ̂j (ω) ≡
k∑

�=1

b�Pj (c�)J∇H(ω(t0 + c�h)) = γj (ω) + O(h2k−j ). (7)

In so doing, the polynomial approximation changes, so that we finally arrive at the
method

y1 = �h(y0) ≡ σ(t0 + h), (8)

where the polynomial σ ∈ 
s is defined as (compare with (4))

σ̇ (t0 + ch) =
s−1∑
j=0

Pj (c)

k∑
�=1

b�Pj (c�)J∇H(σ(t0 + c�h)). (9)

It can be shown that this method has still order 2s [11, Theorem 4]. However, due to
the approximation (7), the polynomial σ does not retain, in general, the conservation
property (6) of the original polynomial ω. Nevertheless, this is no much of an issue
since the following two situations may occur:

1. H(y) is a polynomial of degree, say ν. In this case, the integrand in (5) has
degree at most νs −1 and, since the Gauss-Legendre quadrature formula is exact
for polynomials of degree at most 2k − 1, it will be enough to choose k ≥ νs

2 to
get γ̂j = γj and hence energy conservation. Indeed, in such a case one evidently
obtains ω ≡ σ ;

2. H(y) is a general, though suitably regular, non-polynomial function. According
to the analysis in [11], one then proves that (see (8)–(9))

H(y1) − H(y0) = O(h2k+1). (10)

Consequently, even in this case, we can get a practical energy conservation by
choosing k as large as to guarantee that the error O(h2k+1), appearing at the
right-hand side in (10), is of the order of the machine epsilon. As we will see in
the next section, choosing a large k does not affect the overall computational cost
associated with the implementation of the method, which essentially depends
on s.
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Integrating both sides of (9) with respect to the variable c and evaluating at c = ci

yields

σ(t0+cih) = y0+h

s−1∑
j=0

∫ ci

0
Pj (τ)dτ

k∑
�=1

b�Pj (c�)J∇H(σ(t0+c�h)), i = 1, . . . , k. (11)

This formula is called Hamiltonian Boundary Value Method (HBVM) and is
tantamount to a Runge–Kutta collocation-like method with internal stages Yi ≡
σ(t0 + cih). In fact, by setting

Ps =
⎛
⎜⎝

P0(c1) . . . Ps−1(c1)
...

...

P0(ck) . . . Ps−1(ck)

⎞
⎟⎠ , Is =

⎛
⎜⎝

∫ c1
0 P0(x)dx . . .

∫ c1
0 Ps−1(x)dx

...
...∫ ck

0 P0(x)dx . . .
∫ ck

0 Ps−1(x)dx

⎞
⎟⎠

c = (c1, . . . , ck)
�, b = (b1, . . . , bk)

� and � = diag(b1, b2, . . . , bk), (8)–(11) is
equivalent to the k-stage R-K method defined by the following Butcher tableau:

c IsP�
s �

b� . (12)

This method is denoted by HBVM(k, s) to outline its dependence on the two integers
s (degree of the polynomial approximation, clearly determined by the number of
Legendre polynomials involved) and k (which is related to the number of internal
abscissae and, therefore, to the order of the quadrature).

Notice that Ps and Is are k × s matrices while � ∈ Rk×k . When k = s one
can show that (12) becomes the usual Gauss collocation method of order 2s [9]. For
any k ≥ s the coefficient matrix A = IsP�

s � has constant rank s and its nonzero
eigenvalues coincide with those of the Butcher matrix defining the basic s-stage
Gauss method [10]. The main properties of HBVMs are summarized in the following
theorem (see [11, Corollary 3]).

Theorem 1 HBVM(k, s) is symmetric, of order 2s and energy-conserving for all
polynomial Hamiltonians of degree ν ≤ 2k

s
. In any other case, H(y1) − H(y0) =

O(h2k+1), provided that H is suitably regular.

3 Simplified Newton iteration and implementation details

That the rank of the coefficient matrix IsP�
s � is s, independently of k, suggests that

k − s stages Yi may be regarded as linear combinations of the remaining s stages.
This algebraic property turns out to be of fundamental importance to reduce the com-
putational effort associated with the implementation of the method when applied to
(1). Therefore, it is convenient to derive an alternative (though equivalent) shape of
an HBVM(k, s) method.

Notice that the polynomial σ in (9) has degree s. Hence, it is completely deter-
mined by s (rather than k) stages, plus the condition σ(t0) = y0. These s stages



886 P. Amodio et al.

have been called fundamental stages and, without loss of generality, in order to main-
tain the notation as simple as possible, they are assumed to be the first ones: Yi ,
i = 1, . . . , s.1 The remaining stages Yj , j = s + 1, . . . , k, though contributing in
defining the final shape of the polynomial σ , may be conveniently defined as linear
combinations of the fundamental stages, by simply setting Yj = σ(t0+cjh). In other
words, setting Z ≡ (Y�

1 , . . . , Y�
s )�, W ≡ (Y�

s+1, . . . , Y
�
k )�, we have

W = a0 ⊗ y0 + A ⊗ I2mZ, (13)

where the entries of the vector a0 ∈ R
k−s and the matrix A ∈ R

(k−s)×s are the
evaluations, at the abscissae cs+1, . . . , ck , of the Lagrange polynomials defined on
the nodes {0, c1, . . . , cs}. For this reason, the stages in W have been referred to as
silent stages [20]. In conclusion, we arrive at the following formulation of the method

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−e ⊗ y0 + Z = h(B1 ⊗ J )∇H(Z) + h(B2 ⊗ J )∇H(W),

W = a0 ⊗ y0 + A ⊗ I2mZ,

−y0 + y1 = h(β�
1 ⊗ J )∇H(Z) + h(β�

2 ⊗ J )∇H(W),

(14)

where the first block-equation corresponds to the first s equations in (11) (so matrix
[B1, B2] is composed by the first s rows of the Butcher array IsP�

s � in (12)), the
second block-equation, defining the silent stages, is inherited from (13), and the last
equation defines the new approximation, y1, having set β1 = [b1, . . . , bs]� and β2 =
[bs+1, . . . , bk]�. The clear advantage of (14), with respect to (12), is that now the
nonlinear and linear parts of the system defining the stages are completely uncoupled.

Suppose that the interval [t0, tf ] is divided into n equispaced sub-intervals
[ti−1, ti], i = 1, . . . , n, of length h. Then, Eq. 14 may be subsequently iterated on
such intervals to yield the approximations yi � y(ti), for i = 0, . . . , n. In particular,
y0, y1, . . . , yn are combined with the given boundary conditions to yield a large non-
linear system in the unknowns y0, Z0, y1, Z1, . . . , yn−1, Zn−1, yn, where Zi is the
block-vector of the fundamental stages (denoted by Z in the first equation of (14))
associated with yi .

Ignoring momentarily the boundary conditions, a Newton-like iteration applied to
the nonlinear equations gives the sequences {y(j)

i } and {Z(j)
i } defined as

y
(j+1)
i = y

(j)
i + δ

(j)
i , for i = 0, . . . , n,

Z
(j+1)
i = Z

(j)
i + 

(j)
i , for i = 0, . . . , n − 1,

1In the actual implementation, their distribution is chosen according to what explained in [7] (see also [8]),
i.e., the corresponding s abscissae are approximately uniformly spaced in [0, 1].
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where the increments δ
(j)
i on the yi variable and 

(j)
i on the Zi variable are the

solution of the following linear system with sparse structured coefficient matrix:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V1 K1

L1 U�
1 I2m

V2 K2

L2 U�
2 I2m

. . .
. . .

Vn Kn

Ln U�
n I2m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ
(j)

0


(j)

0

δ
(j)

1


(j)

1

δ
(j)

2
...

δ
(j)

n−1


(j)

n−1

δ
(j)
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ1
�1
θ2
�2
...

θn

�n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (15)

The blocks Vi, Ui ∈ R
2ms×2m, Li ∈ R

2m×2m and Ki ∈ R
2ms×2ms are defined as

follows:2

Vi = −e ⊗ I2m − h(B2a0) ⊗ J∇2H(ȳ
(j)
i ),

U�
i = −h(β�

2 A + β�
1 ) ⊗ J∇2H(ȳ

(j)
i ),

Li = −I2m − h(β�
2 a0)J∇2H(ȳ

(j)
i ),

Ki = Is ⊗ I2m − h(B2A + B1) ⊗ J∇2H(ȳ
(j)
i ),

(16)

where, for symmetry reasons, ȳ(j)
i = y

(j)
i +y

(j)

i−1
2 . Finally, θi ∈ R

2m and �i ∈ R
2ms are

the right-hand sides of the Newton-like iteration computed from (14).

Remark 1 If k = s, that is when using the s-stage Gauss-Legendre method, the defi-
nition of the blocks in (16) simplifies since the terms involving B2 and β2 disappear.
Thus, for example, Vi = −e ⊗ I2m and Li = −I2m. Nevertheless, when k > s, the
overhead is marginal, also taking into account that the terms B2a0, β�

2 A+β�
1 , β

�
2 a0

and B2A + B1 may be precomputed at the very beginning of the process.

We notice that system (15) counts 2m(s + 1)n equations in 2m(s + 1)n + 2m
unknowns, thus we need 2m extra equations that will be derived by imposing the
boundary conditions. Clearly, we shall obtain different linear systems, depending on
the boundary conditions in (1): generally, their efficient solution requires the use of
different, specifically tailored, linear solvers. This particular aspect is only sketched
here and will be considered elsewhere.

Preliminarily, we observe that simple matrix manipulations would allow us to sep-
arate the computation of the stages updates 

(j)
i from the solution updates δ

(j)
i . In

fact, if Ki is nonsingular, from (15) one easily derives that


(j)

i−1 = K−1
i (θi − Viδ

(j)

i−1), i = 1, . . . , n.

2In order not to complicate the notation, and for sake of brevity, we shall omit the iteration index j , for
these blocks and for the known coefficients at the right hand side of (15). We will do the same in formula
(41).
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However, due to possible stability problems (indeed, Ki may be ill conditioned or
even singular), in general it is preferable to avoid this reduction step.

Regarding the solvability and the efficient solution of (15) coupled with separated
or non-separated but non-periodic boundary conditions, we refer to [5, Chapter 8]
and [13, Chapter 7]. We sketch these two cases in Sections 3.1 and 3.2, respectively.

The case of periodic boundary conditions is far more involved. In fact, periodic
orbits of Hamiltonian systems are not isolated and, consequently, much care must
be taken to define a well-posed discrete problem and to analyze the properties of
its solution. For these reasons, we devote Section 4 to discuss this important case in
greater detail.

3.1 Separated boundary conditions

The simplest case is when problem (1) is defined by means of r < 2m initial and
2m − r final nonlinear conditions:

g1(y0) = 0 ∈ R
r , g2(yn) = 0 ∈ R

2m−r .

Their linearization, which is needed during the Newton process, provides additional
equations in the form

G1δ
(j)

0 = g1(y
(j)

0 ) ∈ R
r , G2δ

(j)
n = g2(y

(j)
n ) ∈ R

2m−r , (17)

where G1 ∈ Rr×2m and G2 ∈ R(2m−r)×2m. Ordering the two equations as the
first and the last one, (15) and (17) produce a linear system with an Almost Block
Diagonal (ABD) coefficient matrix [2]. In such a case, the solution is efficiently
obtained by means of direct solvers that generalize the LU factorization (see [2] for a
complete review), with a computational cost consisting into a number of operations
proportional to m2s2n and no fill-in (i.e., no additional memory is required for the
factorization, besides that needed for storing the blocks in the coefficient matrix).

3.2 Non-separated boundary conditions

Suppose problem (1) is defined by means of 2m (generally nonlinear) boundary
conditions involving y0 and yn, i.e.,

g(y0, yn) = 0 ∈ R
2m.

Then, the linearization of this condition produces an equation of the form

G1δ
(j)

0 + G2δ
(j)
n = g(y

(j)

0 , y
(j)
n ) ∈ R

2m, (18)

that, combined with (15), gives a nonsingular Bordered Almost Block Diagonal
(BABD) linear system whose factorization is conveniently handled by means of a
cyclic reduction approach, as is shown in [3]. This algorithm requires twice the num-
ber of operations as in the previous case and generates a fill-in which is essentially
equal to 2m(2m + s)n memory locations [3].
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4 Periodic boundary conditions

From a numerical point of view, the most difficult case to be solved is when problem
(1) is defined with periodic boundary conditions, i.e.,

g(y0, yn) ≡ y0 − yn = 0. (19)

As is the case with general (not necessarily Hamiltonian) autonomous systems,
the continuous problem always admits an infinite number of solutions: the phase of
the solution is always undetermined, meaning that y0 could be any point on the given
periodic orbit.

Conservation of energy in canonical Hamiltonian systems adds a further, more
subtle, source of indeterminacy which reflects the fact that periodic orbits are not
isolated. A periodic solution typically lies in a (2m − 1)-dimensional level set of the
energy, and thus in nearby level sets there are other periodic orbits (think of close
orbits around a stationary point). However, they may be isolated in a given energy
level set. Hereafter we elucidate in more detail the genesis of the above-mentioned
issues and how they are accounted for. This preliminary analysis is carried out in
the continuous setting and will be exploited later to state convergence and energy-
preserving results for the considered methods.

Let y0 ∈ R
2m and denote by ϕt the flow associated with the dynamical system

ẏ(t) = J∇H(y(t)) coupled with the initial condition y(0) = y0, namely ϕt (y0) ≡
y(t).3 We denote by ȳ(t) a given periodic orbit of period T and choose ȳ0 = ȳ(0),
thus ϕt (ȳ0) = ȳ(t). As is well known, the Jacobian matrix �(t) = ∂ϕt (ȳ0)

∂ȳ0
is the

fundamental matrix solution for the linearized equation about the periodic orbit ȳ(t)

and satisfies the variational problem{
�̇(t) = J∇2H(ϕt (ȳ0))�(t),

�(0) = I.
(20)

In particular, matrix �(T ) is referred to as monodromy matrix and represents the
state transition matrix after one period, while its eigenvalues λi are called Floquet or
characteristic multipliers and have the form λi = eσiT , σi being the characteristic
exponents.

The monodromy matrix of a Hamiltonian system is symplectic, that is
�(T )�J�(T ) = J . This implies that �(T )� is similar to �−1(T ) and, con-
sequently, the characteristic multipliers appear in either pairs λ, λ̄ if |λ| = 1,
or quadruples λ, λ̄, λ−1, λ̄−1 if |λ| = 1. In particular, a unitary multiplier must
necessarily have even algebraic multiplicity.

The monodromy matrix plays an important role in analyzing the stability prop-
erties of periodic orbits and, in our context, in deriving existence and uniqueness
results as well as convergence properties of the iteration scheme we will use to com-
pute a periodic orbit numerically. In fact, detecting a periodic orbit ȳ(t) requires the
solution of the nonlinear system

F(y0, t) ≡ y0 − ϕt (y0) = 0, (21)

3Without loss of generality, we assume t0 = 0 here and in the sequel.
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in the unknowns y0 and t . A study of the solutions of (21) in a neighborhood of
(ȳ0, T ) as well as the stability of the periodic orbit ȳ(t), requires a spectral analysis
of F ′(z) evaluated at (ȳ0, T ) and hence of matrix �(T ). It turns out that

F ′(ȳ0, T ) = (I − �(T ),−J∇H(ȳ0)) , (22)

and the implicit function theorem cannot be applied since I − �(T ) has a rank
deficiency at least 2 as a consequence of the following well known result (for com-
pleteness, we report the short proof since it provides a formula that will be useful in
the subsequent discussion).

Lemma 1 [23, Section 4.3] Matrix �(T ) admits λ = 1 as an eigenvalue with
algebraic multiplicity at least 2.

Proof Let ȳ(t) be a T -periodic solution with ȳ(0) = ȳ0. Differentiating ˙̄y(t) =
J∇H(ȳ(t)) with respect to t yields ¨̄y(t) = J∇2H(ȳ(t)) ˙̄y(t). Thus ˙̄y(t) solves
the variational problem (20) and therefore may be cast as ˙̄y(t) = �(t) ˙̄y(0) =
�(t)(J∇H(ȳ0)). Notice that ˙̄y(t) is also T -periodic and consequently

�(T )(J∇H(ȳ0)) = J∇H(ȳ0). (23)

Since �(T ) is symplectic, the characteristic multiplier λ = 1 has even multiplicity.

Notice that the symplecticity of �(T ) and (23) imply

∇�H(ȳ0)�(T ) = ∇�H(ȳ0), (24)

that is, ∇�H(ȳ0) is a left eigenvector of �(T ).
Relations (23) and (24) are responsible for the indeterminacies arising from the

time-shift symmetry and energy conservation respectively. It is possible to show that,
for any additional non-degenerate first integral L(y), the vector ∇L�(ȳ0) is again
a left eigenvector of �(T ) associated with the eigenvalue 1 [27].4 In this paper,
consistently with the examples discussed in Section 5, we assume that there are no
independent first integrals other than the Hamiltonian function itself. In particular,
ordering the eigenvalues of �(T ) as λ1 = λ2 = 1, λ3, . . . , λ2m, we assume that
λi = 1 for i = 3, . . . , 2m, in which case the periodic orbit ȳ(t) is called elemen-
tary. Moreover, we shall hereafter assume that the geometric muliplicity of the unit
eigenvalue is one.5

To remove the non-uniqueness caused by time shift symmetry, one adds an extra
scalar equation to (21) representing a section � transverse to the periodic orbit at ȳ0
(Poincaré section). We will choose a Poincaré section orthogonal to the periodic orbit

4A first integral L(y) is non-degenerate if ∇L(y) does not vanish on the periodic orbit. This is always the
case with ∇H , since ∇H(ȳ0) = 0 would imply that ȳ0 is an equilibrium.
5This is the case of the problems considered for the numerical tests in Section 5 (see, e.g., [17]). More
in general, this is true for problems admitting only one first integral, and possessing the so called scaling
property (see [27] for details).
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at ȳ0:

� =
{
y0 | (J∇H(ȳ0))

�(y0 − ȳ0) = 0
}

⇔ � = ȳ0 + span(J∇H(ȳ0))
⊥. (25)

The study of the dynamics around the periodic orbit ȳ(t) is carried out by analyzing
the nature of the fixed point ȳ0 of the first return map

P = y0 ∈ � �→ ϕT (y0)(y0) ∈ �,

where T (y0) is the first return time.
To remove the non-uniqueness caused by energy conservation, one intersects the

Poincaré section � with an energy level set, say

H(y0) = H0, (26)

where H0 is the energy value we are interested in. We denote by �H0 this intersec-
tion and by PH0 the restriction of P to �H0 . It turns out that the eigenvalues of the

Jacobian matrix
∂PH0 (y0)

∂y0
|y0=ȳ0 associated with the return map linearized in a neigh-

borhood of ȳ0 are λ3, . . . λ2m and, in view of the foregoing assumption, we conclude
that ȳ0 and hence ȳ(t) are isolated, which means that the augmented system (21)-
(25)-(26) does not admit solutions other than (ȳ0, T0) in a neighborhood of ȳ0. In
particular, the following important result holds true [26, Theorem 8.5.1]

Theorem 2 (The cylinder theorem) An elementary periodic orbit of a system with
integral H lies in a smooth cylinder of periodic solutions parameterized by the
integral.

Thus it makes sense to detect a periodic orbit by exploiting its energy value, which
makes the use of energy-preserving methods particularly appealing.

A standard way to solve (21)-(25)-(26) is via a Newton-like iteration. However,
linearizing this system would produce a family of overdetermined linear systems
(2m+1 unknowns vs. 2m+2 equations). To avoid handling overdetermined systems
and the singularity issues described in Lemma 1, an extra auxiliary unknown μ is
usually introduced, which will not affect the final result (see, e.g. [15, 32, 34]). More
specifically, we add the unfolding term μ∇H(y) to the original Hamiltonian system,
so it becomes

ẏ = J∇H(y) + μ∇H(y) = (J + μI)∇H(y), (27)

where μ is a real parameter. A solution y(t) of (27) satisfies

Ḣ (y(t)) = ∇H�(y(t))(J∇H(y(t)) + μ∇H(y(t))) = μ||∇H(y(t))||22. (28)

It follows that if y(t) is not an equilibrium point, H(y(t)) is constant if and only
if μ = 0. Thus, the periodic solution ȳ(t) of the original Hamiltonian system
ẏ = J∇H(y) may be computed by searching for periodic solutions of the paramet-
ric dynamical system (27). Working with (27) not only has the advantage to lead
to a nonsingular family of linear systems during the implementation of the New-
ton scheme, but also allows us to state the energy-preserving properties of HBVMs
applied in this context (see Theorem 2 below). First of all, we show that a HBVM
applied to (27) satisfies a property analogous to (28).
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Lemma 2 Let y0 be a generic non-stationary initial condition. The numerical solu-
tion y1 computed by a HBVM applied to (27) on the time interval t ∈ [t0, t0 + h]
satisfies

H(y1) = H(y0) ⇔ μ = 0. (29)

It follows that for a HBVM, a numerical periodic solution y0, y1, . . . yn = y0 of
the original Hamiltonian system may be also computed by searching for numerical
periodic solutions of the parametric system (27).

Proof For simplicity (but without loss of generality) we assume that the condition
listed in item 1. of Section 2 holds true.6 This allows us to exchange σ with ω (see
(4) and (9)). The polynomial ω is now defined as

ω̇(t0+ch) =
s−1∑
j=0

Pj (c)

∫ 1

0
Pj (x)(J +μI)∇H(ω(t0+xh))dx, c ∈ [0, 1], (30)

so that, repeating the calculation in (6) for the problem at hand gives

H(ω(t1)) − H(ω(t0)) = h

∫ 1

0
ω̇(t0 + ch)�∇H(ω(t0 + ch))dc

= h

∫ 1

0

⎛
⎝s−1∑

j=0

Pj (c)

∫ 1

0
Pj (x)(J + μI)∇H(ω(t0 + xh))dx

⎞
⎠

�
∇H(ω(t0 + ch))dc

= h

s−1∑
j=0

(∫ 1

0
Pj (x)∇H(ω(t0 + xh))dx

)�
(J� + μI)

(∫ 1

0
Pj (c)∇H(ω(t0 + ch))dc

)

= hμ

s−1∑
j=0

∥∥∥∥∥
∫ 1

0
Pj (x)∇H(ω(t0 + xh))dx

∥∥∥∥∥
2

2

. (31)

The claim follows by observing that the last sum in (31) is strictly positive. In
fact, suppose (by contradiction) that

∫ 1
0 Pj (x)∇H(ω(t0 + xh))dx = 0 for all j =

0, . . . , s − 1. Then, from (30), we would get ω̇(t0 + ch) = 0 for c ∈ [t0, t0 + ch] and
hence ω(t0) = y0 would be an equilibrium point.

In the sequel, we continue to maintain the same notation for the flow and the mon-
odromymatrix associated with the perturbed problem (27). Nonetheless, we make the
presence of the parameterμ explicit by adding it as an extra argument in the functions
involved in the next computations. For example, ϕt (y0, μ) will denote the flow asso-
ciated with the perturbed problem (27), so ϕt (y0, 0) becomes the flow ϕt (y0) of the
original unperturbed Hamiltonian system, and so on. In particular, Eq. 21 becomes

F(y0, t, μ) ≡ y0 − ϕt (y0, μ) = 0. (32)

6Should this condition not be satisfied, we could always choose k large enough to make the reasoning still
valid (see item 2. of Section 2).
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Set

G(y0, t, μ) =
⎛
⎝ F(y0, t, μ)

(J∇H(ȳ0))
�(y0 − ȳ0)

H(y0) − H0

⎞
⎠ . (33)

The periodic solution ȳ(t) is detected by solving G(y0, t, μ) = 0. A standard way to
solve this nonlinear system is via the Newton iteration

{
G′(z(j))η(j) = −G(z(j)),

z(j+1) = z(j) + η(j),
(34)

where z ≡ (y0, t, μ), z(j) ≡
(
y

(j)

0 , t (j), μ(j)
)
is the j th step approximation to the

solution, say z̄ ≡ (ȳ0, T , 0), of (33) and

G′(z) ≡ G′(y0, t, μ) =
⎛
⎝ I − �(t, μ) −J∇H(ϕt (y0, μ))

∂ϕt

∂μ
(y0, μ)

(J∇H(ȳ0))
� 0 0

∇�H(y0) 0 0

⎞
⎠ .

(35)
Under regularity assumptions on the Hamiltonian function, the Newton process is
well defined in a neighborhood of z̄ and a local quadratic convergence of the sequence
z(j) towards z̄ is guaranteed provided G′(z̄) is nonsingular.

Lemma 3 Let ȳ0 ∈ R
2m and ϕt (ȳ0) be a periodic orbit with period T > 0 (so

∇H(ȳ0) = 0). Then, the matrix

G′(ȳ0, T , 0) =
⎛
⎝ I − �(T ) −J∇H(ȳ0)

∂ϕT

∂μ
(ȳ0, μ)|μ=0

(J∇H(ȳ0))
� 0 0

∇�H(ȳ0) 0 0

⎞
⎠ (36)

is nonsingular.

Proof We split the proof in the following two steps:

(a) we first show that the first block-row in (36) has full rank 2m;
(b) finally, upon observing that the last two rows are orthogonal, we show that these

rows are linearly independent of the first 2m rows.

Step (a). The bulk of this part of the proof may be found in [34] but is reported here
for completeness. We recall that the double eigenvalue λ = 1 of �(T )

has been assumed to be not semi-simple, so λ = 0 is not a semi-simple
eigenvalue of I−�(T ) and brings a single left eigenvector,∇�H(ȳ0) (see
(24)), and right eigenvector, J∇H(ȳ0) (see (23)). Consequently, the only
possibility for the first 2m rows of G′(ȳ0, T , 0) to be linearly dependent
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is that ∇�H(ȳ0)
∂ϕT

∂μ
(ȳ0, μ)|μ=0 vanishes. This is not the case, in fact

∇�H(ȳ0)
∂ϕT

∂μ
(ȳ0, μ)|μ=0 = ∂

∂μ
H(ϕT (ȳ0, μ))|μ=0

= ∂

∂μ
(H(ȳ0) + (H(ϕT (ȳ0, μ)) − H(ȳ0))) |μ=0

= ∂

∂μ

(
H(ȳ0) +

∫ T

0
∇�H(ϕt (ȳ0, μ)) ϕ̇t (ȳ0, μ)dt

)∣∣∣∣
μ=0

= ∂

∂μ

(
H(ȳ0) +

∫ T

0
μ‖∇H(ϕt (ȳ0, μ))||22dt

)∣∣∣∣
μ=0

=
∫ T

0
‖∇H(ϕt (ȳ0, 0))||22dt = 0.

Step (b). First, we notice that

Im(I − �(T )) = Ker(I − �(T )�)⊥ = span{∇H(ȳ0)}⊥. (37)

Let z be the right generalized eigenvector �(T ) associated with the eigen-
value λ = 1, namely (I − �(T ))z = J∇H(ȳ0). From item (a) above we
deduce that the kernel of the first block-row in (36) has dimension two
and its basis is formed by the two vectors w1 = ((J∇H(ȳ0))

�, 0, 0)� and
w2 = (z�, 1, 0)�. Since λ = 1 does not admit any further generalized
eigenvectors, it follows that z ∈ Im(I − �(T )) and consequently, from
(37), ∇�H(ȳ0)z = 0.

With the aid of these preparatory results, a direct computation shows
that no linear combination of w1 and w2 lies in the kernel of G′(ȳ0, T , 0),
which is therefore nonsingular.

This completes the proof.

In view of the fact that the flow is to be replaced by the numerical method, it is
useful to extend the above approach, referred to as single shooting, to the multiple
shooting variant [12, 34], for which problem (32) becomes

0 = F(y0, y1, . . . , yn−1, h, μ) ≡
{

yi − ϕh(yi−1, μ), i = 1, . . . , n − 1,

y0 − ϕh(yn−1, μ),
(38)

where h = t
n
is the stepsize and we have considered the boundary condition (19).

Evidently, system (38), coupled with (25) and (26) admits the solution
(ȳ(t0), ȳ(t1), . . . ȳ(tn−1),

T
n
, 0), where ti = ih. An argument similar to that in

the proof of Lemma 3 may be then exploited to deduce that the Newton iteration
applied to (38) is convergent for sufficiently good initial data and stepsize h small
enough.

We are now in the position to state the main result of the present section.
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Theorem 3 Let y0 be a generic non-stationary initial condition for problem (27).
Consider the nonlinear system

0 = F̂ (y0, y1, . . . , yn−1, h, μ) ≡
{

yi − �h(yi−1, μ), i = 1, . . . , n − 1,

y0 − �h(yn−1, μ),
(39)

formally defined by replacing the continuous flow ϕh in (38) by its discrete approx-
imation �h obtained by a HBVM(k, s) method, as defined at (8)–(9), with k large
enough. Then, for n sufficiently large:

(a) system (39) admits a unique solution (ȳ0, ȳ1, . . . ȳn−1, h̄, 0);
(b) the Newton method applied to (39) converges locally and quadratically to such

a solution;
(c) H(ȳi) = H(ȳ0), for i = 1, . . . , n − 1 (energy conservation).

Proof Again, without loss of generality, we assume that the condition introduced
in item 1. of Section 2 holds true. Under regularity assumptions, �h is locally an
approximation of order 2s + 1 to ϕh, thus∥∥F̂ (ȳ(t0), ȳ(t1), . . . , ȳ(tn−1),

T
n
, 0)

∥∥∞ = O
((

T
n

)2s+1
)

.

Using Y0 = (ȳ(t0), ȳ(t1), . . . , ȳ(tn−1),
T
n
, 0) as initial condition for the Newton

scheme allows us to apply the Newton-Kantorovich theorem [13, 24] to deduce the
existence and uniqueness of a solution Y = (ȳ0, ȳ1, . . . ȳn−1, h̄, μ̄) of system (39).
We prove that actually μ̄ = 0, as indicated at point (a). By definition, the numerical
solution Y is periodic, thus H(ȳ0) = H(ȳn), with ȳn = �h(ȳn−1, μ̄). From Lemma
(2) it then follows that μ̄ = 0 and (c) is satisfied.

4.1 Implementation details

In actual computations, ȳ0 is not known a priori and condition (25) is usually replaced
by a linear equation, called anchor [28], of the form

b�
a y0 = b0, (40)

with ba ∈ R
2m. Notice that, as is the case with (25), Eq. 40 represents a 2m−1 dimen-

sional hyperplane in R
2m. In general, such a hyperplane is not locally orthogonal to

the orbit but it is assumed that it acts as a transverse Poincaré section, in which case
the result presented in Lemma 3 still holds true. The choice of ba is often dictated by
the symmetry properties of the problem at hand: in most relevant cases the Poincaré
section (40) is parallel to a coordinate plane, that is ba = e� = (0, . . . , 1, . . . , 0)�,
the �th vector of the canonical basis of R2m. This is the choice we make for detect-
ing periodic orbits of the problems presented in the next section, and one can easily
argue that for these specific periodic orbits (25) and (40) do indeed coincide. A
more sophisticated technique proposed in [12] consists in avoiding the explicit use
of a Poincaré section and thus neglecting the second component in Eq. 33. The
undetermined linear systems generated during the Newton process are then solved
by exploiting the Moore-Penrose pseudo-inverse of G′(z(j)). Under convergence
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hypotheses, the resulting sequence z(j), for j large, may be shown to lie in a Poincaré
section approximating (25) (see also [34, Remark 2.4]).

To obtain the linear system at the corresponding j -th Newton-like iteration, we
observe that:

– in (14), matrix J must be replaced by J + μI , since the HBVM(k, s) method is
now applied to system (27);

– according to (39), the unknown δ
(j)
n can be removed by virtue of (19) and,

consequently, also the block-row corresponding to (19) itself;
– the two equations (26) and (40) enter the system;
– the update δ

(j)
h , such that hj+1 = hj + δ

(j)
h , must be included, where hj is the

current approximation to the unknown value of the correct stepsize h̄;
– due to the presence of the variable μ in the system (see (27)), an analogous

update δ
(j)
μ , such that μj+1 = μj + δ

(j)
μ , must be included.

Consequently, the linear system generated by the Newton-type iteration assumes the
form ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b�
H

b�
a

V1 K1 v1 w1

L1 U�
1 I2m v̂1 ŵ1

V2 K2 v2 w2

L2 U�
2 I2m v̂2 ŵ2

. . .
. . .

...

Vn Kn vn wn

I2m Ln U�
n v̂n ŵn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ
(j)

0


(j)

0

δ
(j)

1


(j)

1

δ
(j)

2

.

.

.

δ
(j)

n−1


(j)

n−1

δ
(j)
h

δ
(j)
μ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ1

γ2

θ1

�1

θ2

�2

...

θn

�n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (41)

where: b�
H = ∇�H(y

(j)

0 ), b�
a ∈ R

1×2m, and γ1, γ2 ∈ R derive from the linearization
of (26) and (40), respectively; blocks Vi, U

�
i , Li, Ki are the same as defined in (16)

but with hj in place of h and J + μI in place of J ; vi and v̂i are vectors of suitable
dimension obtained by differentiating (14) with respect to h; analogously, the vectors
wi and ŵi are obtained by differentiating (14) with respect to μ.

The solution of system (41) can be efficiently computed by using an algorithm
similar to that considered for non-separated boundary conditions [2, 3].

We finally observe that, under the assumptions listed below formula (24), we have
a result analogous to Theorem 1 but using the period T instead of the energy value
as a parameter for the family of periodic orbits. A periodic orbit with a given period
T may be computed by removing the equation corresponding to (26) from (41) and

considering that now the stepsize h = T
n
must no longer be treated as an unknown.

In the numerical experiments illustrated in the next section we outline some poten-
tialities of dealing with the energy valueH0 rather than the period T to detect periodic
orbits.
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5 Applications to celestial mechanics and astrodynamics

The following numerical tests are mainly concerned with the motion of a body with
negligible mass (planetoid) in the gravitational field generated by two celestial bodies
with finite mass (primaries) rotating around their common center of mass in circular
orbits. Such a dynamical system is referred to as the circular restricted three-body
problem (CRTBP) and its interest goes back to the second quarter of the eighteenth
century, in the context of the lunar theory [1]. A renewed interest arose starting from
the late 1960s up to present day and is testified by a rich and growing literature on the
design and analysis of a variety of orbits connected with the motion of spacecrafts,
satellites and asteroids [14, 19, 21, 29, 33].

We here consider the case where the two primaries are the Sun and the
Earth+Moon whose masses are denoted m1 and m2. Usually the units are normal-
ized and chosen so that the properties of the resulting dynamical system depend
on a single parameter μ, defined as the ratio m2

m1+m2
. In our situation we have

μ = 3.04036 · 10−6. To obtain dimensionless coordinates the following normalizing
assumptions are introduced:

1. the total mass of the system is m1 + m2 = 1;
2. the unit of length is the distance between the two primaries, i.e., R = 1.49589 ·

108km;
3. the unit of time is 1/n, where n = 1.99099 · 10−7rad/s is the constant angular

velocity of the Sun and Earth/Moon around their center of mass CM .

Notice that, from the above hypotheses, the gravitational constant is unity, G = 1.
It is also common to write down the equations of motion of the planetoid in a frame
where the primaries are stationary. This is accomplished by introducing a rotating
(synodic) orthogonal frame centered at CM , with the x-y axes lying in the plane of
the Sun-Earth/Moon orbit, the x-axis being oriented from the Sun toward the Earth,
and the z-axis forming a right-hand frame with the other axes. Thus, the Sun and the
Earth are located on the x-axis at the abscissae −μ and 1 − μ respectively.

Let q(t) = [q1(t), q2(t), q3(t)]� be the coordinates of the planetoid at time t and
set p(t) = [p1(t), p2(t), p3(t)]� ≡ [q̇1(t)−q2(t), q̇2(t)+q1(t), q̇3(t)]� the vector of
conjugate momenta. The Hamiltonian function in non-dimensional form associated
with the dynamical system governing the motion of the planetoid is

H(q, p) = p1q2 − p2q1 + 1

2
p�p − 1 − μ

r1
− μ

r2
, (42)

where r1 = ((q1 + μ)2 + q2
2 + q2

3 )
1/2 and r2 = ((q1 − (1 − μ))2 + q2

2 + q2
3 )

1/2 are
the distances of the planetoid from the Sun and the Earth/Moon respectively.

It is well-known that such a dynamical system admits five equilibrium points
referred to as Lagrangian or libration points: three (L1, L2, L3) are collinear with
the primaries and the other two (L4 and L5) form an equilateral triangle with them.

Periodic and quasi-periodic orbits around libration points are suited for a number
of mission applications. For example, Sun-Earth libration points are commonly used
for deep space or Sun activity observations. In the following experiments we are
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interested in the dynamics around L2, which is located beyond the Earth, on the
x-axis, at the abscissa 1.010075.

An interesting problem in astrodynamics is the optimal transfer trajectory, which
consists in finding the optimal control laws that drive a spacecraft from an initial
state, say P1, to a desired final state P2 in a given time T . Here, the term optimal
means that the amount of propellant needed to produce the change in orbital elements
is minimized.

Since the fuel consumption is proportional to changes in the velocity, an input
vector u(t) = [u1(t), u2(t), u3(t)]� enters the dynamical system to control the accel-
eration of the vehicle along the three axes. This is accomplished by considering a
new non-autonomous Hamiltonian function

H̄ (q, p) = H(q, p) + q�u,

where H(q, p) is as in (42). Our optimal control problem is then formulated as
follows:

Minimize the quadratic cost J = 1
2

∫ T

0 ||u(t)||22dt, subject to the dynamics
induced by H̄ (q, p) and the boundary conditions corresponding to the states
P1 and P2.

We assume that the control input is unconstrained and regular. The Pontryagin max-
imum principle is often used to attack this problem. Setting y� = [q�, p�] (state
variables) and λ = [λ1, . . . , λ6]� (costate variables), one considers the augmented
Hamiltonian function

H̃ (y, λ, u) = 1

2
u�u + λ�J∇H̄ (q, p).

Then, the necessary conditions for optimality are

ẏ = ∂H̃

∂λ
, λ̇ = −∂H̃

∂y
,

∂H̃

∂u
= 0.

The third equation gives ui = −λ(3+i), i = 1, 2, 3, so that the resulting system is
autonomous and only depends on the state and costate variables. It is defined by the
Hamiltonian

Ĥ (y, λ) = 1
2 (λ

2
4 + λ25 + λ26) + λ�(J∇H(q, p) − [0, 0, 0, λ4, λ5, λ6]�)

= λ�J∇H(q, p) − 1
2 (λ

2
4 + λ25 + λ26).

(43)

We now consider a few applications concerning the above problems. All experi-
ments have been carried out in Matlab (in double precision arithmetic) by using its
sparse linear solvers.7

7More efficient linear solvers will be studied elsewhere.
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5.1 Computation of Lyapunov orbits

Lyapunov orbits are periodic orbits surrounding a libration point in the planar
CRTBP, where the term planar means that the planetoid moves in the same plane as
the primaries, namely the x-y plane: q3(t) = 0, p3(t) = q̇3(t) = 0. We are interested
in the computation of Lyapunov orbits emanating from the point L2, which we here
assume as the origin of the axes. Their existence is guaranteed by Lyapunov’s center
theorem [26], which also states that Lyapunov orbits form a one-parameter family
parametrized by the Hamiltonian integral. Thus, it makes sense to search for a Lya-
punov orbit by fixing either its period or its energy level. We consider both situations
and notice that in the latter case an energy-conserving method is more appropriate
since it provides a numerical solution that precisely lies on the required energy set.
An analysis of the monodromy matrix associated with Lyapunov orbits shows their
instability character, which makes their computation a delicate issue.

We discretize the time interval into n = 100 uniform points and use the method
HBVM(6, 2) which ensures a practical energy conservation for the problem at hand
and the used stepsize (see (10)). As initial condition for the Newton iteration, we con-
sider a periodic orbit very close to the equilibrium point L2 obtained as the solution
of the linearized problem: it is the closed curve labelled as σ0 in Fig. 1 and corre-
sponds to a period T = 178 days. The symmetry of Lyapunov orbits with respect to
the y-axis suggests to use q2 = 0 as anchor equation for the solution at time t = 0
(see (40)).

The curve σ1 denotes the Lyapunov orbit with period T = 200 days and has been
obtained by considering periodic boundary conditions and a fixed stepsize h = T

n
,

as discussed at the end of Section 4. The energy level associated with this orbit is
H2 � −1.5002604.

Starting from σ1, we attempt to find the Lyapunov orbit corresponding to the
energy level H3 = −1.5001 and thus we solve the iteration described at (41). We
obtain the orbit labelled as σ2 in Fig. 1: its period is T3 � 251.34 days. Figure 1
also displays the energy errors related to the orbits σ1 and σ2, and confirms the
energy-preservation properties of HBVM(6, 2) for this specific set of data.

The search of σ2 via its period T3 rather than its energy level H3 starting from σ1
would not provide the desired result: whatever method in the family HBVM(k, 2) we
choose, the iteration process converges to a different periodic orbit σ3 that embraces
the Lagrangian points L1 and L2 other than the Earth. This orbit has period T3 but
its energy is H3 � −1.500177. To retrieve the correct Lyapunov orbit we need to
compute an intermediate curve, such as σ4, that has been obtained by fixing the period
T4 = 220 days.

5.2 The Hill three-body problem

The Hill problem is a special, simplified case of the planar CRTBP. It studies the
motion of the planetoid in a neighborhood of the Earth, which is conveniently taken as
the new origin of the synodic frame via the change of coordinates q1 → q1+(1−μ),
q2 → q2. The assumption on the location of the planetoid permits a simplification
of the equations describing its dynamics. Essentially, one discards the terms of order



900 P. Amodio et al.

Fig. 1 Upper picture: some Lyapunov orbits surrounding the libration point L2. Their computation may
be carried out by passing as input information either their period or their energy level. Lower pictures:
error in the Hamiltonian function evaluated along the numerical solutions corresponding to the orbit σ1
(intermediate plot) and σ2 (bottom plot)

at least three in q1 and q2 in the Taylor expansion of the potential around (0, 0),
and performs an additional change of variables to simplify the final shape of the
equations, making them independent of the parameter μ (see, for example, [4] for
details). The Hamiltonian function arising from these transformations reads

H(q1, q2, p1, p2) = p1q2 −p2q1 + 1

2
(p2

1 +p2
2)− 1

(q2
1 + q2

2 )
1/2

+ 1

2
q2
2 − q2

1 . (44)

This reduced system admits only two equilibrium points located on the x-axis on
both sides of the Earth: L1 = (−(1/3)1/3, 0

)
and L2 = (

(1/3)1/3, 0
)
.

We consider an optimal transfer problem, taken from [16], consisting in transfer-
ring a spacecraft from the point L2 = ((1/3)1/3, 0) to the point P = ((1/3)1/3 +
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0.005, 0.0044). In both points the velocity is assumed null and the transfer time
is increased as tf = 0.1, 2.1, 4.1, 6.1, 8.1. The number of points in the numerical
approximation is n = 50, thus the stepsize is h = tf

n
. Due to the fact that the dynam-

ics takes place near an equilibrium point, we choose the HBVM(4, 2) method as
integrator, since two silent stages are enough to guarantee a practical energy con-
servation. The top picture in Fig. 2 shows the five trajectories of the spacecraft
corresponding to the selected transfer times. As tf is increased, the spacecraft cir-
cles around the point L2, in a spiral-shaped orbit, before approaching the final point
P . The intermediate plot of Fig. 2 reports the relative error in the Hamiltonian func-
tion (44) evaluated along the numerical solution {yi} corresponding to tf = 8.1. We
notice that it is bounded by 10−10 and cannot be further reduced even if we increase
the number of silent stages. This is an effect of the use of finite precision arithmetic

Fig. 2 Upper picture: orbits of a spacecraft driven from the libration point L2 to a close point P for
several transfer times. Lower pictures: relative error in the Hamiltonian function (43) evaluated along the
numerical solutions obtained by the HBVM(4, 2) (intermediate plot) and the Gauss method of order 4
(bottom plot). Both solutions correspond to tf = 8.1
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and the fact that the order of the Hamiltonian along the orbit is 10−6. For comparison
purposes, in the bottom plot of Fig. 2, we have also included the corresponding error
produced by the 4-th order Gauss method (i.e., HBVM(2,2)).

5.3 Computation of halo orbits

Halo orbits are out-of-plane periodic orbits which trace a halo around the Earth. We
are interested in reproducing halo orbits around the point L2. They consist of two
one-parameter families of periodic orbits referred to as halo orbits of class I and II
(see [30]), where the parameter may be either the energy or the period.

We have implemented the HBVM(6, 2) formula and adapted the algorithm in
order to compute periodic solutions in the two different situations where we are given
either the period T ≡ tf − t0 of the orbit or its energy level H0. In the latter case,
according to what was said in Section 4, the stepsize of integration h is regarded as
an extra unknown and the scalar equation H(q0, p0) = H0 is added to the set of
boundary conditions.

In both cases, an elliptic curve lying on a plane orthogonal to the x-axis and
passing through L2 has been chosen as initial guess for the Newton iteration. More
specifically, the starting (and ending) point P0 of this curve has been set at the upper
end of the vertical axis of the ellipse (see Fig. 3), and its sense of revolution about L2
is clockwise as viewed into the negative direction of the x-axis. This initial condition
will allow us to detect halo orbits of class I. Halo orbits in this family are symmetric
with respect to the x-y plane. Consequently, we have introduced the anchor equa-
tion q2 = 0 for the solution at time t = 0. The number of points in the numerical
approximation is n = 100.

The left picture of Fig. 3 displays the initial guess (dashed line) together with two
halo orbits (solid lines). The inner one is the halo orbit corresponding to a period T1 =

Fig. 3 Left picture: two halo orbits around the libration point L2 (solid lines) and the initial guess for the
Newton iteration scheme associated to the method (dashed line). Right picture: the Hamiltonian function
(42) is precisely conserved along the numerical solutions
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Fig. 4 Left picture: optimal transfer orbit between two halo orbits (dashed line). Right picture: norm of
the optimal control variable u(t) (upper plot) and error in the Hamiltonian function (43) (lower plot)

180 days. The energy level of this first numerical approximation isH1 ≈ −1.500394.
Conversely, the outer halo orbit has been computed on the basis of its energy level,
which has been set to H2 = −1.50036. Notice that in the non-dimensional system
H2 ≈ H1(1 + 2 · 10−5) while the actual distance of the topmost points of the two
orbits is P1P2 = 2 · 105km. The period corresponding to the energy level H2 is
T2 = 179.19 days. The right pictures of Fig. 3 show that the energy error is close to
the machine precision in both cases.

We also consider the optimal transfer trajectory problem consisting in transferring
a spacecraft from the inner to the outer halo orbit and, specifically, from the point P1
to the point P2. In Fig. 4 we show the optimal control orbit joining the points P1 and
P2 in a time T = (T1 +T2)/2 (left picture, dashed line) together with the norm of the
optimal control variable u(t) and the error Ĥ (yn) − Ĥ (y0) in the Hamiltonian (43)
(right picture).

6 Conclusions

In this paper, we have extended the use of HBVMs to the solution of Hamiltonian
Boundary Value Problems. HBVMs form a subclass of Runge–Kutta methods, char-
acterized by a rank-deficient coefficient matrix, that provide a numerical solution
along which the Hamiltonian function is precisely conserved. Their implementation
has been adapted in order to handle different kinds of boundary conditions. In partic-
ular, separated and periodic boundary conditions arise in several problems of celestial
mechanics and astrodynamics, such as the periodic orbit detection and the optimal
spacecraft transfer trajectory. A few numerical tests in this direction have shown the
good potentialities of the methods.



904 P. Amodio et al.

Acknowledgments We thank the anonymous reviewers for the careful reading of our manuscript and
their many insightful comments and suggestions.

References

1. Alexander, D.S., Iavernaro, F., Rosa, A.: Early days in complex dynamics. A history of complex
dynamics in one variable during 1906–1942. History of Mathematics, vol. 38. AmericanMathematical
Society, Providence (2012)

2. Amodio, P., Cash, J.R., Fairweather, G., Gladwell, I., Kraut, G.L., Roussos, G., Paprzycki, M.,
Wright, R.W.: Almost block diagonal linear systems: sequential and parallel solution techniques, and
applications. Numer. Linear Algebra Appl. 7, 275–317 (2000)

3. Amodio, P., Romanazzi, G.: Algorithm 859: BABDCR–a Fortran 90 package for the solution of
Bordered ABD linear systems. ACM Trans. Math. Softw. 32, 597–608 (2006)

4. Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical aspects of classical and celestial mechanics.
Encyclopaedia Math. Sci., 3rd edn., vol. 3. Springer-Verlag, Berlin (2006)

5. Ascher, U.M., Mattheij, R.M.M., Russell, R.D.: Numerical solution of boundary value problems for
ordinary differential equations. Classics in Applied Mathematics, vol. 13. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia (1995)

6. Battin, R.H.: An introduction to the mathematics and methods of astrodynamics. Revised edition.
American Institute of Aeronautics and Astronautics (AIAA), Reston (1999)

7. Brugnano, L., Iavernaro, F., Trigiante, D.: Isospectral Property of Hamiltonian Boundary Value
Methods (HBVMs) and their blended implementation. arXiv:1002.1387[math.NA] (2010)

8. Brugnano, L., Iavernaro, F., Trigiante, D.: A note on the efficient implementation of Hamiltonian
BVMs. J. Comput. Appl. Math. 236, 375–383 (2011)

9. Brugnano, L., Iavernaro, F., Trigiante, D.: Hamiltonian Boundary Value Methods (energy preserving
discrete line methods). J. Numer. Anal. Ind. Appl. Math. 5(1–2), 17–37 (2010)

10. Brugnano, L., Iavernaro, F., Trigiante, D.: The lack of continuity and the role of infinite and infinites-
imal in numerical methods for ODEs: the case of symplecticity. Appl. Math. Comput. 218(16), 8053–
8063 (2012)

11. Brugnano, L., Iavernaro, F., Trigiante, D.: A simple framework for the derivation and analysis of
effective one-step methods for ODEs. Appl. Math. Comput. 218(17), 8475–8485 (2012)

12. Deuflhard, P.: Computation of periodic solutions of nonlinear ODE’s. BIT 24, 456–466 (1984)
13. Deuflhard, P.: Newton methods for nonlinear problems. Affine invariance and adaptive algorithms.

Springer Series in Computational Mathematics, vol. 35. Springer, Heidelberg (2011)
14. Farquhar, R.W.: Halo-orbit and lunar-swingby missions of the 1990s. Acta Astronautica 24, 227–234

(1991)
15. Fiedler, B.: Global bifurcation of periodic solutions with symmetry. Lecture Notes in Mathematics.

Springer Verlag, Berlin (1988)
16. Guibout, V.M., Scheeres, D.J.: Solving two-point boundary value problems using the Hamilton-Jacobi

theory. Proceedings of the 2nd WSEAS Int. Conference on Applied and Theoretical Mechanics,
Venice, Italy (2006)

17. Gustafson, E.D., Scheeres, D.J.: Dynamically Relevant Local Coordinates for Halo Orbits.
AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Honolulu (2008)

18. Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration. Structure-preserving algorithms
for ordinary differential equations, 2nd edn. Springer, Berlin (2006)

19. Howell, K.C.: Three-dimensional, periodic, “halo” orbits. Celestial Mech. 32(1), 53–71 (1984)
20. Iavernaro, F., Trigiante, D.: High-order symmetric schemes for the energy conservation of polynomial

Hamiltonian problems. J. Numer. Anal. Ind. Appl. Math. 4(1-2), 87–101 (2009)
21. Jorba, A., Masdemont, J.: Dynamics in the center manifold of the collinear points of the restricted

three body problem. Phys. D 132, 189–213 (1999)
22. Keller, H.B.: Numerical methods for two-point boundary value problems. Ginn-Blaisdell, Waltham

(1968)
23. Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Dynamical systems, the three-body problem and

space mission design. Marsden Books. Available at URL: http://www.shaneross.com/books/space
(2011)

http://arxiv.org/abs/1002.1387
http://www.shaneross.com/books/space


Energy-conserving methods for Hamiltonian BVPs 905

24. Lakshmikantham, V., Trigiante, D.: Theory of difference equations: numerical methods and appli-
cations. Monographs and Textbooks in Pure and Applied Mathematics, vol. 251, 2nd edn. Marcel
Dekker, Inc., New York (2002)

25. Leimkuhler, B., Reich, S.: Simulating Hamiltonian dynamics. Cambridge University Press,
Cambridge (2004)

26. Meyer, K.R., Hall, G.R., Offin, D.: Introduction to Hamiltonian dynamical systems and the N -body
problem. Applied Mathematical Sciences, vol. 90, 2nd edn. Springer, New York (2009)
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