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Abstract The stabilized finite element method based on local projection stabiliza-
tion is applied to discretize the Stokes eigenvalue problems, then the corresponding
stability and convergence properties are given. Furthermore, we use a postprocessing
technique to accelerate the convergence rate of the eigenpair approximations. The
postprocessing strategy contains solving an additional Stokes source problem in an
augmented finite element space which can be constructed either by refining the mesh,
or increasing the order of finite element space. Numerical tests are also provided to
confirm the theoretical results.

Keywords Stokes eigenvalue problem · Finite element method · Stabilization ·
Postprocessing
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1 Introduction

In this paper we apply the local projection stabilization (LPS) method to discretize
the Stokes eigenvalue problems, and then use a postprocessing technique to accel-
erate the convergence rate of the eigenpair approximations. The LPS method in a

Communicated by: Jinchao Xu

H. Xie
LSEC, ICMSEC, NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of
Sciences, Beijing 100190, China
e-mail: hhxie@lsec.cc.ac.cn

X. Yin (�)
School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China
e-mail: yinxb@mail.ccnu.edu.cn

mailto:hhxie@lsec.cc.ac.cn
mailto:yinxb@mail.ccnu.edu.cn


800 H. Xie, X. Yin

two-level approach was proposed for the Stokes problem in [4]. This technique has
been investigated to stabilize dominating advection for transport equations in [5] and
extended to the Oseen equation in [6]. Application to equal-order interpolation dis-
cretization can be found in [16] for the Stokes problem, in [23] for Oseen problem,
and in [24] for convection-diffusion problem. In this frame of the LPS method, the
stabilization term is based on a projection πh : Vh → Dh of the finite element space
Vh which approximates the solution into a discontinuous space Dh. The standard
Galerkin discretization is then stabilized by adding a term which gives L2 control
over the fluctuation id − πh of the gradient of the solution. For more details about
LPS methods, please read the book [29].

On the other hand, many effective postprocessing methods have been proposed to
improve the convergence rate for the approximations of eigenvalue problems by finite
element methods (c.f. [1, 28, 37]). Xu and Zhou [37] introduced a two-grid discretiza-
tion technique to improve the convergence rate of second order elliptic eigenvalue
problems and integral eigenvalue problems (the idea of the two-grid comes from
[35, 36] for nonsymmetric or indefinite problems and nonlinear elliptic equations),
they also [38] developed local and parallel algorithms based on two-grid discretiza-
tions for eigenvalue problems. (Note that the idea of the two-grid discretization
technique is related to that of the iterative Galerkin method, which was introduced
by Sloan [32] and Lin and Xie [20]. But the two-grid method is based on two
finite element spaces with different meshes.) Racheva and Andreev [28] applied a
postprocessing method to improve the convergence rate for the numerical solution
of 2m-order self-adjoint eigenvalue problems. Using the ideas of [28], Andreev,
Lazarov and Racheva [1] proposed a postprocessing procedure for the mixed finite
element solutions of the biharmonic eigenvalue problem to enhance the accuracy. A
similar method has been given in [11] for the Stokes eigenvalue problem by mixed
finite element methods, where the postprocessing procedure was implemented as
follows: (1) solving the Stokes eigenvalue problem in the original finite element
space, (2) solving an additional Stokes source problem in an augmented space using
the previous obtained eigenvalue multiplying the corresponding eigenfunction as
the load vector. This procedure improves the convergence rate of the eigenpair
approximations with relative inexpensive computation because the eigenvalue prob-
lem is replaced by an additional source problem in an augmented finite element
space.

In this paper, we apply the LPS method developed in [16, 23] to discretize the
Stokes eigenvalue problems. A postprocessing technique is then used to accelerate
the convergence rate of the eigenpair approximations. The postprocessing strategy
contains solving an additional Stokes source problem on an augmented finite element
space which can be constructed either by refining the mesh or increasing the order of
mixed finite element but on the same mesh.

An outline of the paper goes as follows. In Section 2, we apply the LPS method
to the Stokes eigenvalue problem, and then analyze the stability and convergence
properties. Section 3 is devoted to developing the acceleration technique. Section 4
focuses on the implementation of the acceleration technique proposed in Section 3.
In Section 5, we give numerical tests to confirm the theoretical analysis. Some
concluding remarks are given in the last section.
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Throughout this paper, C (with or without subscripts) denotes a generic positive
constant which may vary at different occurrences. For convenience, following Xu
[34], the symbols �, � and ≈ will be used in this paper. That x1 � y1, x2 � y2 and
x3 ≈ y3, mean that x1 ≤ C1y1, x2 ≥ c2y2 and c3x3 ≤ y3 ≤ C3x3 for some constants
C1, c2, c3 and C3 that are independent of mesh sizes.

The Stokes eigenvalue problem will be considered in a bounded polygonal domain
� ⊂ R2. We use the standard notations (c.f. [8, 9, 13]) for the Sobolev spaces Hm(�)

and their associated inner products (·, ·)m, norms ‖ · ‖m and seminorms | · |m for
m ≥ 0. The Sobolev space H 0(�) coincides with L2(�), in which case the norm
and inner product are denoted by ‖ · ‖ and (·, ·), respectively. This notation of inner
products, norms and semi-norms is also used for the vector-valued case.

2 Stokes eigenvalue problem and its stabilized formulation

In this section, we first apply the LPS method to the Stokes eigenvalue problem, and
then give the corresponding stability and convergence analysis.

2.1 Weak formulation

We consider the following Stokes eigenvalue problem

⎧
⎪⎪⎨

⎪⎪⎩

−�u + ∇p = λu in �,

∇ · u = 0 in �,

u = 0 on ∂�,∫

�
u2d� = 1,

(2.1)

where u and p denote the velocity and pressure fields, respectively. By introducing
the spaces V := (H 1

0 (�))2 and W =: L2
0(�), a weak formulation of Eq. 2.1 reads:

Find (λ,u, p) ∈ R × V × W such that r(u, u) = 1 and

{
a(u, v) − b(v, p) = λr(u, v) ∀v ∈ V,

b(u, q) = 0 ∀q ∈ W,
(2.2)

where

a(u, v) =
∫

�

∇u∇vd�, b(v, p) =
∫

�

∇ · vpd�, r(u, v) =
∫

�

uvd�.

It is known that the eigenvalue problem (2.2) has an eigenvalue sequence {λj } (c.f.
[3]):

0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · , lim
k→∞ λk = ∞,

and corresponding eigenfunctions

(u1, p1), (u2, p2), · · · , (uk, pk), · · · ,
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which can be assumed to satisfy r(ui , uj ) = δij . To state our method clearly, we only
consider the case of simple eigenvalues in this paper, however, the corresponding
results can be extended to the multiple case.

From [5, 17] we know that the following properties hold:

sup
0�=v∈V

b(v, q)

‖v‖1
� ‖q‖0, ‖u‖1 + ‖p‖0 � sup

0�=(v,q)∈V×W

A
(
(u, p); (v, q)

)

‖v‖1 + ‖q‖0
,

where

A
(
(u, p); (v, q)

) = a(u, v) − b(v, p) + b(u, q). (2.3)

It is easily seen from Eq. 2.2 that the following Rayleigh quotient expression

λ = a(u, u)

r(u, u)
(2.4)

holds for each eigenvalue λ and corresponding eigenfunction u.

2.2 Local projection stabilized formulation

There are several works (see, e.g., [2, 3, 10, 21, 25, 27]) in which numerical methods
for eigenvalue problems are discussed. In this paper, we consider LPS formulation
for the Stokes eigenvalue problems. To be specific, we use equal order interpolations
stabilized by the local projection method in its one-level variant as developed in [16,
23]. (For the two-level approach we refer to [4, 6, 26].)

We are given a family Th of shape-regular decompositions of � into triangles.
The diameter of an triangle K is denoted by hK . The mesh parameter h describes
the maximum diameter of the K ∈ Th. Denote by Vh a scalar finite element space of
continuous, piecewise k-th order polynomials over Th. The spaces for approximating
velocity and pressure are given by Vh := V 2

h ∩ V and Wh := Vh ∩ W , respectively.
The standard Galerkin discretization reads:

Find (λh, uh, ph) ∈ R × Vh × Wh such that r(uh, uh) = 1 and

{
a(uh, vh) − b(vh, ph) = λhr(uh, vh) ∀vh ∈ Vh,

b(uh, qh) = 0 ∀qh ∈ Wh.
(2.5)

It is known that, in general, equal order interpolations do not satisfy the Babuška-
Brezzi condition ([9])

∃β0 > 0, ∀h : inf
qh∈Wh

sup
vh∈Vh

(qh, ∇ · vh)

‖vh‖1 ‖qh‖0
≥ β0. (2.6)

Therefore, we add to Eq. 2.5 a stabilizing term based on local projection, which leads
to the stabilized discretization for Stokes eigenvalue problem (2.2):

Find (λh, uh, ph) ∈ R × Vh × Wh such that r(uh, uh) = 1 and

{
a(uh, vh) − b(vh, ph) = λhr(uh, vh) ∀vh ∈ Vh,

b(uh, qh) + Sh(ph, qh) = 0 ∀qh ∈ Wh,
(2.7)
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where the stabilization term with user-chosen parameters αK is given by

Sh(p, q) =
∑

K∈Th

αK(κh∇p, κh∇q)K. (2.8)

As in [16], the fluctuation operator κh : L2(�) → L2(�) acting componentwise
is defined as follows. Let Pk(K), k = 0, 1, · · · , denote the set of all polynomials of
degree less than or equal to k and Dh(K) be a finite dimensional space on the cell
K ∈ Th with Pk(K) ⊂ Dh(K). The definition is extended by allowing Dh(K) = {0},
together with P−1(K) = Dh(K). We then define the associated global space of
discontinuous finite elements

Dh :=
⊕

K∈Th

Dh(K)

and the local L2(K)-projection πK : L2(K) → Dh(K), which leads to the global
projection πh : L2(�) → Dh by

(πhw)
∣
∣
K

:= πK(w|K) ∀K ∈ Th, ∀w ∈ L2(�).

The fluctuation operator κh : L2(�) → L2(�) used in Eq. 2.8 is then given by
κh := id −πh where id : L2(�) → L2(�) is the identity on L2(�). However, κh∇p

has to be understood as acting on each component of ∇p separately.
Similar to the continuous case (2.4), the following Rayleigh quotient for λh holds

λh = a(uh, uh) + Sh(ph, ph)

r(uh, uh)
. (2.9)

It is also known that the Stokes eigenvalue problem (2.7) has eigenvalues (c.f. [3])

0 < λ1,h ≤ λ2,h ≤ · · · ≤ λk,h ≤ · · · ≤ λNh,h,

and the corresponding eigenfunctions

(u1,h, p1,h), (u2,h, p2,h), · · · , (uk,h, pk,h), · · · , (uNh,h, pNh,h),

where r(ui,h, uj,h) = δij , 1 ≤ i, j ≤ Nh := dim(Vh × Wh).
In order to study the properties of Eq. 2.7 on the product space Vh × Wh, we

introduce the bilinear form

Ah ((u, p); (v, q)) = a (u, v) − b(v, p) + b(u, q) + Sh(p, q), (2.10)

and the mesh-dependent norm

|||(v, q)|||A :=
(
|v|21 + ‖q‖2

0 +
∑

K∈Th

αK‖κh∇q‖2
0,K

)1/2
. (2.11)
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2.3 Stability and convergence

The existence and uniqueness for discrete solutions of Stokes problem have been
studied in [16, 23] for different pairs (Vh,Dh) of approximation and projec-
tion spaces, respectively. Based on these results, the existence and uniqueness of
eigenvalue problem (2.7) can be given similarly.

To prove the stability and convergence properties of the LPS method, we need the
following assumptions (c.f. [23, 29]).

Assumption A1 There is an interpolation operator ih : H 1(�) → Vh such that

‖v − ihv‖0,K + hK |v − ihv|1,K ≤ Ch�
k‖v‖�,ω(K), (2.12)

for all K ∈ Th, v ∈ H�(ω(K)) and 1 ≤ � ≤ k+1, where ω(K) denotes a certain local
neighborhood of K which appears in the definition of these interpolation operators
for non-smooth functions, see [14, 31] for more details.

Assumption A2 There exists a constant β1 > 0 such that for all h > 0

inf
qh∈Dh(K)

sup
vh∈Vh(K)

(vh, qh)K

‖vh‖0,K ‖qh‖0,K

≥ β1 > 0 (2.13)

is satisfied where Vh(K) = {vh|K : vh ∈ Vh, vh = 0 in �\K}.
The assumptions A1 and A2 guarantee the existence of an interpolation operator

jh : H 1(�) → Vh satisfies the orthogonality property

(v − jhv, qh) = 0 ∀qh ∈ Dh, ∀v ∈ H 1(�), (2.14)

and the approximation property

‖v − jhv‖0,K + hK |v − jhv|1,K ≤ Ch�
k‖v‖�,ω(K).

for all K ∈ Th, v ∈ H�(ω(K)) and 1 ≤ � ≤ k + 1, where ω(K) denotes a certain
local neighborhood of K .

In order to guarantee A2, Vh is required to be enriched by suitable bubble
functions. For more details, please read the papers [23, 24] and the book [29].

Lemma 2.1 ([16]) Let the assumptions A1, A2, and h2
K � αK be fulfilled. Then,

there is a positive constant βA independent of h such that

inf
(vh,qh)∈Vh×Wh

sup
(wh,rh)∈Vh×Wh

Ah

(
(vh, qh); (wh, rh)

)

|||(vh, qh)|||A |||(wh, rh)|||A ≥ βA > 0 (2.15)

holds.

Based on Lemma 2.1, the discrete Stokes eigenvalue problem (2.7) is consis-
tent with the continuous problem (2.2) (c.f. [16]). Combining the abstract spectral
approximation theory [3] and the convergence results of LPS method for the Stokes
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problems in [16], we can easily give the convergence property of LPS method for the
Stokes eigenvalue problem.

We first define the compact operator T : (L2(�))2 → (H 1(�))2 and the operator
K : (L2(�))2 → L2

0(�) by

A((T f, Kf); (v, q)) = r(f, v) ∀(v, q) ∈ V × W. (2.16)

Hence the eigenvalue problem (2.2) can be written as

λT u = u. (2.17)

Then, we introduce the eigenfunction set corresponding to the eigenvalue λ by

M(λ) =
{
(w, ψ) ∈ (H 1

0 (�))2 × L2
0(�) : (w, ψ) is an eigenfunction of (2.2)

corresponding to λ andr(w,w) = 1
}
.

Theorem 2.1 ([9, 17, 25, 27]) Under the conditions of Lemma 2.1, there exists an
exact eigenpair (λ, u, p) of Eq. 2.2 such that the discrete eigenpair (λh, uh, ph) of
Eq. 2.7 has the following bounds

‖uh − u‖1 + ‖p − ph‖0 � δh(λ), (2.18)

‖uh − u‖−1 � ηA(h)δh(λ), (2.19)

|λh − λ| � δ2
h(λ), (2.20)

where δh(λ) and ηA(h) are defined by

δh(λ) := sup
(w,ψ)∈M(λ)

(
inf

(vh,qh)∈Vh×Wh

|||(w − vh, ψ − qh)|||A + S
1/2
h (ψ, ψ)

)
,(2.21)

and

ηA(h) = sup
‖g‖1=1

inf
(vh,qh)∈Vh×Wh

(
|||(T g − vh, Kg − qh)|||A + S

1/2
h (Kg, Kg)

)
,(2.22)

respectively.

3 Acceleration technique

In this section, we present a postprocessing technique to improve the eigenpair
approximation, which contains solving the Stokes eigenvalue problem in the origi-
nal finite element space and one additional Stokes source problem in an augmented
finite element space. We first introduce the error expansion of the eigenvalues by the
Rayleigh quotient formula.
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Lemma 3.1 ([39]) Assume (λ,u, p) be the true solution of the Stokes eigenvalue
problem (2.2), 0 �= w ∈ (H 1

0 (�))2, ψ ∈ L2
0(�) and define

λ̂ = a(w,w) − 2b(w, ψ)

r(w,w)
. (3.1)

Then, the following relationship holds

λ̂ − λ = a(w − u,w − u) − λr(w − u,w − u) + 2b(w − u, p − ψ)

r(w,w)
. (3.2)

Proof From Eq. 2.2 and Eq. 3.1, we have

λ̂ − λ = a(w,w) − 2b(w, ψ) − λr(w,w)

r(w,w)

= a(w − u,w − u) + 2a(w,u) − a(u, u) − 2b(w, ψ) − λr(w,w)

r(w,w)

= a(w − u,w − u) + 2λr(w,u) + 2b(w, p − ψ) − λr(u, u) − λr(w,w)

r(w,w)

= a(w − u,w − u) − λr(w − u,w − u) + 2b(w − u, p − ψ)

r(w,w)
.

This is the desired result and the proof is completed.

Algorithm 1 Acceleration Scheme

1. Solve the Stokes eigenvalue problem:
Find (λj,H , uj,H , pj,H ) ∈ R × VH × WH such that r(uj,H , uj,H ) = 1 and

{
a(uj,H , vH ) − b(vH , pj,H ) = λj,H r(uj,H , vH ) ∀vH ∈ VH ,

b(uj,H , qH ) + SH (pj,H , qH ) = 0 ∀qH ∈ WH ,
(3.3)

where j = 1, 2, · · · , NH .
2. Define the following auxiliary source problem:

Find (̂uj,h, p̂j,h) ∈ Vh × Wh such that
{

a(̂uj,h, vh) − b(vh, p̂j,h) = λj,H r(uj,H , vh) ∀vh ∈ Vh,

b(̂uj,h, qh) + Sh(p̂j,h, qh) = 0 ∀qh ∈ Wh.
(3.4)

Solve this Stokes problem approximatively to obtain a new eigenfunction
approximation (uj,h, pj,h) ∈ Vh × Wh such that

‖uj,h − ûj,h‖1 + ‖pj,h − p̂j,h‖0 � δh(λj ). (3.5)

3. Compute the Rayleigh quotient for (uj,h, pj,h):

λ
post
j,h = a(uj,h, uj,h) − 2b(uj,h, pj,h)

r(uj,h, uj,h)
. (3.6)

Finally, we obtain a new eigenpair approximation (λ
post
j,h , uj,h, pj,h).
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In Algorithm 1, in order to obtain the eigenpair approximation (λ
post
j,h , uj,h, pj,h),

we only need to solve a Stokes eigenvalue problem in the low dimension space VH ×
WH and and a Stokes problem in the fine space Vh × Wh. As we know, there exist
many efficient preconditioners for the solution of boundary value problems compared
with the solution of eigenvalue problems. Thus the replacement of the eigenvalue
problem solving by the boundary value problem solving improves the computational
efficiency.

For the aim of error analysis, we define the finite element projection
(Rh(u, p), Gh(u, p)) as the finite element solution of the following Stokes problem:

Find (Rh(u, p), Gh(u, p)) ∈ Vh × Wh such that

Ah

(
(Rh(u, p), Gh(u, p)); (vh, qh)

) = A
(
(u, p); (vh, qh)

) ∀(vh, qh) ∈ Vh × Wh. (3.7)

Theorem 3.1 Assume the conditions of Lemma 2.1 hold. After implementing Algo-
rithm 1, there exists an exact eigenpair (λ,u, p) of Eq. 2.2 such that the resul-
tant approximation (λ

post
j,h , uj,h, pj,h) ∈ R × Vh × Wh has the following error

estimates

‖uj − uj,h‖1 + ‖pj − pj,h‖0 � εh(λj ), (3.8)

|λj − λ
post
j,h | � ε2

h(λj ), (3.9)

where εh(λj ) := ηA(H)δH (λj ) + δ2
H (λj ) + δh(λj ), δH (λj ) and ηA(H) are defined

by Eq. 2.21 and Eq. 2.22, respectively.

Proof First, from Theorem 2.1 we know that there exist an exact eigenpair (λ,u, p)

such that the eigenpair approximation (λj,H , uj,H , pj,H ) has the following error
estimates

‖uj,H − uj‖1 + ‖pj − pj,H ‖0 � δH (λj ), (3.10)

‖uj,H − uj‖−1 � ηA(H)δH (λj ), (3.11)

|λj,H − λj | � δ2
H (λj ). (3.12)

Together with Eqs. 2.2, 3.4, 3.7, and 3.10–3.12, we obtain the following estimate

‖̂uj,h − Rh(uj , pj )‖1 + ‖p̂j,h − Gh(uj , pj )‖0

� sup
0�=(vh,qh)∈Vh×Wh

Ah

(
(̂uj,h − Rh(uj , pj ), p̂j,h − Gh(uj , pj )); (vh, qh)

)

‖vh‖1 + ‖qh‖0

= sup
0�=(vh,qh)∈Vh×Wh

λj,H r(uj,H , vh) − λj r(uj , vh)

‖vh‖1 + ‖qh‖0

� sup
0�=(vh,qh)∈Vh×Wh

(|λj,H − λj | · ‖uj,H ‖−1 + λ‖uj − uj,H ‖−1
)‖vh‖1

‖vh‖1 + ‖qh‖0

� δ2
H (λj ) + ηA(H)δH (λj ),
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which leads to

‖uj − ûj,h‖1 + ‖pj − p̂j,h‖0 � δ2
H (λj ) + ηA(H)δH (λj ) + δh(λj ). (3.13)

Together with Eqs. 3.5 and 3.13, we get the following estimate

‖uj − uj,h‖1 + ‖p − pj,h‖0 � δ2
H (λj ) + ηA(H)δH (λj ) + δh(λj ).

This is the desired result (3.8), while (3.9) can be derived by Lemma 3.1 and (3.8).

4 Practical acceleration algorithm

In this section, we adopt two different ways to construct the finer finite element space
Vh × Wh. The first way is the “two-grid” method proposed by Xu and Zhou [37].
In this method, a finer mesh is used to get the approximation (λ

post
j,h , uj,h, pj,h) of

higher order accuracy. Since the approach uses the same finite element space as the
original eigenvalue approximation, it does not require higher regularity of the exact
eigenfunctions. The second way is proposed by Andreev and Racheva in [28], where
the same finite element mesh but higher order finite element space is used. In this
case, the regularity of the Stokes eigenvalue problem needs to be higher to ensure the
accuracy for the eigenpair.

Way 1. (“Two-grid” method from [37]): In this case, Vh × Wh is the same type of
finite element space as VH ×WH on the finer mesh Th with mesh size h = Hβ (β >

1). Here Th is a finer mesh of � which can be generated by the regular refinement
from the coarse mesh TH . Here, we assume the exact eigenfunction has the regularity
of u ∈ (H 1+α(�))2 and p ∈ Hα(�) with α > 0. From Eqs. 2.21 and 2.22, we have

δH (λj ) ≈ Hs1 , ηA(H) ≈ Hγ , (4.1)

where s1 = min{k, α} and 0 < γ ≤ s1 is a parameter depending on the largest
interior angle of ∂�. Then after Algorithm 1, the new eigenpair approximation
(λ

post
j,h , uj,h, pj,h) has the following error estimate

εh(λj ) ≈ Hs1+γ + hs1 . (4.2)

If we choose β = 1+γ /s1, the eigenpair approximation (λ
post
j,h , uj,h, pj,h) possesses

the optimal convergence order hs1 . Notice that we just need to solve the Stokes eigen-
value problem in the coarse space VH × WH followed by a Stokes source problem
in the space Vh × Wh, other than the Stokes eigenvalue problem in the finer space
Vh × Wh. As we know, solving a Stokes problem is more efficient than the Stokes
eigenvalue problem in the same scale. So Algorithm 1 improves the efficiency for
solving the Stokes eigenvalue problem.

Way 2. (“Two-space” method from [28]): In this case, Vh × Wh is defined on the
same mesh TH but with a higher order finite element space than VH × WH . Since
the maximum regularity of the solution of the Stokes problem (3.4) is (H 3(�))2 ×
H 2(�), we only use the first order finite element space, that is k = 1 to solve the
original Stokes eigenvalue problem (3.3), and the Stokes source problem (3.4) in the
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second order finite element space. Here, we assume the exact the domain � is convex
and the eigenfunction has the regularity of u ∈ (H 1+α(�))2 and p ∈ Hα(�) with
1 < α ≤ 2. From Eqs. 2.21 and 2.22, we have

δH (λj ) ≈ H, ηA(H) ≈ H, δh(λj ) ≈ Hα. (4.3)

Then we have the following error estimate for (λ
post
j,h , uj,h, pj,h)

εh(λj ) ≈ Hα. (4.4)

This is also an obvious improvement of the efficiency for solving the Stokes
eigenvalue problem.

5 Numerical results

In this section, we give two numerical tests to illustrate the efficiency of Algorithm 1.
Consider the Stokes eigenvalue problem (2.1) on the domain � = (0, 1)2 and choose
a sufficiently accurate first eigenvalue approximation λ = 52.3446911 as the first
true one (c.f. [12, 33]) for our numerical tests.

We first test Algorithm 1 with the “two-grid” way, where the enriched space is
constructed by refining the current mesh in the regular way. Here we use the finite
element space (Vh,Dh) = (P1,Pdisc

−1 ) with

P1 = {
v ∈ H 1(�) : v|K ∈ P1(K), ∀K ∈ Th

}
,

Pdisc
−1 = {

v ∈ L2(�) : v|K ∈ P−1(K), ∀K ∈ Th

}
,

to solve the Stokes eigenvalue problem (3.3) and the Stokes source problem (3.4).
The numerical results are shown in Fig. 1.

Then we give numerical results of Algorithm 1 with the “two-space” method.
We first solve the Stokes eigenvalue problem (3.3) by the lowest order stabilization

Fig. 1 Errors for the “two-grid” method with αK = h2
K/10
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Fig. 2 Errors for the “two-space” method with αK = h2
K/10

element (Vh,Dh) = (P1,Pdisc
−1 ) and then the Stokes source problem (3.4) by the

second order stabilization element (Vh,Dh) = (P+
2 ,Pdisc

1 ) (c.f. [23]) with

P+
2 = {

v ∈ H 1(�) : v|K ∈ P2(K) ⊕ ϕK · P1(K), ∀K ∈ Th

}
,

Pdisc
1 = {

v ∈ L2(�) : v|K ∈ P1(K), ∀K ∈ Th

}
,

on the same triangular meshes, where the bubble function ϕK is defined by
the barycenter coordinates λ1,K, λ2,K and λ3,K on the element K with ϕK :=
λ1,Kλ2,Kλ3,K . The numerical results are shown in Fig. 2.

Figures 1 and 2 show that Algorithm 1 improves the efficiency for solving the
Stokes eigenvalue problem and this confirms the theoretical analysis.

6 Concluding remarks

In this paper, we apply the LPS method to discretize the Stokes eigenvalue prob-
lem, and then propose an acceleration scheme to improve the convergence order for
the eigenpair approximation. The theoretical analysis is given and the correspond-
ing numerical examples are also provided to confirm the analysis. The acceleration
method proposed here can be coupled with the adaptive mesh refinement in the “two-
grid” method. The application of LPS method makes the implementation of adaptive
mesh refinement easier for solving Stokes eigenvalue problems especially on the
meshes with hanging nodes (c.f. [30]).

In the future, we will extend our acceleration method to the nonsymmetric Stokes
eigenvalue problems which is more general in the study of linearized stability for
the Navier-Stokes equations. Furthermore, based on the acceleration method here,
we will design a type of multilevel method for the Stokes eigenvalue problem by the
stabilized finite element methods with the idea in [19].
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