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Abstract We present a new stabilized finite volume method for Stokes problem
using the lowest order P1 − P0 element pair. To offset the lack of the inf -sup condi-
tion, a simple jump term of discrete pressure is added to the continuity approximation
equation. A discrete inf -sup condition is established for this stabilized scheme. The
optimal error estimates are given in the H 1- and L2-norms for velocity and in the
L2-norm for pressure, respectively.
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1 Introduction

The finite volume element (FVE) method is a discretization technique for solving
partial differential equations. The important feature of FVE method is that it inherits
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some physical conservation laws of original problems locally, that is very desirable
in practical applications, for example, in computational fluid mechanics and heat
transfer problems. During the past decades, there have been many research works for
FVE methods. We refer to monograph [28] for general presentation of this method
and to [7–11, 20, 29, 32, 35, 36] and the references therein for details.

Numerical simulation of the incompressible flow motion has long been an impor-
tant and challenging problem. In the conventional finite element methods solving
the Stokes and Navier-Stokes equations, an elementary requirement for the velocity-
pressure element pair is the so-called inf -sup condition. The importance of ensuring
the inf -sup condition is wildly understood. Numerical experiments show that the
violation of the inf -sup condition often leads to unphysical oscillations. From the
computational viewpoint, the simple lower-order element pairs (for example, the
P1 − P0, Q1 − Q0, P1 − P1 and Q1 − Q1 pairs) should be preferred in applications.
But unfortunately, these element pairs do not satisfy the inf -sup condition. In order
to circumvent the inf -sup condition, many stabilized finite element methods have
been proposed for solving the Stokes and Navier-Stokes equations. For example, the
penalty methods [23, 25, 30, 31], the consistently stabilized methods [2, 4, 19], the
pressure macro-element methods [16, 22], the pressure gradient projection methods
[5, 15, 24] and the local polynomial pressure projection methods [3, 6, 18], and so
on. Recently, a local Gauss integration stabilized method is also constructed for the
Stokes equations using the P1 − P1 element pair [26], and Li and Chen [27] further
expand this stabilized technique from finite element method to the FVE method. To
the authors’ knowledge, except using the nonconforming P1 velocity element or the
P0 pressure macro-element, almost no stabilized methods have been presented for
the P1 − P0 element pair.

Many finite volume methods have been developed for solving the Stokes equa-
tions [12–14, 17, 33, 34]. But most of them use the stable velocity-pressure element
pairs, which satisfy the inf -sup condition. In this paper, we will present a new sta-
bilized FVE method for Stokes equations by using the lowest order P1 − P0 element
pair. The key of our stabilized technique is to introduce a jump term of discrete
pressure in the continuity approximation equation to offset the lack of the inf -sup
condition. A similar stabilization term made of gradient jump had been introduced
in [1] for the mixed element method solving biharmonic equation. Compared with
some known stabilized methods, the advantage of our method is that it is free from
stabilization parameters [2, 4, 23, 25, 30, 31], does not require any calculation of
high-order derivatives [5, 15, 24] and pressure macro-element structures [16, 22],
and no any projections need to be introduced [3, 6, 18, 26]. Moreover, the added
stabilization term (the jump term) in our method is very simple and can be gener-
ated at the element level with very little computation cost. For this stabilized FVE
scheme, we establish a discrete inf -sup condition which ensures the stability of the
discrete solutions. Furthermore, the optimal error estimates are given in the H 1- and
L2-norms for the velocity approximation and in the L2-norm for the pressure approx-
imation, respectively. It should be pointed out that our stabilized method is presented
for the FVE setting, while most known stabilized methods are for the finite element
setting. And our FVE scheme includes the corresponding finite element scheme as a
special case.
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This paper is organized as follows. In Section 2, we introduce the stabilized FVE
scheme and give the unique existence of the discrete solutions. Section 3 is devoted
to the optimal error estimates for velocity and pressure approximations, respec-
tively. In Section 4 we further establish a discrete inf -sup condition satisfied by this
FVE scheme. Numerical example is presented in Section 5 to verify our theoretical
analysis. In Section 6, some conclusions are given.

Throughout this paper, we adopt the notations Hm(D) to indicate the usual
Sobolev spaces on subdomain D ⊂ � equipped with the norm ‖ · ‖m,D and semi-
norm | · |m,D . When D = �, we omit the index D. The inner product and norm
in space L2(�) are denoted by (·, ·) and ‖ · ‖, respectively. We will use letter C to
represent a generic positive constant, independent of the mesh size h.

2 The stabilized finite volume method

We consider the Stokes equations

− ν�u + ∇p = f, in �, (2.1)

div u = 0, in �, (2.2)

u = 0, on ∂�, (2.3)

where � ⊂ R2 is a convex polygonal domain with boundary ∂�, symbols �, ∇
and div denote the Laplacian, gradient and divergence operators, respectively, and
u = (u1, u2) represents the velocity, p the pressure and f the external volumetric
force acting on the fluid. We assume the viscosity ν = 1.

Let Th = ⋃{K} be a regular triangulation of domain � so that � = ⋃
K∈Th

{, K},
where h = max hK, hK is the diameter of element K . Associated with triangulation
Th, we introduce the velocity and pressure approximation spaces,

Xh = {vh ∈ X : vh|K ∈ [P1(K)]2, K ∈ Th }, (2.4)

Mh = {qh ∈ M : qh|K ∈ P0(K), K ∈ Th}, (2.5)

where Pk(K) is the set of all k-order polynomials on K and spaces

X = [H 1
0 (�)]2, M = {q ∈ L2(�) :

∫

�

q dx = 0}.

It is well known that the space pair Xh × Mh does not satisfy the inf -sup condition

sup
0�=vh∈Xh

(divvh, qh)

‖vh‖1
≥ β‖qh‖, qh ∈ Mh, (2.6)

where β > 0 is a constant independent of h, so the lowest order P1 −P0 element pair
is not available in the conventional finite element framework.

In order to define the FVE method, we need a dual partition associated with the
primal partition Th. We construct the barycenter dual partition T ∗

h by connecting the
barycenter to the midpoints of edges of each K ∈ Th by straight lines. Thus, for each
nodal point P in Th, there exists a polygonal K∗

P surrounding P,K∗
P ∈ T ∗

h is called
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the dual element or the control volume at point P , see Fig. 1. Now we can introduce
the test function space defined on T ∗

h ,

Vh = {vh ∈ [L2(�)]2 : vh|K∗
P

= constant, ∀P ∈ Nh, vh|K∗
P

= 0, ∀P ∈ ∂�},
where Nh is the set of all nodal points of Th.

Set the algebraic sum space

U(h) = [H 2(�)
⋂

H 1
0 (�)]2 ⊕Xh = {v+vh : v ∈ [H 2(�)

⋂
H 1

0 (�)]2, vh ∈ Xh}.
Define a mapping γ : U(h) → Vh by

γu =
∑

P∈Nh

u(P )χ
P
, ∀u ∈ U(h), (2.7)

where χ
P

is the characteristic function of the dual element K∗
P . Obviously, γ is a one

to one mapping from the trial space Xh onto the test space Vh.
We denote by �h = ⋃{e ⊂ ∂K : K ∈ Th} the union of all edges of elements

of Th, �
0
h = �h\∂� the union of all element edges {e} that are not contained in

∂�. Let e = ∂K1
⋂

∂K2 be the edge shared by two adjacent elements K1 and K2
of Th, vi = v|e∩∂Ki

(i = 1, 2) the trace of v on e from the interior of Ki , and
ni = n|e∩∂Ki

, where n is the unit normal vector external to the element boundary.
For a piecewise smooth function v on Th, we define the jump [v] of v on e∈ �0

h as
follows:

[v] = v1n1 + v2n2, on e ∈ �0
h.

Let (u, p) satisfy (2.1) and vh ∈ Vh. Then by using the Green formula, we have

−
∫

∂K∗
P

∂u
∂n

· vhds +
∫

∂K∗
P

pvh · nds =
∫

K∗
P

f vh, ∀ vh ∈ Vh, K∗
P ∈ T ∗

h ,

or

−
∫

∂K∗
P

∂u
∂n

·γ vhds +
∫

∂K∗
P

pγ vh ·nds =
∫

K∗
P

f γ vh, ∀ vh ∈ Xh, K∗
P ∈ T ∗

h . (2.8)

Fig. 1 Dual element K∗
P at node P
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Motivated by this weak formula, we introduce the following bilinear forms

a(u, v) = −
∑

K∗
P ∈T ∗

h

∫

∂K∗
P

∂u
∂n

· vds, b(p, v) =
∑

K∗
P ∈T ∗

h

∫

∂K∗
P

pv · nds, (2.9)

c(u, q)=(divu, q), G(p, q)=
∫

�0
h

hμ[p]·[q]ds
.=

∑

e∈�0
h

∫

e

hμ[p]·[q]ds,(2.10)

where hμ|e = μhe, he = diam(e), and parameter μ > 0 can be properly chosen for
the purpose of enhancing the stability of the method. In general case, we may take
μ = 1.

Now we define the stabilized FVE approximation of problem (2.1)∼(2.3) by
finding (uh, ph) ∈ Xh × Mh such that

a(uh, γ vh) + b(ph, γ vh) = (=f, γ vh), ∀ vh ∈ Xh, (2.11)

c(uh, qh) + G(ph, qh) = 0, ∀ qh ∈ Mh. (2.12)

In the continuity approximation (2.12), the additional term G(ph, qh) is the stabiliza-
tion term which is introduced to offset the lack of the inf -sup condition. If removing
G(ph, qh), scheme (2.11)∼(2.12) will be the standard FVE scheme used in the case
that the discrete velocity and pressure spaces satisfy the inf -sup condition [33]. It
is easy to see that bilinear form G(ph, qh) is symmetric and positive definite on
Mh × Mh and it can be generated on local set K with little computation cost, noting
that [ph]e = constant for ph ∈ Mh.

Let (u, p) ∈ X×M be the solution of problem (2.1)∼(2.3) and p ∈ H 1(�). By the
Sobolev trace theory, we have [p]e = 0 if p ∈ H 1(�), which implies G(p, qh) = 0.
Then, from equations (2.8) and (2.10) we see that FVE scheme (2.11)∼(2.12) is
consistent and the following error equations hold.

a(u − uh, γ vh) + b(p − ph, γ vh) = 0, ∀ vh ∈ Xh, (2.13)

c(u − uh, qh) + G(p − ph, qh) = 0, ∀ qh ∈ Mh. (2.14)

Let 	hu ∈ Xh be the usual linear interpolation approximation of continuous func-
tion u. In our analysis, the following approximation property and trace inequality will
be used frequently,

‖u − 	hu‖m,K ≤ Ch2−m
K ‖u‖2,K, K ∈ Th, 0 ≤ m ≤ 2, (2.15)

‖u‖0,∂K ≤ Ch
− 1

2
K

( ‖u‖0,K + hK‖∇u‖0,K

)
, u ∈ H 1(K). (2.16)

Furthermore, for operator γ , we have the following lemma.

Lemma 2.1 [28, 36]Let K ∈ Th, e ⊂ ∂K be an edge of K . Then, for vh ∈ Xh, we
have

∫

K

(vh − γ vh) = 0,

∫

e

(vh − γ vh)ds = 0, (2.17)

‖vh − γ vh‖0,K ≤ ChK‖vh‖1,K, (2.18)

‖vh − γ vh‖0,∂K ≤ Ch
1
2
K‖vh‖1,K . (2.19)
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The following two lemmas are very useful in our analysis.

Lemma 2.2 For any w ∈ U(h), v ∈ Xh, we have

a(w, γ v) −
∑

K∈Th

(∇w,∇v)K

=
∑

K∈Th

∫

∂K

∂w
∂n

· (γ v − v)ds +
∑

K∈Th

(�w, v − γ v)K. (2.20)

Particularly, when w, v ∈ Xh, we have

a(w, γ v) = (∇w,∇v), w, v ∈ Xh. (2.21)

Proof By using the Green formula, we have

∑

K∈Th

∫

K

∇w · ∇v = −
∑

K∈Th

∫

K

�w · v +
∑

K∈Th

∫

∂K

∂w
∂n

· vds,

and (see Fig. 1)

∑

K∈Th

∫

K

�w · γ v =
∑

K∈Th

∑

K∗
P ∈T ∗

h

∫

K∩K∗
P

�w · γ v

=
∑

K∈Th

∫

∂K

∂w
∂n

· γ vds +
∑

K∗
P ∈T ∗

h

∫

∂K∗
P

∂w
∂n

· γ vds.

Combining this two identities with the definition of a(w, γ v), (2.20) is derived. The
equality (2.21) follows from equations (2.20) and (2.17), noting that �w|K = 0,

∇w · n|e = constant if w ∈ Xh.

Lemma 2.3 For any (w, q) ∈ U(h) × M , we have

b(q, γw) = −(divw, q)+
∑

K∈Th

(∇q, γw−w)K +
∑

K∈Th

∫

∂K

q(w−γw) ·nds. (2.22)

Particularly, when (w, q) ∈ Xh × Mh, we have

b(q, γw) = −c(w, q), ∀ (w, q) ∈ Xh × Mh. (2.23)

Proof By using the divergence formula

∫

D

divwq = −
∫

D

∇q · w +
∫

∂D

qw · nds,
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we have (see Fig. 1)

b(q, γw) =
∑

K∗
p∈T ∗

h

∫

∂K∗
p

qγw · nds

=
∑

K∈Th

∑

K∗
P ∈T ∗

h

∫

∂(K∩K∗
P )

qγw · nds −
∑

K∈Th

∫

∂K

qγw · nds

=
∑

K∈Th

∑

K∗
P ∈T ∗

h

∫

K∩K∗
P

∇q · γw +
∑

K∈Th

∫

∂K

q(w − γw)·nds −
∑

K∈Th

∫

∂K

qw · nds

=
∑

K∈Th

(∇q, γw)K +
∑

K∈Th

∫

∂K

q(w − γw)·nds−
∑

K∈Th

(∇q,w)K −
∑

K∈Th

(divw, q)K.

This gives (2.22). When (w, q) ∈ Xh × Mh, noting that q|K = constant , we obtain
(2.23) from equations (2.22) and (2.17).

Introduce the norm notation

|||(u, p)|||2 = ‖∇u‖2 +
∫

�0
h

hμ|[p]|2ds. (2.24)

Let (uh, ph) ∈ Xh × Mh. When |||(uh, ph)||| = 0 we have ‖∇uh‖ = 0, [ph]e =
0, e ∈ �0

h, this results in uh = 0 and ph|� = constant . Further
∫
�

phdx = 0 implies
ph = 0. So |||(uh, ph)||| is a norm on Xh ×Mh. Introduce the two-fold bilinear form

B((u, p), (v, q)) = a(u, γ v) + b(p, γ v) + c(u, q) + G(p, q). (2.25)

Then the FVE scheme (2.11)∼(2.12) can be rewritten as finding (uh, ph) ∈ Xh ×Mh

such that

B((uh, ph), (vh, qh)) = (f, γ vh), ∀ (vh, qh) ∈ Xh × Mh. (2.26)

Taking (vh, qh) = (uh, ph) in equation (2.26), and using (2.21) and (2.23)∼(2.25),
we have

|||(uh, ph)|||2 = B((uh, ph), (uh, ph)), ∀ (uh, ph) ∈ Xh × Mh. (2.27)

Now we can give the stability theorem.

Theorem 2.1 The FVE solution (uh, ph) ∈ Xh × Mh exists uniquely and satisfies
the following stability estimate

|||(uh, ph)||| ≤ C‖f‖. (2.28)

Proof For the linear system (2.26), we only need to prove the stability estimate
(2.28). Taking (vh, qh) = (uh, ph) in equation (2.26) and using (2.27), we have

|||(uh, ph)|||2 = B((uh, ph), (uh, ph)) ≤ ‖f‖ ‖γuh‖. (2.29)

It follows from equation (2.18) that

‖γuh‖ = ‖γuh − uh‖ + ‖uh‖ ≤ Ch‖uh‖1 + ‖uh‖ ≤ C‖uh‖1 ≤ C|||(u, p)|||.
Combining this with (2.29), the proof is completed.
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3 Optimal error estimates in the H 1- and L2-norms

In this section, we will give the optimal error estimates for velocity approximation
in the H 1-norm and L2-norm. Moreover, the optimal error estimate for pressure
approximation in the L2-norm is also established.

Let ρh : M → Mh be the projection operator defined by

ρhp|K = 1

|K|
∫

K

pdx, ∀ K ∈ Th.

Then ρhp has the approximation property

‖p − ρhp‖0,K ≤ ChK‖p‖1,K, K ∈ Th. (3.1)

Theorem 3.1 Let (u, p) ∈ X × M and (uh, ph) ∈ Xh × Mh be the solutions of
problems (2.1) ∼ (2.3) and (2.11)∼(2.12), respectively, and (u, p) ∈ [H 2(�)]2 ×
H 1(�). Then we have

|||(u − uh, p − ph)||| ≤ Ch(‖u‖2 + ‖p‖1). (3.2)

Proof From equations (2.13), (2.14) and (2.25), we first have the error equation

B((u − uu, p − ph), (vh, qh)) = 0, ∀ (vh, qh) ∈ Xh × Mh. (3.3)

Denote the error functions:

eu = uh − 	hu, ep = ph − ρhp, (eu, ep) ∈ Xh × Mh.

Then, it follows from equations (2.27) and (3.3) that

|||(eu, ep)|||2 = B((eu, ep), (eu, ep)) = B((u − 	hu, p − ρhp), (eu, ep))

= a(u − 	hu, γ eu) + b(p − ρhp, γ eu) + c(u − 	hu, ep) + G(p − ρhp, ep)

= E1 + E2 + E3 + E4. (3.4)

Below we need to estimate E1 ∼ E4. From Lemma 2.2, (2.15) and (2.18), we have

E1 = (∇(u − 	hu), ∇eu) +
∑

K∈Th

∫

∂K

∂(u − 	hu)

∂n
· (γ eu − eu)ds

+
∑

K∈Th

(�u, eu − γ eu)K

≤ Ch‖u‖2‖eu‖1 +
∑

K∈Th

∫

∂K

∂(u − 	hu)

∂n
· (γ eu − eu)ds ≤ Ch‖u‖2‖eu‖1,

where we have used (2.16) and (2.19) to estimate
∑

K∈Th

∫

∂K

∂(u − 	hu)

∂n
· (γ eu − eu)ds

≤
∑

K∈Th

Ch
− 1

2
K

(‖u − 	hu‖1,K + hK‖u‖2,K

) ‖γ eu − eu‖0,∂K ≤ Ch‖u‖2‖eu‖1.
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Next, by using Lemma 2.3, (3.1), (2.18)–(2.19) and the trace inequality, we have
(noting that ρhp|K = constant )

E2 = −(diveu, p − ρhp) +
∑

K∈Th

(∇(p − ρhp), eu − γ eu)K

+
∑

K∈Th

∫

∂K

(p − ρhp)(eu − γ eu) · nds

≤ Ch‖eu‖1‖p‖1 +
∑

K∈Th

Ch
− 1

2
K

(‖p − ρhp‖0,K + hK‖∇p‖0,K

) ‖γ eu − eu‖0,∂K

≤ Ch‖eu‖1‖p‖1.

Since u − 	hu ∈ [H 1
0 (�)]2 and ep|K = constant , then

E3 = (div(u − 	hu), ep) =
∑

K∈Th

∫

∂K

(u − 	hu) · n ep ds

=
∑

e∈�0
h

∫

e

(u − 	hu)[ep]ds ≤
(∫

�0
h

h−1
μ |u − 	hu|2ds

) 1
2
(∫

�0
h

hμ|[ep]|2ds

) 1
2

≤ Ch‖u‖2

(∫

�0
h

hμ|[ep]|2ds

) 1
2

.

Furthermore

E4 ≤
(∫

�0
h

hμ|[p − ρhp]|2ds

) 1
2
(∫

�0
h

hμ|[ep]|2ds

) 1
2

≤ Ch‖p‖1

(∫

�0
h

hμ|[ep]|2ds

) 1
2

.

Substituting estimates E1 ∼ E4 into (3.4), it yields

|||(eu, ep)|||2 ≤ Ch(‖u‖2 + ‖p‖1)|||(eu, ep)|||.
The proof is completed by using the triangle inequality.

Theorem 3.1 gives the optimal error estimate in the H 1-norm for velocity approx-
imation. In order to obtain the L2-error estimate for pressure approximation, we
introduce the following auxiliary problem: For p −ph ∈ M , there exists w ∈ X such
that (see [21, Chapter 1, Lemma 3.2])

divw = p − ph, ‖w‖1 ≤ C‖p − ph‖. (3.5)

Let Rhw ∈ Xh be the finite element elliptic projection of w ∈ X,

(∇(w − Rhw),∇vh) = 0, ∀ vh ∈ Xh. (3.6)

It is well-known that Rhw satisfies

‖Rhw‖1 ≤ C‖w‖1, ‖w − Rhw‖ + h‖w − Rhw‖1 ≤ Ch‖w‖1. (3.7)
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Theorem 3.2 Let (u, p) ∈ X × M and (uh, ph) ∈ Xh × Mh be the solutions of
problems (2.1) ∼ (2.3) and (2.11)∼(2.12), respectively, and (u, p) ∈ [H 2(�)]2 ×
H 1(�). Then, we have

‖p − ph‖ ≤ Ch(‖u‖2 + ‖p‖1). (3.8)

Proof Using problem (3.5), we have from Lemma 2.3 and error equation (2.13) that

‖p − ph‖2 = (divw, p − ph) = (div(w − Rhw), p − ph) + (divRhw, p − ph)

= (div(w − Rhw), p − ph) − b(p − ph, γRhw)

+
∑

K∈Th

(∇(p − ph), γRhw − Rhw)K +
∑

K∈Th

∫

∂K

(p − ph)(Rhw − γRhw) · nds

= (div(w − Rhw), p − ph) + a(u − uh, γRhw)

+
∑

K∈Th

(∇p, γRhw − Rhw)K +
∑

K∈Th

∫

∂K

(p − ph)(Rhw − γRhw) · nds

= F1 + F2 + F3 + F4. (3.9)

Below we estimate F1 ∼ F4. First, by using the divergence formula, we obtain

F1 = −
∑

K∈Th

(w − Rhw),∇(p − ph))K

+
∑

K∈Th

∫

∂K

(w − Rhw) · n(p − ph)ds = F11 + F12.

For F11, we have from equations (3.5) and (3.7) that

F11 = (w − Rhw,∇p) ≤ Ch‖w‖1‖p‖1 ≤ Ch‖p − ph‖ ‖p‖1.

Since w − Rhw ∈ [H 1
0 (�)]2, we obtain from equations (2.16), (3.5), (3.7) and (3.2)

that

F12 =
∫

�0
h

(w − Rhw)[p − ph]ds

≤
(∫

�0
h

h−1
μ |w − Rhw|2ds

) 1
2
(∫

�0
h

hμ|[p − ph]|2ds

) 1
2

≤ Ch−1(‖w − Rhw‖ + h‖∇(w − Rhw)‖)|||(u − uh, p − ph)|||
≤ C(‖w‖1 + ‖Rhw‖1)h(‖u‖2 + ‖p‖1) ≤ Ch‖p − ph‖(‖u‖2 + ‖p‖1).

Combining estimate F11 with F12, we obtain

F1 ≤ Ch(‖u‖2 + ‖p‖1)‖p − ph‖.
Next, similar to the estimate of E1 = a(u− Rhu, γ eu) in Theorem 3.1 and using the
known result: ‖u − uh‖1 ≤ Ch(‖u‖2 + ‖p‖1), we obtain

F2 ≤ Ch(‖u‖2 + ‖p‖1)‖Rhw‖1 ≤ Ch(‖u‖2 + ‖p‖1)‖p − ph‖.
Now, it follows from equations (2.18), (3.5) and (3.7) that

F3 ≤ Ch‖p‖1‖Rhw‖1 ≤ Ch‖p‖1‖p − ph‖.
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For F4, using equations (2.17), (2.19) and the trace inequality to obtain

F4 =
∑

K∈Th

∫

∂K

p(Rhw − γRhw) · nds

=
∑

K∈Th

∫

∂K

(p − ρhp)(Rhw − γRhw) · nds

≤
∑

K∈Th

h
− 1

2
K (‖p − ρhp‖0,K + hK‖p‖1,K)‖Rhw − γRhw‖0,∂K

≤ Ch‖p‖1‖Rhw‖1 ≤ Ch‖p‖1‖w‖1 ≤ Ch‖p‖1‖p − ph‖.
Substituting estimates F1 ∼ F4 into (3.9), the proof is completed.

Now we are in the position to derive the L2-error estimate for velocity approxima-
tion. For this purpose, we need the following lemma.

Lemma 3.1 Let (u, p) ∈ X × M and (uh, ph) ∈ Xh × Mh be the solutions of
problems (2.1) ∼ (2.3) and (2.11) ∼ (2.12), respectively, and (u, p) ∈ [H 2(�)]2 ×
H 1(�), f ∈ [H 1(�)]2. Further let function v ∈ [H 2(�)

⋂
H 1

0 (�)]2 and divv = 0.
Then we have

|(∇(u − uh),∇v)| ≤ Ch2(‖u‖2 + ‖p‖1 + ‖f‖1)‖v‖2. (3.10)

Proof By Lemma 2.2 we have

(∇(u − uh),∇v) = (∇(u − uh),∇(v − 	hv)) + (∇(u − uh),∇	hv)

= (∇(u − uh),∇(v − 	hv)) + a(u − uh, γ	hv)

−
∑

K∈Th

∫

∂K

∂(u − uh)

∂n
· (γ	hv − 	hv)ds −

∑

K∈Th

(�u, 	hv − γ	hv)K.

It implies from the error equation (2.13) and −�u + ∇p = f that

(∇(u − uh),∇v) = (∇(u − uh),∇(v − 	hv)) − b(p − ph, γ	hv)

−
∑

K∈Th

∫

∂K

∂(u − uh)

∂n
· (γ	hv − 	hv)ds +

∑

K∈Th

(f − ∇p,	hv − γ	hv)K

= (∇(u − uh),∇(v − 	hv)) −
∑

K∈Th

∫

∂K

∂(u − uh)

∂n
· (γ	hv − 	hv)ds

+
∑

K∈Th

(f,	hv − γ	hv)K +
⎡

⎣−b(p − ph, γ	hv) −
∑

K∈Th

(∇(p − ph),	hv − γ	hv)K

⎤

⎦

= S1 + S2 + S3 + S4. (3.11)

We need to estimate S1 ∼ S4. First, from Theorem 3.1 we have

S1 ≤ ‖∇(u − uh)‖‖∇(v − 	hv)‖ ≤ Ch2(‖u‖2 + ‖p‖1)‖v‖2.
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Next, it follows from equation (2.17) that

S2 = −
∑

K∈Th

∫

∂K

∂(u − uh)

∂n
· (γ	hv − 	hv)ds = −

∑

K∈Th

∫

∂K

∂u
∂n

· (γ	hv − 	hv)ds.

Observing that γ	hv − 	hv is continuous across the element edge (except at the
midpoint of the edge), (γ	hv−	hv)|∂� = 0, ∇u ∈ [H 1(�)]2, and any edge e ∈ �0

h

is a common edge of two adjacent elements with opposite unit normal vectors on the
edge, we deduce that

S2 = −
∑

K∈Th

∫

∂K

∂u
∂n

· (γ	hv − 	hv)ds = 0.

Again using equation (2.17) to obtain

S3 =
∑

K∈Th

(f − fh, 	hv − γ	hv)K ≤ Ch2‖f‖1‖	hv‖1 ≤ Ch2‖f‖1‖v‖2,

where fh is the piecewise constant approximation of function f on Th. For S4, we have
from Lemma 2.3, divv = 0 and (2.17) that

S4 = (div	hv, p − ph) −
∑

K∈Th

∫

∂K

(p − ph)(	hv − γ	hv) · nds

= (div(	hv − v), p − ph) −
∑

K∈Th

∫

∂K

p(	hv − γ	hv) · nds.

Similar to the argument for S2, it is easy to see that for p ∈ H 1(�),
∑

K∈Th

∫

∂K

p(	hv − γ	hv) · nds = 0.

So it follows from Theorem 3.2 that

S4 ≤ ‖	hv − v‖1‖p − ph‖ ≤ Ch2(‖u‖2 + ‖p‖1)‖v‖2.

Substituting estimates S1 ∼ S4 into (3.11), the proof is completed.

Now we can give the optimal error estimate for u − uh in the L2-norm. Introduce
the following auxiliary problem [21, Chapter 1, Theorem 5.2]: (w, q) ∈ [H 2(�)]2 ×
(H 1(�)

⋂
M) such that

{ −�w + ∇q = u − uh, in �,

divw = 0, in �, w = 0, on ∂�,
(3.12)

and
‖w‖2 + ‖q‖1 ≤ C‖u − uh‖. (3.13)

Theorem 3.3 Let (u, p) ∈ X × M and (uh, ph) ∈ Xh × Mh be the solutions of
problems (2.1) ∼ (2.3) and (2.11) ∼ (2.12), respectively, and (u, p) ∈ [H 2(�)]2 ×
H 1(�), f ∈ [H 1(�)]2. Then we have

‖u − uh‖ ≤ Ch2(‖u‖2 + ‖p‖1 + ‖f‖1). (3.14)
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Proof Using the auxiliary problem (3.12), we have from Lemma 3.1 and Theorem
3.1 that

‖u − uh‖2 = (∇w,∇(u − uh)) − (q, div(u − uh))

= (∇(u − uh),∇w) − (q − ρhq, div(u − uh)) − (ρhq, div(u − uh))

≤ Ch2(‖u‖2 + ‖p‖1 + ‖f‖1)(‖w‖2 + ‖q‖1) − (ρhq, div(u − uh)). (3.15)

From error equation (2.14) we obtain for q ∈ H 1(�) that

−(ρhq, div(u − uh)) =
∫

�0
h

hμ[p − ph] · [ρhq]ds =
∫

�0
h

hμ[p − ph] · [ρhq − q]ds

≤
(∫

�0
h

hμ|[p − ph]|2ds

) 1
2
(∫

�0
h

hμ|[q − ρhq]|2ds

) 1
2

≤ Ch

(∫

�0
h

hμ|[p − ph]|2ds

) 1
2

‖q‖1 ≤ Ch2(‖u‖2 + ‖p‖1)‖q‖1,

where we have used Theorem 3.1. Substituting this estimate into (3.15), it yields

‖u − uh‖2 ≤ Ch2(‖u‖2 + ‖p‖1 + ‖f‖1)(‖w‖2 + ‖q‖1).

The desired result is derived, noting that ‖w‖2 + ‖q‖1 ≤ C‖u − uh‖ .

Remark 3.1 The counterexamples in [9, 20] show that the assumption of f ∈
[H 1(�)]2 in Theorem 3.3 is necessary for finite volume method in deriving the
optimal order L2-error estimate.

4 Further analysis on the stability

For finite element approximations to Stokes problems, an unstable scheme often
leads to unphysical oscillation of the discrete solutions. In Theorem 2.1 we have
given a stability estimate for the FVE solution (uh, ph) under the norm |||(uh, ph)|||.
From the definition of |||(uh, ph)||| (see equation (2.24)), we see that this stability
estimate is weaker and h-dependent for pressure ph. In this section, we will give a
new and stronger stability estimate.

Definite the norm

|||(u, p)|||2∗ = ‖∇u‖2 + ‖p‖2 +
∫

�0
h

hμ|[p]|2ds. (4.16)

Theorem 4.1 There exists a constant β > 0 such that the following inf -sup
condition holds.

β|||(uh, ph)|||∗ ≤ sup
(vh,qh)∈Xh×Mh

B((uh, ph), (vh, qh))

|||(vh, qh)|||∗ , (uh, ph) ∈ Xh × Mh.

(4.17)
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Proof We first recall some known results. For any ph ∈ Mh (⊂ M), there exists
w ∈ X such that (see equation (3.5))

divw = ph, ‖w‖1 ≤ C0‖ph‖. (4.18)

Let wh = Rhw ∈ Xh be the finite element elliptic projection of function w (see
equation (3.6)), which satisfies

‖∇wh‖ ≤ ‖∇w‖, ‖w − wh‖ + h‖w − wh‖1 ≤ C1h‖w‖1. (4.19)

Now, for any 0 < α ≤ 1, we have from equations (2.21), (2.23), 4.18 and 4.19 that

B((uh, ph), (uh − αwh, ph))

= a(uh, γ (uh − αwh)) + b(ph, γ (uh − αwh)) + c(uh, ph) + G(ph, ph)

= (∇uh, ∇(uh − αwh)) + α(divwh, ph) + G(ph, ph)

= ‖∇uh‖2 − α(∇uh, ∇wh) + α(div(wh − w), ph) + α‖ph‖2 + G(ph, ph)

≥ (1 − 1

2
αC2

0)‖∇uh‖2 + 1

2
α‖ph‖2 + α(div(wh − w), ph) +

∫

�0
h

hμ|[ph]|2ds.

Next, by using the divergence formula and noting that wh −w ∈ [H 1
0 (�)]2, we have

α(div(wh − w), ph) = α
∑

K∈Th

∫

∂K

(wh − w) · nphds

= α
∑

e∈�0
h

∫

e

(wh − w) · [ph]ds ≤ α

(∫

�0
h

h−1
μ |wh − w|2

) 1
2
(∫

�0
h

hμ|[ph]|2
) 1

2

≤ αCh−1(‖wh − w‖ + h‖wh − w‖1)

(∫

�0
h

hμ|[ph]|2
) 1

2

≤ αCC1‖w‖1

(∫

�0
h

hμ|[ph]|2
) 1

2

≤ αC2‖ph‖
(∫

�0
h

hμ|[ph]|2
) 1

2

≤ 1

2
(αC2)

2‖ph‖2 + 1

2

∫

�0
h

hμ|[ph]|2,

where we have used the trace inequality, (4.18) and (4.19). Combining the above
estimates we obtain

B((uh, ph), (uh − αwh, ph))

≥ (1 − 1

2
αC2

0)‖∇uh‖2 + 1

2
α(1 − αC2

2)‖ph‖2 + 1

2

∫

�0
h

hμ|[ph]|2ds. (4.20)

Taking α small enough, it implies from (4.20) that

B((uh, ph), (uh − αwh, ph)) ≥ Cα|||(uh, ph)|||2∗, ∀ (uh, ph) ∈ Xh × Mh. (4.21)

On the other hand, from (4.18) and (4.19) we have

‖∇(uh − αwh)‖ ≤ ‖∇uh‖ + ‖∇wh‖ ≤ ‖∇uh‖ + C0‖ph‖.
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Hence

|||(uh − αwh, ph)|||∗ ≤ (1 + C0)|||(uh, ph)|||∗, ∀ (uh, ph) ∈ Xh × Mh. (4.22)

Now, it follows from equations (4.21) and (4.22) that

sup
(vh,qh)∈Xh×Mh

B((uh, ph), (vh, qh))

|||(vh, qh)|||∗ ≥ B((uh, ph), (uh − αwh, ph))

|||(uh − αwh, ph)|||∗
≥ Cα|||(uh, ph)|||2∗

|||(uh − αwh, ph)|||∗ ≥ Cα|||(uh, ph)|||∗
(1 + C0)

.

This gives the inf -sup condition (4.17) with β = Cα/(1 + C0).

From Theorem 4.1 and the FVE (2.26), we immediately obtain the stability result:
there exists a positive constant C > 0 such that the FVE solution (uh, ph) satisfies

|||(uh, ph)|||∗ ≤ C‖f‖.

5 Numerical experiment

In this section, we will present some numerical results to illustrate our theoretical
analysis.

Let us consider problem (2.1)∼(2.3) with the exact solution (u, p):

u(x) = (u1(x1, x2), u2(x1, x2)), u1 = 2π sin2(πx1) sin(πx2) cos(πx2),(5.1)

u2 =−2π sin2(πx2) sin(πx1) cos(πx1), p(x1, x2)=cos(πx1) cos(πx2),(5.2)

and the corresponding volumetric force f = −ν�u + ∇p, ν = 0.1 and � = (0, 1)2.
First, we express the discrete system (2.11)∼(2.12) as a linear algebraic systems

in the following form
(

A −B

BT G

)(
U

P

)

=
(

F

0

)

, (5.3)

where the matrices A, B and G are, respectively, deduced from the bilinear
a(·, ·), b(·, ·) and G(·, ·) in the usual manner, and F is the variation of the source
term. In particular, the stabilized matrix G = (gij )M×M is computed by (see
equation (2.10))

gij = G(χi, χj ) =
∫

�0
h

hμ[χi] · [χj ]ds =
∑

e∈�0
h

μh2
e[χi]e · [χj ]e, 1 ≤ i, j ≤ M,

(5.4)
where {χj } are the basis functions of space Mh. In general, the piecewise constant
basis function χm (corresponding to element Km) is local such that for edge e =
∂Ki ∩ ∂Kj , [χm]e = 0 if m �= i, j . Thus, we see that the stabilized matrix G can be
generated easily with very little computation cost. In general, large parameter μ in
equation (5.4) may enhance the stability of the discrete system (see equation (2.28)),
but also may magnify the error bound (see the error estimates). Therefore, if not
necessary, we usually take μ = 1.
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Table 1 Convergence rates of gradient and pressure approximations

‖u − uh‖ ‖p − ph‖
mesh h error rate error rate

1/8 0.5443 − 0.8379 −
1/16 1.465e − 1 1.893 4.664e − 1 0.845

1/32 3.751e − 2 1.966 2.421e − 1 0.946

1/64 0.968e − 2 1.954 1.251e − 1 0.952

1/128 0.248e − 2 1.965 6.487e − 2 0.948

In the numerical experiments, we take the pressure-correction algorithm to solve
the discrete system (5.3):

AU − BP = F, BT U + GP = 0.

The procedure is as follows:

Step 1 Choose a prediction pressure P ∗;
Step 2 Solve U∗ from equation AU∗ = BP ∗ + F ;
Step 3 Solve the correction quantity P ′ from equation GP ′ = −BT U∗, and set the

correction pressure P = P ′ + P ∗;
Step 4 Solve the correction velocity from equation AU = BP + F ;
Step 5 If ‖U −U∗‖+‖P −P ∗‖ ≤ ε (tolerance of error), output (U, P ); otherwise,

set P ∗ = P and return to Step 2.

We partition domain � into a uniform triangulation Th made of triangle meshes.
The refined meshes of Th are obtained by connecting the midpoints of each edge of
elements in Th. Denote by eh the computation error in the L2-norm, the numerical
convergence rate r is computed by using the formula r = ln(eh/e h

2
)/ ln 2. Table 1

gives the numerical results with successively halved mesh size h. We see that the
convergence rates for the velocity and pressure approximations are just about O(h2)

and O(h), respectively, as the theoretical prediction. In particular, no oscillation
phenomenon is observed in the pressure computation.

6 Conclusion

We present a stabilized finite volume method for Stokes problem using the low-
est order P1 − P0 element pair. The stabilized method is designed by adding the
jump term of the discrete pressure to the continuity approximation equation. A dis-
crete inf -sup condition is established for the stabilized finite volume scheme which
assures the stability of the discrete solutions. The optimal error estimates are derived
in the H 1- and L2-norms for velocity and in the L2-norm for pressure, respectively.
Obviously, our stabilized method includes the corresponding finite element method
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as a simplified situation (T ∗
h = Th, Vh = Xh, γ = I case). Another important ele-

ment in favor of our stabilized method is that it can be extended to the Navier-Stokes
equations.
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