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Abstract In fields ranging from computer vision to signal processing and statis-
tics, increasing computational power allows a move from classical linear models
to models that incorporate non-linear phenomena. This shift has created interest in
computational aspects of differential geometry, and solving optimization problems
that incorporate non-linear geometry constitutes an important computational task. In
this paper, we develop methods for numerically solving optimization problems over
spaces of geodesics using numerical integration of Jacobi fields and second order
derivatives of geodesic families. As an important application of this optimization
strategy, we compute exact Principal Geodesic Analysis (PGA), a non-linear version
of the PCA dimensionality reduction procedure. By applying the exact PGA algo-
rithm to synthetic data, we exemplify the differences between the linearized and exact
algorithms caused by the non-linear geometry. In addition, we use the numerically
integrated Jacobi fields to determine sectional curvatures and provide upper bounds
for injectivity radii.
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1 Introduction

Manifolds, sets locally modeled by Euclidean spaces, have a long and intriguing
history in mathematics, and topological, differential geometric, and Riemannian
geometric properties of manifolds have been studied extensively. The introduc-
tion of high performance computing in applied fields has widened the use of
differential geometry, and Riemannian manifolds, in particular, are now used for
modeling a range of problems possessing non-linear structure. Applications include
shape modeling (complex projective shape spaces [23] and medial representations
of surfaces [1, 20]), imaging (tensor manifolds in diffusion tensor imaging [7,
8, 30] and image segmentation and registration [2, 31]), and several other fields
(forestry [19], human motion modeling [36, 40], information geometry and signal
processing [42]).

To fully utilize the power of manifolds in applied modeling, it is essential
to develop fast and robust algorithms for performing computations on mani-
folds, and, in particular, availability of methods for solving optimization prob-
lems is paramount. In this paper, we develop methods for numerically solving
optimization problems over spaces of geodesics using numerical integration of
Jacobi fields and second order derivatives of geodesic families. In addition, the
approach allows numerical approximation of sectional curvatures and bounds on
injectivity radii [19]. The methods apply to manifolds represented both para-
metrically and implicitly without preconditions such as knowledge of explicit
formulas for geodesics. This fact makes the approach applicable to a range of
applications, and it allows exploration of the effect of curvature on non-linear
statistical methods.

To exemplify this, we consider the problem of capturing the variation of a set of
manifold valued data with the Principal Geodesic Analysis (PGA, [12]) non-linear
generalization of Principal Component Analysis (PCA). Until now, there has been
no method for numerically computing PGA for general manifolds without lineariz-
ing the problem. Because PGA can be formulated as an optimization problem over
geodesics, the tools developed here apply to computing it without discarding the non-
linear structure. As a result, the paper provides an algorithm for computing exact
PGA for a wide range of manifolds.

1.1 Related work

A vast body of mathematical literature describes manifolds and Riemannian struc-
tures; [5, 26] provide excellent introductions to the field. From an applied point of
view, the papers [4, 22, 24, 28, 35, 39] address first-order problems such as comput-
ing geodesics and solving the exponential map inverse problem, the logarithm map.
Certain second-order problems including computing Jacobi fields on diffeomorphism
groups [6, 44] have been considered but mainly on limited classes of manifolds.
Different aspects of numerical computation on implicitly defined manifolds are cov-
ered in [32, 33, 45], and generalizing linear statistics to manifolds has been the focus
of the papers [9, 12, 19, 21, 29].
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Optimization problems can be posed on a manifold in the sense that the domain
of the cost function is restricted to the manifold. Such problems are extensively cov-
ered in the literature (e.g. [27, 43]). In contrast, this paper concerns optimization
problems over geodesics with the complexity residing in the cost functions and not
the optimization domains.

The manifold generalization of linear PCA, PGA, was first introduced in [11]
but it was formulated in the form most widely used in [12]. It has subsequently
been used for several applications. To mention a few, the authors in [7, 12] study
variations of medial atoms, [41] uses a variation of PGA for facial classification,
[34] presents examples on motion capture data, and [39] applies PGA to vertebrae
outlines. The algorithm presented in [12] for computing PGA with tangent space
linearization is most widely used. In contrast, [34] computes PGA as defined in
[11] without approximations, exact PGA, on a particular manifold, the Lie group
SO(3). The paper [38] uses the methods presented here to experimentally assess
the effect of tangent space linearization on high dimensional manifolds modeling
real-life data.

A recent wave of interest in manifold valued statistics has lead to the devel-
opment of Geodesic PCA (GPCA, [19]) and Horizontal Component Analysis
(HCA, [37]). GPCA is in many respects close to PGA but GPCA optimizes
for the placement of the center point and minimizes projection residuals along
geodesics. HCA builds low-dimensional orthogonal decompositions in the frame
bundle of the manifold that project back to approximating subspaces in the
manifold.

1.2 Content and outline

The paper presents two main contributions: (1) how numerical integration of Jacobi
fields and second order derivatives can be used to solve optimization problems over
geodesics; and (2) how the approach allows numerical computation of exact PGA.
In addition, we use the computed Jacobi fields to numerically approximate geomet-
ric properties such as sectional curvatures. After a brief discussion of the geometric
background, explicit differential equations for computing Jacobi fields and second
derivatives of geodesic families are presented in Section 3. The actual derivations
are performed in the appendices due to their notational complexity. In Section 4, the
exact PGA algorithm is developed. We end the paper with experiments that illustrate
the effect of curvature on the non-linear statistical method and with estimation of
sectional curvatures and injectivity radii bounds.

The importance of curvature computations is noted in [19], which lists the abil-
ity to compute sectional curvature as a high importance open problem. The paper
presents a partial solution to this problem: we discuss how sectional curvatures can
be determined numerically when either a parametrization or implicit representation
is available.

In the experiments, we evaluate how the differences between the exact and lin-
earized PGA depend on the curvature of the manifold. This experiment, which to the
best of our knowledge has not been made before, is made possible by the generality
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of the optimization approach that makes the algorithm applicable to a wide range of
manifolds with varying curvature.

2 Background

This section will include brief discussions of relevant aspects of differential and
Riemannian geometry. We keep the notation close to the notation used in the book
[5]; see in addition Appendix A.

2.1 Manifolds and their representations

In the sequel, M will denote a Riemannian manifold of finite dimension n. We will
need M to be sufficiently smooth, i.e. of class C¥ for k = 3 or 4 depending on
the application. For concrete computational applications, we will represent M either
using parametrizations or implicitly. A local parametrization is a map x € CX(U, M)
from an open subset U C R” to M. With an implicit representation, M is represented
as a level set of a differentiable map F : R” — R”,e.g. M = F~1(0). If the Jacobian
matrix DF has full rank n everywhere on M, M will be an (m — n)-dimensional
manifold. The space R™ is called the embedding space. When dealing with implicitly
defined manifolds, we let m and n denote the dimension of the domain and codomain
of F, respectively, so that the dimension 7 of the manifold equals m — n. Examples
of applications using implicit representations include shape and human poses models
[18, 39], and several shape models use parametric representations [20, 25].!

2.2 Geodesic systems

Given a local parametrization x : U — M, a curve «; on M is a geodesic if the curve
x; in U representing oy, i.e. x~ ! oy = x,, satisfies the ODE

U

x,":-er,(x,)x,'x,f, k=1,....1n. (1)

i.j

Here Ff.‘. denotes the Christoffel symbols of the Riemannian metric. Conversely,
geodesics can be found by solving the ODE with a starting point xg = ¢ and initial
velocity Xo = v as initial conditions. The exponential map Exp,v maps the initial
point ¢ € M and velocity v € T; M to ay, the point on the geodesic at time ¢ = 1.
When defined, the logarithm map Log, y is the inverse of Exp,, i.e. Exp,Log,y = y.
For implicitly represented manifolds, the classical ODE describing geodesics is not
directly usable because neither parametrizations nor Christoffel symbols are directly

!Other representations include discrete triangulations used for surfaces and quotients M/G of a larger
manifold M by a group G. The latter is for example the case for Kendall’s shape-spaces E{’} [23]. Kendall’s
shape-spaces for planar points are actually complex projective spaces C P¥~2 for which parameterizations
are available, and, for points in 3-dimensional space and higher, the shape-spaces are anomalous and not
manifolds. The spaces studied in [19] belong to this class.
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available. Instead, the geodesic with initial point ¢ and initial velocity v can be found
as the x-part of the solution of the IVP

pt = - (Z /Lk(x,, Pt)Hx,(Fk)> Xt s

k=1
5= (1= Dy F'DLF) py
X0=¢, po=1,

see [4]. Note that x; is a curve in the embedding space R™ but since M is a subset
of the embedding space and the starting point ¢ is in M, x; will stay in M for all ¢.
Recall that F : R” — R” is the map defining the manifold by e.g. M = F~1(0)
and that H (F¥) denotes the Hessian of the kth component of F. F is map between
Euclidean spaces and the Hessian is therefore the ordinary Euclidean Hessian matrix.
The map 4 : R” x R™ — R” is defined by (x, p) — —(D,FT)Tp where the
symbol DFT denotes the generalized inverse or pseudo-inverse of the non-square
matrix DF. Since DF has full-rank n, DF' equals DFT(DFDFT)~!. Numerical
stability of the geodesic system is treated in [4].

2.3 Geodesic families and variations of geodesics

In the next sections, we will treat optimization problems over geodesics of which
the PGA problem (6) constitute a concrete example; in addition, problems such as
geodesic regression [10] and manifold total least squares belong to this class. For this
purpose, we here recall the close connection between variations of geodesics, Jacobi
fields, and the differential dExp. Let «; ; be a family of geodesics parametrized by
s, i.e. for each 5, the curve r — «; ; is a geodesic. By varying the parameter s, a
vector field js o018 obtained.” These Jacobi fields are uniquely determined by the
initial conditions Jy and é)t Jo, the variation of the initial points xo ; and the covariant
derivative of the field at t+ = 0, respectively. Define g, = x5, vs = X0, and
w = js vo. If jsqo = Joand w = ‘I;Jo then fsEquS (tvs)|s=0 equals J; [5, Chap.
5]. When g¢; is constant, i.e. g = ¢, we have the following connection between J;
and the differential dExp:

d,UOEqutu) = J;. (3)

Jacobi fields can equivalently be defined as solutions to an ODE that involves the
curvature endomorphism of the manifold [5, Chap. 5]. However, the curvature endo-
morphism is not easily computed when the manifold is represented implicitly, and,
therefore, the ODE is hard to use for computational applications in this case. In the
next section, we numerically compute Jacobi fields by integrating the differential of
the system (2).

2Recall that ddsa,’o is a shorthand for dds o 5|s=0, see Appendix A.
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Jacobi fields can be used to retrieve various geometric information e.g. sectional
curvature. Let J; denote a Jacobi field along the geodesic «; with Jo = 0 and deriva-
tive w = Z Jo. Assume the vectors vy = ¢ and w are orthonormal. These vectors
define a plane o = span {vg, w} in TyyM, and Ky, (o) denotes the sectional curva-
ture of the plane o. Because K, (o) occurs in a Taylor expansion of the length || J; ||,
the sectional curvature can be estimated by

6
Koy (0) = 3 t=1J®D “

for small ¢. Furthermore, if J; is a non-zero Jacobi field with Jy = 0 along a
geodesic o, and, for some 7 > 0, also J; = 0 then «; is called a conjugate point
to «g. This can provide an upper bound on the injectivity radius of M, that, in gen-
eral terms, specifies the minimum length of non-minimizing geodesics. Figure 1
illustrates the situation on the sphere S>. We will explore both these points in the
experiments section.

Fig. 1 The sphere S? with a Jacobi field along a geodesic connecting the poles. Each pole is a conjugate
point to the other since the non-zero Jacobi field vanishes. The injectivity radius is equal to the length of
the geodesic,
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2.4 Principal geodesic analysis

Principal Component Analysis (PCA) is widely used to model the variability of
data in Euclidean spaces. The procedure provides linear dimensionality reduc-
tion by defining a sequence of linear subspaces maximizing the variance of the
projection of the data to the subspaces or, equivalently, minimizing the recon-
struction errors. The kth subspace is spanned by an orthogonal basis {v', ..., v}
of principal components v!, ..., vk, and the ith principal component is defined

recursively by

N i—1

o= argmax||v||:1;/ > o) + Z(xj, vl>2 ®)

j=1 =1

when formulated as to maximize the variance of the projection of the dataset
{x1, ..., xn} to the subspaces span {vl, R vi_l}.

PCA is dependent on the vector space structure of the Euclidean space and hence
cannot be performed on manifold valued datasets. Principal Geodesic Analysis was
developed to overcome this limitation. PGA finds geodesic subspaces centered at
point u € M with u usually being an intrinsic mean® of the dataset {x1, ..., xy},
xj € M. The kth geodesic subspace Sy of T, M is defined as Exp, (Vi) with
Vi = span {v', ..., vX} being the span of the principal directions v', ..., v defined
recursively by

N
1
vl = argmaxy,_ yevit, E d(w, 75, (x;))?, (6)
—

Sy = EXPM(SPan{Vifl, v}).

The projection 75 (x) of a point x € M onto a geodesic subspace S = Exp, V' is

ms(x) = argmin, ¢d(x, y)*> = argmin, g|[Log,x > (7)
= Exp, (argmin, cy [Loggyp, 2 [1%)-

The term being maximized in (6) is the sample variance of the projected data, the
expected value of the squared distance to u, and PGA therefore extends PCA by
finding geodesic subspaces in which variance is maximized.*

Since both optimization problems (6) and (7) are difficult to optimize, PGA has
traditionally been computed using the orthogonal projection in the tangent space

3The notion of intrinsic mean goes back to Fréchet [13] and Karcher [21]. As in [12], an intrinsic mean is
here a minimizer of argminﬂeM Z?’Zl d(p, x; )2, Uniqueness issues are treated in [21].

4A slightly different definition that uses one-dimensional subspaces and Lie group structure was
introduced in [11].
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of n to approximate the true projection. With this approximation, equation (6)
simplifies to

N i—1

, 1 2 1\
v A a_[‘gmaX”U”:] N Z (Logﬂx./, U> + Z <L0gﬂxj, v >
j=l1 =1

which is equivalent to (5), and, therefore, the procedure amounts to performing reg-
ular PCA on the vectors Log, x;. We will refer to PGA with the approximation as
linearized PGA, and, following [34], PGA as defined by (6) will be referred to as
exact PGA. The ability to iteratively solve optimization problems over geodesics
that we will develop in the next sections will allow us to optimize (6) and hence
numerically compute exact PGA.

In general, PGA might not be well-defined as the intrinsic mean might not be
unique and both existence and uniqueness may fail for the projections (7) and the
optimization problem (6). The convexity bounds of Karcher [21] ensures uniqueness
of the mean for sufficiently local data but setting up sufficient conditions to ensure
well-posedness of (7) and (6) for general manifolds is difficult because they depend
on the global geometry of the manifold.

There is ongoing discussion of when principal components should be constrained
to pass the intrinsic mean as in PGA or if other types of means should be used, see
[19] with discussions. In Geodesic PCA [19], the principal geodesics do not necessar-
ily pass the intrinsic mean, and similar optimization that allows the PGA base point to
move away from the intrinsic mean can be carried out with the optimization approach
used in this paper. PGA can also be modified by replacing maximization of sample
variance by minimization of reconstruction error. This alternate definition is not
equivalent to the definition above, a fact that again underlines the difference between
the Euclidean and the curved situation. We will illustrate differences between the for-
mulations in the experiments section but we mainly use the variance formulation (6).

3 Optimization over geodesics

Equation (6) and (7) defining PGA are examples of optimization problems over

geodesics that in those cases are represented by their starting point p and initial
velocity v. More generally, we here consider problems

min F(Exp,v 8

o (Exp,v) ®)

where F : M — R is a function defining the cost of the geodesic Exp,fv here at

time r = 1.° In order to iteratively solve optimization problems of the form (8), we

51n [34], the fact that 77 has a closed form solution on the sphere S3 when § is a one-dimensional geodesic
subspace is used to iteratively compute PGA with the [11] definition.

SEven more generally, F can be a function of the entire curve Exp, v, € R instead of just for the point
Exp,tv, t = 1 Note that for PGA, the initial velocity is in addition constrained to subspaces of T, M.
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will need derivatives of Exp, v since d F (Exp,v) = dyF dExp,v with y = Exp, v.
Thus, we wish to compute the differential of Exp, v with respect to initial point ¢ and
initial velocity v. Since (6) is a function of the projection g given by (7), we will
later see that we need the second order differential of Exp as well.

Only in specific cases where explicit expressions for geodesics are available can
the above mention differentials be derived in closed form. Instead, for general mani-
folds, the ODE:s (1) and (2) describing geodesics can be differentiated giving systems
that can be numerically integrated to provide the differentials. This approach relies
on the fact that sufficiently smooth initial value problems (IVPs) are differentiable
with respect to their initial values, see e.g. [16, Chap. 1.14].

We will here derive explicit expressions for IVPs describing the differential of
the exponential map and Jacobi fields. In addition, we will differentiate the IVPs a
second time. The concrete expressions will allow the IVPs to be used for iterative
optimization of problems on the form (8). In particular, they will be used for the
exact PGA algorithm presented in the next section. The basic strategy is simple: we
differentiate the geodesic systems of Section 2.2. Though the resulting equations are
notationally complex, their derivation is in principle just repeated application of the
chain and product rules for differentiation. MATLAB code for numerical integration
of the systems is available at http://image.diku.dk/sommer.

Since the geodesic equations (2) contain the generalized inverse of the Jacobian
matrix D F, we will use the following formula for derivatives of generalized inverses.
When an n x m matrix A; depends on a parameter s and has full rank n, and if its
generalized inverse A: is differentiable, then the derivative js (A:) is given by

4D = AL (LANAT+ (1 - ALA) (L AT ADT AL O

This result was derived in [3, 14] and [17] for the full-rank case. We will apply (9)
with Ay = Dy,  F when x; 5 is an s dependent family of curves in the embedding
space R that are geodesics on M and when ¢ is fixed. To see that Dy, ,F is dif-
ferentiable with respect to s when x; ; depends smoothly on s, take a frame of the
normal space to M in a neighborhood of x; s, and note that Dy, . F Tisa composition
of a invertible map onto the frame depending smoothly on s and the frame itself.

The explicit expressions for the differential equations are notationally heavy.
Therefore, we only state the results here and postpone the actual derivation to
Appendix B.

Let M C R™ be defined as a regular zero level set of a C3 map F : R” — R”.
Using the embedding, we identify curves in M and vectors in 7 M with curves and
vectors in R™. Let x; be a geodesic with x9 = ¢ and X9 = v. The Jacobi field J;
along x; with Jo = u and ft Jo = w can then be found as the z-part of the solution

of the IVP
5’! I Yt
.| =F t
(8) = (=(2):
Yo\ _ (w
20 u)’

with Fq”v the map given in explicit form in Appendix B.

10)
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As previously noted, Jacobi fields can be described using an ODE incorporat-
ing the curvature endomorphism in the parameterized case. We can, however, apply
a procedure similar to the implicit case and derive and IVP by differentiating the
geodesic system (1). We will use the resulting IVP (24) when working with variations
of geodesics in the parameterized case, see Appendix B.

The systems (10) and (24) are both linear in the initial values (w u)” as expected
of systems describing differentials. They are non-autonomous due to the dependence
on the position on the curve x;.

Recall the equivalence (3) between Jacobi fields and dExp: if (y;, z;) satis-
fy (10) (or (24)) with initial values (w, 0)” then dvExp,w is equal to z;. There-
fore, we can compute the differential d,Exp, with respect to v by numerically
integrating the system using a basis {w!, ..., w"} for the tangent space T,M at
g € M. With initial conditions (0, u)” instead, we can similarly compute the deriva-
tive with respect to the initial point g. Note that Exp,Log,y = y implies that

dyLog, = (dLog, yEqu)fl , a fact that allows the computation of dyLog, as well.

Assuming the manifold is sufficiently smooth, we can differentiate the systems
(10) and (24) once more and thereby obtain second order information that we will
need later. The main difficulty is performing the algebra of the already complicated
expressions for the systems, and, for the implicit case, we will need second order
derivatives of the generalized inverses Dy, , F'. For simplicity, we consider a fami-
lies of geodesics with stationary initial point. The derivations are again postponed to
Appendix B.

Let M be of class C*, and let o, s be a family of geodesics. Assume x : U — M

is a local parametrization containing o s, and let x; s be the curve in U representing
1

Qrs,1.e. X " oqpy = X5 Let w € T;M with aps = g and vy = &g . Define
u = jsvo, and let Vg o w.u = fs (deEquw) = fs (jr (Equvs + rw) ) Then, in
coordinates defined by X, Vv, w,. can be found as the r-part of the solution of the
IVP

g _ P qr

(7) =Gt (7))
1)

q0) _ (0

ro)  \0) "’
with G the map given in explicit form in Appendix B.

q,v0,w,u
Now, let instead M C R™ be defined as a regular zero level set of a C* map
F :R™ — R". Then V; y,,w,. can be found as the r-part of the solution of the IVP

g Al qr
() = Gt (= (2))-

with G ;’v o.w. the map given in explicit form in Appendix B.

12)
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We note that solutions to (11) and (12) depend linearly on u even though the
systems themselves are not linear.

3.1 Numerical considerations

The geodesic systems (1) and (2) can in both the parametrized and implicit case be
expressed in Hamiltonian forms. In [4], the authors use this property along with sym-
plectic numerical integrators to ensure the computed curves will be close to actual
geodesics. This is possible since the Hamiltonian encodes the Riemannian metric.
The usefulness of pursuing a similar approach of expressing the differential systems
in Hamiltonian form and using symplectic integrators to preserve the Hamiltonians
is limited since there is no direct interpretation of such Hamiltonians in contrast to
the case for geodesic systems.

Along the same lines, we would like to use the preservation of quadratic forms for
symplectic integrators [15] to preserve quadratic properties of the differential of the
exponential map, e.g. the Gauss Lemma [5]. We are currently investigating numerical
schemes that could possibly ensure such stability.

4 Exact principal geodesic analysis

As an example of how the IVPs describing differentials allow optimizing over
geodesics, we will provide algorithms that allow iterative optimization of (6) and
that thus allow PGA as defined in [12] to be computed without the traditional linear
approximation.

Solving the optimization problem (6) requires the ability to compute the projection
5. We start with the gradient needed for iteratively computing the projection before
deriving the gradient of the cost function of (6). Computing these gradients will
require the differentials over geodesic families derived in Section 3. Thereafter, we
present the actual algorithms for solving the problems before discussing convergence
issues.

The optimization problems (6) and (7) are posed in the tangent space of the man-
ifold at the sample mean and the unit sphere of that tangent space, respectively.
These domains have relatively simple geometry, and, therefore, the complexity of
the problems is contained in the cost functions. Because of this, we will not need
optimizing algorithms that are specialized for domains with complicated geometry.
For simplicity, we compute gradients and present steepest descent algorithms but it
is straightforward to compute Jacobians instead and use more advanced optimization
algorithms such as Gauss-Newton or Levenberg-Marquardt.

The overall approach is similar to the approach used for computing exact PGA
in [34]. Our solution differs in that we are able to compute wg and its dif-
ferential without restricting to the manifold SO(3) and in that we optimize the
functional (6) instead of the cost function used in [11] that involves one-dimensional
subspaces.
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4.1 The geodesic subspace projection

We consider the projection ws(x) of a pointx € M on a geodesic subspace S. Assume
S is centered at . € M, let V be a k-dimensional subspace of T;, M such that § =
Exp, V, and define a residual function Ry, : V. — Rby w — ||LogE)q)uwx||2 that
measures squared distances between x and points in S. Computing 7s(x) by solving
(7) is then equivalent to finding w € V minimizing Ry ,. To find the gradient of Ry ,,
choose an orthonormal basis for V' and extend it to a basis for 7), M. Furthermore, let
wo € V and choose an orthonormal basis for the tangent space TE"Pu wo M . Karcher
showed in [21] that the gradient grad»"||L0gvx||2 equals —2Log, x, and, using this,
we get the gradient of the residual function as

VeV Ry = —2(Dw0ExpM)lT’_._’k(LogEXprox) (13)

with (Dy,Exp W1k denoting the first k columns of the matrix Dy, Exp .« expressed

using the chosen bases.” This matrix can be computed using the IVPs (10) or
(24).

4.2 The differential of the subspace projection

In order to optimize (6), we will need to compute gradients of the form

vert 2
grady, “d(u, s, (x)) (14)

with V, = span{vl, ook, v}, S = ExpM(Vv) and u € M .8 This will involve
the differential of g, (x) with respect to v. Since s, (x) is defined as a minimizer
of (7), its differential cannot be obtained just by applying the chain and prod-
uct rules. Instead, we use the implicit function theorem to define a map W that
equals g, (x) around a neighborhood of v in 7}, M. We then derive the differential
of U.

For the result below, we extend the domain of residual function Ry, defined above
from V to the entire tangent space 7, M. We will a choose basis for T, M, and we
let H(Ry,,) denote the Hessian matrix of R, , with respect to the basis. Similarly,
we will choose a basis for V,,, and we let H(Ry, M|Vv0) denote the Hessian matrix
of Ry, restricted to Vy, with respect to this basis. Using this notation, we get the
following result for the derivative of the projection g, (x):

7In coordinates of the bases, the differential dy,Exp,, becomes a matrix that we write Dy, Exp,,. The

weV

notation V, -

notation.

denotes differentiation along the basis elements of V. See Appendix A for additional

8Since v in (6) is restricted to the unit sphere, we will not need the gradient in the direction of vy, and,
therefore, we find the gradient in the subspace Vvt instead of in the larger space span {v!, ..., ¥} As
noted in Section 2.4, the optimization approach presented here can be extended to include optimization of
the base point u as well. Here, we use a fixed base point that for PGA is an intrinsic mean of a data set.
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Proposition 1 Let {v', ..., v*} be an orthonormal basis for a subspace V C .M.
For each v € VL, let V, be the subspace span{V, v}, and let S, = ExpM Vy be the
corresponding geodesic subspace. Fix vy € V* and define wy = Logﬂrrgv0 (x) foran
x € M. Suppose the matrix Hy,(Ry ;| Vvo) has full rank k+1. Extend the orthonormal

basis {v', ..., vk, vo/llvoll} for Vy, to an orthonormal basis for T, M. Then

uevlf) _ wevvlo r
Dy, Vs, (x) = —(DwoEXp,)vx uvg, 50 | Vwo — Rau
k+1
+w, (Donxplu)Ex,u,vo,Svo- (15)

The coordinates of the vector Uy . v,s,, in the basis for Vy, are contained in the

(k + 1)st column of the matrix H,, (Rx,u|Vv0)_lr the scalar w](;'H is the (k + 1)st
coordinate of wy in the basis, and Ex ;. v,s,, is the matrix

-1
(_Hwo (Rx,M|Vu0) Bwo,vo)

Iy—(k+1)

With By, the last n — (k + 1) columns of the matrix (Hy, (RX,M) V vo)T and
L, (k+1) the identity matrix.

Before proving the result, we discuss its use for computing the gradient (14). The
assumption that the Hessian of the restricted residual Ry, |v,, must have full rank is
discussed below.

Because d(u, s, ()c))2 = ||L0gMn5v (x)||2, we have

veVI%

Vo

1

T
d(, s, (x))* =2 ((Dns% oLog, ) (Dvo Mo, (x))) (Log, s, ().
16)

which, combined with (15), gives (14). In order to compute the right hand side of
(15), it is necessary to compute parts of the Hessian of the non-restricted resid-
ual Ry ,. For doing this, we will use the alternative formulation R, ,(w) =
||L0ngXpr||2 for the residual function. With wo,v € T, M let y = Exp,wo.
Working in the chosen orthonormal basis, we have

Vuo Ry = 2 ((DyLog,) DuyExp,,)" Log,y .

and hence

T
js (VWO+U5RX,M> |5=O =2 (dds (DExpM(wO-t,-sv)Lng) |S=0 (DWOEXPM)) Lngy

$2((DyLog,) & (DugasExn,) o) Log,y

+2 ((DyLog,) (DuExp,))" & (Log,Exp,wo+sv)) 5= -
(17
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Note that
js (Log,Exp,, (wo + sv)) |s=0 = (DyLog,) (Dw,Exp,,) v.

Using that ;S (A_l) = A7! (js AS) AS_l for a time dependent, invertible matrix A

N N

and the fact that Exp,Log,z = z for all z, we get

-1
js (DEXpM(w0+Sv)Lng> ls=0 = js (DLogx(Expuwo+sv)Epr> ls=0
d
=~ (DyLog,) &, (Drog, g, s Xy ) li=o (DyLog,)

The middle term of this product and the term js (Dw0+stpr,) |s=0 in (17) can be
computed using the [IVPs (11),(12) discussed in Section 3.

Proof (Proposition 1) Extend the basis {v', ..., vk, vo/|lvoll} for Vi, to an orthonor-
mal basis for 7}, M. The argument is not dependent on this choice of basis, but it will
make the reasoning and notation easier. Let S C T, M x v+ be an open neighborhood
of (wg, vg) and define the map Fy : S — R”7 by

Vu Rx,,u !
Vwa,,L-vk v TV ®
Fy(w,v)=| VwRyu-v | = (( U) w xm)
w - u'(v) Ul'w
w - w1 ()
with the vectors u' (v), . .., u"~*+D (v) constituting an orthonormal basis for V- for

each v and with (V v) and U, denoting the matrices having v, v and u’(v) in the
columns, respectively. Since (Vi Ry, 10, v) = duy Ry, (v) = Oforall v € V, because
wo is a minimizer for Ry , among vectors in in V,,, we see that Fy (wo, vo) vanishes.
Therefore, if DEUwo, w FV is non-singular, the implicit function theorem asserts the
existence of a map W from a neighborhood of vy to T, M with the property that

Fy (¥ (v), v) = 0 for all v in the neighborhood. We then compute

0= Dy Fy (W(v), v) = (DE”WO’UO)F\/) (Do ¥ () + (waO,UO)F\/)

and hence

UEVULO w -1 verio
Dy W) = — (D(wo’vo)Fv> Dw ™ Fy) . (18)
For the differentials on the right hand side of (18), we have
veVy weVy veVy T T

9See [3, Eq. (2)].
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and
T T
N (v v0> d2 (VuRen)) _ (Hwo (Re.s0) (v v())) (19)
(wo,v0) 'V T T '
Uy, Uy,
With the choice of basis, the above matrix is block triangular,
A B
w _ wo,vp Bwo,vo
Do, v Fv = < 0 Cwo,v0> ’ (20)
with Ay, v, equal to Hy, (Rx,p.|Vv ) The requirement that D(w ; )FV is non-

singular is fulfilled, because H,, (RX, wl Vv0> has rank k 4 1 by assumption and Uy,
hasrank n — (k + 1).

L

Since the first k rows of D, 0. F y are zero, we need only the last  — k columns

(wo,v0)
-1
of ( (o, vO)FV> in order to compute (18). The vector Uy ;. v,,s,, as defined in the

statement of the theorem is equal to the (k+1)st column. Let Ey 1,00,y be the matrix
consisting of the remaining n — (k 4 1) columns. Using the form (20), we have

-1
_ 1
Ex,ﬂavo,Svo = ( Hy, (Rx,u|Vvo> By, vocwo vo)

1
Cwo L)
Assume {u', ..., u/} is chosen such that {u'(vp),...,u’(vg)} equals the pre-
viously chosen basis for Vvt. With this assumption, Cy y, is the identity matrix

I, (k+1)- In addition, let wé“ denote the (k + 1)st component of wq, that is, the

projection of wg onto vo/|lvgll. Since wy € Vy, and by choice of U,, Lemma 1
(see Appendix C) gives

vEV
T k+1 T v k+1
D (1y5,9) (U ) =y D(wo w0) (Uv ||v3n> —Wo ' Iyt

Therefore,

veVy weVy ] T
Dy FV = (0 00 Vg PRep —wg Inf(k+1)> : @1

VL
Note, in particular, that D( wo. o)FV is independent on the actual choice of bases

U,. Combining (18), (21), and the fact that vy 4, Su and Ey ;; v, Su constitute the

-1
needed columns of ( Fv> , we get

(wo,v0)

L weVt

VeV = 0 ! k+1
Dvo V(v) = _Ux,,u,vo,SUO Vwo Ry m + W Ey S0, Sy -
Because Exp, W (v) = 75, (x), this provides (15).
4.3 Exact PGA algorithm

The gradients of the cost functions enable us to iteratively solve the optimization
problems (6) and (7). We let u be an intrinsic mean of a dataset {x{, ..., xy},
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x;i € M. The algorithms listed below are essentially steepest descent methods
but, as previously noted, Jacobian-based optimization algorithms can be employed
as well.

Algorithm 1 for computing g (x) updates w € V instead of the actual pointy € S
that we are interested in. The vector w is related to y by y = Exp, w.

Algorithm 1 Calculate wg(x)
Require: x € M, § = Exp, V geodesic subspace.

w <= orthogonal projection of Log,,x onto V {initial guess}
repeat

y < Exp, w {vector to point}

g« —2(Dw0ExpM)lTw,kLogyx {gradient}
w < w {previous w}

w < w — g {update w}

until||w — w|| is sufficiently small.

The algorithm for solving (6) is listed in Algorithm 2. Since v in (6) is required to
be on the unit sphere, the optimization will take place on a manifold, and a natural
approach to compute iteration updates will use the exponential map of the sphere.
Yet, because of the symmetric geometry of the sphere, we approximate this using the
simpler method of adding the gradient to the previous guess and normalizing. When
computing the (k 4 1)st principal direction, we choose the initial guess as the first
regular PCA vector of the data projected to VkL in T, M. See Fig. 2 for an illustration
of an iteration of the algorithm.

Algorithm 2 Calculate the (k + 1)st principal direction of (6).
Require: y, x1,...,xy € M, !, ..., vk} orthogonal basis for Vy C T, M.

v <= first PCA vector of {x} projected first to 7, M
using Log,, and then to VkL {initial guess}
repeat

verL 2 ..
g8 =V d(w, ms,(x;))~ {for each j using (16)}

g < 1{, Zf’:l g {gradient}
v < v {previous v}

v <= v + g {update v}

v < v/||v|| {normalize}

until ||[v — v is sufficiently small.
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Fig. 2 An iteration of
Algorithm 2. The figure

shows data points x; and x;
(red points) with projections
(blue points) to the geodesic
subspace S (green line). The
vector v defining S is updated to
the new guess by adding the
gradient g and normalizing

4.4 Assumptions and convergence

As discussed in Section 2.4, because a uniqueness and existence of both the intrinsic
mean and optima for (6) may fail, the PGA problem may not be well defined in itself.
The uniqueness of the mean can be obtained by assuming the data is sufficiently
concentrated depending on the curvature, see [21].

The curvature of the manifold may make the optimization problems non-convex,
and convergence to a global optimum is therefore only ensured under the assumption
that the problems (6) and (7) are convex or that no local minima exist. Giving criteria
for convexity or non-existence of local optima for general manifolds and data sets is
difficult because of the dependence on the global geometry of the manifolds.

The rank assumption on the Hessian used in Proposition 1 is equivalent to the
residual Ry , having only non-degenerate critical points when restricted to Vy,. It is
shown in [21] that R, , is convex at points sufficiently close to x and the assumption
is therefore satisfied in such cases. In particular, this is satisfied if Algorithm 2 is
initialized with subspaces that provide a good approximation to the data.

5 Experiments

We will use the optimization strategy and the developed algorithm for exact PGA
to illustrate the differences between exact and linearized PGA. Furthermore, we will
estimate sectional curvatures and compute injectivity radius bounds. Even though the
algorithms are not limited to low dimensional data, we aim at visualizing the results
and we will therefore provide examples with synthetic data on low dimensional mani-
folds. The setup allows exploring the connection between the geometry and curvature
of the manifolds and the exact PGA result, and we will show how the variance and
residual formulation can provide fundamentally different results. For a comparison
between the methods on high dimensional manifolds modeling real-life data, we refer
the reader to [38] where datasets of human vertebrae X-rays and motion capture data
are treated.

The PGA algorithm is implemented in Matlab using Runge-Kutta ODE solvers.
For the logarithm map, we use the shooting algorithm developed in [39]. All toler-
ances used for the integration and logarithm calculations are set at or lower than an
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order of magnitude of the precision used for the displayed results. Intrinsic means are
computed by iteratively minimizing variance using the gradient grad” ||L0gyx||2 =
—2Log,x (see [21]). The code used for the experiments is available at http://image.
diku.dk/sommer.

We first consider surfaces embedded in R* and defined by the equation

Se = {(x1,x27x3)|0x12+x§ +x32 = 1}

for different values of the scalar c. For ¢ > 0, S. is an ellipsoid and it is equal to S?
in the case ¢ = 1. The surface Sy is a cylinder and, for ¢ < 0, S, is hyperboloid.
Consider the point p = (0, 0, 1) and note that p € S, for all c. The curvature of S, at
p is equal to c. Note in particular that for the cylinder case the curvature is zero; the
cylinder locally has the geometry of the plane R? even though it informally seems to
curve.

We evenly distribute 20 points along two straight lines through the origin of the
tangent space T, S., project the points from 7),S. to the surface S, and perform
linearized and exact PGA. Figure 3 illustrates the situation in 7,S_; and on S_;
embedded in R?, respectively. The lines are chosen in order to ensure the points
are spread over areas of the surface with different geometry. This choice is made to
illustrate the influence of the curvature; a more realistic example with points sampled
from a Gaussian will be provided below.

Since linearized PCA amounts to Euclidean PCA in T),S,, the first principal
direction found using linearized PGA divides the angle between the lines for all c.
In contrast to this, the variance and the first principal direction found using exact
PGA are dependent on c¢. Table 1 shows the angle between the principal directions
found using the two methods, the variances and variance differences for different
values of c.

Let us give a brief explanation of the result. The symmetry of the sphere and the
dataset cause the effect of curvature to even out in the spherical case S;. The cylinder
So has local geometry equal to R? which causes the equality between the methods in
the ¢ = 0 case. The hyperboloids with ¢ < 0 that can be constructed by revolving

2

1.5 * ®
*
1 *
0.5 *
* *
* ¥ K K
0 * ¥ %e
-0.5 *
9 * : e
*
L]
-15 *

-2
-25-2-15-1-050 05 1 15 2 25

a b

Fig. 3 The tangent space T),S_| and the manifold S_; with sample points. a T, S_ with sampled points
and first principal components (blue exact PGA, green linearized PGA). b S_; with projected points and
first principal components (blue exact PGA (6), green linearized PGA)
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Table 1 Differences between methods for different values of ¢

c: 1 0.5 0 -05 -1 -15 =2 -3 —4 -5
Angle (°): 0.0 0.1 0.0 22.3 29.2 31.5 32.6 33.8 34.2 34.5
Linearized var.:  0.899 0.785 0.601 0.504 0.459 0435 0423 0413 0413 0417
Exact var.: 0.899 0.785 0.601 0525 0.517 0512 0510 0508 0.507  0.506
Difference: 0.000 0.000 0.000 0.012 0.058 0.077 0.087 0.095 0.094 0.089

Difference (%): 0.0 0.0 0.0 4.2 12.5 17.6 20.6 23.0 22.7 21.4

a hyperbola around its semi-minor axis are non-symmetric causing an increase in
variance as the first principal direction approaches the hyperbolic axis. The effect
increases with the curvature causing the first principal direction to align with the
hyperbolic axis for large negative values of c. That the non-linearity is quite complex
can be seen from the decreasing differences for c = —4, —5, a consequence of the
increasing variance captured using linearized PGA. This is caused by geodesics close
to the semi-minor axis being curved upwards towards the hyperbolic axis for large
negative c. This results in increased captured variance that dominates the otherwise
decreasing trend as ¢ drops below —3. For all negative values of ¢, exact PGA is able
to capture more variance in the subspace spanned by the first principal direction than
linearized PGA.

Differences between the maximal variance PGA formulation (6) and the formula-
tion that minimizes residual errors can be exemplified on simple geometries when the
spread of the data is large. Similar examples for Geodesic PCA with variance formu-
lation is reported [19]. In Fig. 4, points are sampled along a great circle through the
north pole on a sphere (¢ = 1). In order to illustrate the result of maximizing projec-
tion variance, we start with the PGA center point fixed to the north pole. In this case,
each iteration of the optimization procedure pushes the first principal component v’
away from the direction of the great circle. In fact, the optimal direction is orthogonal
to the direction of the great circle. This very counter-intuitive effect is caused by the
projection of the points on the southern hemisphere moving closer to the south pole as
the principal subspaces moves away from the great circle thus causing the measured
variance to increase. In fact, the cost function (6) is non-differentiable at the optimal
direction and the projections become discontinuous functions of v!. If we instead
choose the formulation that minimizes residuals, the first principal component will
align with the direction of the great circle. To show that this effect persists under per-
mutations of the data, we sample points uniformly along a geodesic on an ellipsoid
(¢ = 0.5) adding Gaussian noise on the component orthogonal to the geodesic (std.
dev. 0.1). This time, we optimize for the mean. The ellipsoidal geometry forces the
mean to be close to the geodesic which is the reason for sampling on an ellipsoid; on
a sphere, the mean is unstable under permutations of the data when the data lies close
to a great circle. In Fig. 5, we show the first principal component as computed with
the variance and residual formulation, respectively. As for the example on the sphere,
the optimization converges to a first principal component orthogonal to the geodesic

@ Springer



302 S. Somer et al.

(a) Top view of the sphere S.

Fig. 4 The sphere S| with points (red) sampled along a great circle (black dotted circle) with tangent
vector (red arrow). The optimization for the first principal component v! is stopped before it reaches its
optimum (25 iterations). The actual optimum (black arrow) is orthogonal to the great circle containing
the data points. The variance is measured for the points (blue) projected to the current guess for the
first principal subspace (black circle). As the guess for v! moves away from being tangent to the circle
containing the data points, points on the southern hemisphere move southwards causing the measured
variance to increase

(a) First principal component (black (b) First principal component (black
arrow), variance formulation arrow), residual formulation

Fig.5 An ellipsoid (¢ = 0.5) with points (red) sampled uniformly along a geodesic (black dotted circle).
Gaussian noise (std. dev. 0.1) is added to displace the points orthogonally to the geodesic. The black arrows
show the result of the optimization with (a) the variance formulation and (b) the residual formulation. With
the variance formulation, the optimization is again stopped before it reaches its non-differential optimum
orthogonal to the geodesic along which the points are sampled. The results show that the orthogonality of
the first principal component observed in Fig. 4 also occurs with perturbed data
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Table 2 Differences between the methods on My

Princ. comp.: 1 2 3 4
Angle (°): 10.1 10.6 12.0 12.2
Linearized var.: 1.58 3.86 4.13 4.35
Exact var.: 1.93 3.85 4.24 4.35
Difference: 0.35 —0.01 0.11 0.00
Difference (%): 21.9 —-0.3 2.6 0.0

The variances of the data projected to the subspaces spanned by the first k£ principal directions and the
percentage and angular differences are shown fork =1, ...,4

with the variance formulation. We again stop the optimization after a number of itera-
tions before it reaches its non-differentiable optimum. With the residual formulation,
the first principal component aligns with the geodesic along which the points are
sampled. See also [19] for futher discussions on variance vs. residual formulations.

To investigate the difference between exact and linearized PGA with more than
one principal direction, we consider a four dimensional manifold embedded in R3
and defined by

My = {(xl,xz,X3,x4,x5)|x]2 —2x%+x§—2xi+x52 = 1} .

We make the situation more realistic than in the previous experiment by sampling
32 random points in the tangent space T, M4, p = (0,0, 0,0, 1). Since T, M4 is an
affine subspace of R> orthogonal to the x5 axis, we can identify it with R* by the map
(x1, x2, x3, x4) — (x1, x2, X3, x4, 1). We use this identification when sampling by
defining a normal distribution in R*, sampling the 32 points from the distribution, and
mapping the results to 7), M4. The covariance is set to ¥ = diag(2, 1,2/3, 1/3) to get
non-spherical distribution and to increase the probability of data spreading over high-
curvature parts of the manifold. Table 2 lists the variances and variance differences
for the four principal directions for both methods along with angular differences. The
lower variance for exact PGA compared to the linearized method for the 2nd principal
direction is due to the greedy definition of PGA; when maximizing variance for the
2nd principal direction, we keep the first principal direction fixed. Hence we may
get lower variance than what is obtainable if we were to maximize for both principal
directions together.

Table 3 Sectional curvature at p for different values of ¢

c 1 0 ~1 -2 -3
K, 1 0 -1 -2 -3

K est., 1 = 0.01: 1.000 0.000 ~1.000 ~2.000 ~3.000
Kpest,t=0.1: 1.000 0.000 ~1.001 —2.002 ~3.005
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c
c
0.9 / c
c

0.8 /
0.7 - /
06 /

05 ’

Iy

04 | ,
03 | /
02 | .

0.1 | 4 U~

Fig. 6 |J;| forc=2,1,0,—1 when Jo =0, 2 Jo = (1,0,0)7, and x, = Exp,#(0, 1,0)7

We clearly see angular differences between the principal directions. In addition,
there is significant difference in accumulated variance in the first and third principal
direction. We note that the percentage difference is calculated from what corresponds
to the accumulated eigenspectrum in PCA. The percentage difference of the increase
between the second and third principal direction, corresponding to the squared length
of the third eigenvalue in PCA, is greater.

5.1 Curvature and conjugate points

Again considering the surfaces S¢, we can approximate the sectional curvature K, of
Sc at p using (4). The approximation is dependent on the value of the positive scalar
¢t with increasing precision as ¢ decreases to zero. Table 3 shows the result of the
sectional curvature approximation for two values of + compared to the real sectional
curvature.

Now let J; be the Jacobi field with Jo = 0 and ‘I;JO = (1,0,0)7 along the
geodesic x; = Exp,7(0, 1, 0)”. Figure 6 shows || J; || for different values of c. We
see that || J || = O for the spherical case S; showing that x| is a conjugate point and
hence giving the upper bound 7 on the injectivity radius. The situation is illustrated
in Fig. 1. The local geometric equivalence between the cylinder Sy and R? causes
the straight line for ¢ = 0. For all ¢ < 1, the injectivity radius of S, is 7, but for
¢ < 1, the point x is not a conjugate point.'” By looking at ||J; ||, we are only able
to detect conjugate points and hence, with this experiment, we only get the bound on

10 For ¢ < 1, xpr is a cut point [5, Chap. 13].
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the injectivity radius for ¢ > 1. For ¢ > 1 the injectivity radius decreases below 1 as
seen in the case Sy with ||J;|| = 0 for7 ~ /2.

6 Conclusion and outlook

Optimization problems over geodesics can be solved by constructing IVPs for numer-
ical computation of Jacobi fields and second order differentials. We use this to
develop an algorithm for numerically computing exact Principal Geodesic Analy-
sis and thereby eliminating the need for the traditionally used linear approximations.
In addition, the numerically computed Jacobi fields allow injectivity radii bounds
and estimation of sectional curvatures partially solving an open problem stated
in [19].

We use the developed algorithm to explore examples of manifold valued datasets
where the principal subspaces computed by exact PGA differs from linearized PGA,
and we show how the differences depend on the curvature of the manifolds and which
formulation of PGA is used. In addition, we approximate sectional curvatures and
bound injectivity radii and evaluate the computed results.

We are currently extending the methods to work for quotient manifolds M /G and
thereby allowing the similar computations to be performed on practically all com-
monly occurring non-triangulated manifolds. We expect this would allow Geodesic
PCA to be computed on general quotient manifolds as well. In addition, we are work-
ing on giving a theoretical treatment of the differences between the variance and
residual formulations of PGA. Finally, we expect to use the automatic computation
of sectional curvatures to investigate further the effect of curvature on exact PGA and
other statistical methods for manifold valued data.

Acknowledgments The authors would like to thank P. Thomas Fletcher for fruitful discussions on
the computation of exact PGA and Nicolas Courty for important remarks on problems regarding data
locality.

Appendix A
Notation

In general, the paper follows the notation in [5]. Subscripts are used for curves on M
dependent on a parameter, e.g. the curve «; is a map (—e, €) — M. The subscript
notation should not be confused with differentiation with respect to the parameter ¢.
When a local parametrization x : U C R" — M is available, it is often used to
represent a curve o so that x; = (x/, ..., x/) isacurve in U satisfying x ' oo, = x;.

The derivative jt a; of the curve o, evaluated at 7 belongs to the tangent space

Ty;M. The shorthand jt(x; will be used for such vectors, i.e. 51 a|;—;. In addi-

tion, when differentiating curves with respect to #, we often use the shorthand

a;. With these conventions, jz o |s=0, the initial velocity of the curve «;, will be
written .
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Let df denote the differential of a map f : M — N and write d, f for the
differential evaluated at p € M. When bases for T, M and T, M are specified, or
when M and N are Euclidean spaces, Df is used instead of d f. For maps on product
manifolds, e.g. (v, w) — gv,w) : M x M — N, we will need to distinguish
differentiation with respect to one of the variables only. Letting one of the parameters
have a fixed value wy, the differential of the restricted function v — g(v, wg) from
M to N evaluated at vg is denoted d(vvo,wo) g. Similarly, if V is a submanifold of M,
the differential of f|y : V — N will be denoted d"€" f and its evaluation at vy € V
will be written d2<" f.

When defined, the inverse of the exponential map Exp, is the logarithm map
denoted Log, (g)- Subsets Exp, B, (0) of M with B,(0) being a ball in T, M and
with the radius » > 0 sufficiently small are examples of neighborhoods of ¢ in
which Log, (¢) is defined. Whenever the Log-map is used, we will restrict to such
neighborhoods without explicitly mentioning it.

When 7 : M — R is a real valued function,the gradient of & with respect
to the metric is denoted grad i, i.e. gradh satisfies dp,h(v) = <gradph, v> for all
v € T,M. Whenever a basis of T, M is specified, or when M is Euclidean, we
switch to the usual notation V. Similarly, the Hessian of # is defined by the relation
Hessian(h) X = Vygradh for all vector fields X using the covariant derivative V.
Again, when a basis of T, M is specified, or when M is Euclidean, the usual notation
H (h) will be used.

Appendix B
Expressions for the derivative ODEs

Because we will work with curves on manifolds that are either embedded in a
Euclidean space or where local parametrizations are available, we can perform the
derivations needed for the differential systems in Euclidean spaces: the embedding
space R™ for the implicit case, and the parameter space U C R” when a parametriza-
tion x : U — M is available. The tensors we construct below will be tensors on
the Euclidean spaces R" or R™; they will be used as a compact notational represen-
tations, and we do not attempt to give them intrinsic geometric interpretations. The
tensors will be embedding or coordinate dependent; this is by construction, and the
tensors are thereby inherently different from intrinsic and coordinate independent
tensors such as the curvature endomorphism.

The notation will as far as possible follow the tensor notation used in [5]; however,
we again note that we use the embedding or parametrization to define the tensors
on Euclidean domains. We will use the common identification between tensors and
multilinear maps, i.e. the tensor T : (R¥)" — R defines a map multilinear map T :

(Rk)”1 — RF by (f’(yl, ey Yr—1), yr> =T(1,...,yr). We will not distinguish

between a tensor and its corresponding multilinear map, and hence, in the above case,
write T for both maps.
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For s-dependent vector fields v 1, ..., vs,, and tensor field 7y, we will use the
equality
fSTo(vo,l, e V0,r)
= (4 T0) o, v0) + To(hvor oo vo) + -+ To(vor, - fhvo)
(22)

for the derivative with respect to s. If 7, is a composition of an z-dependent

tensor field 7, and an s-dependent curve x;, the derivative jssz equals the

covariant tensor derivative V 4y Ty, [5, Chap. 4]. Since we will only use ten-
L

sors on Euclidean spaces, such tensor derivatives will consist of component-wise
derivatives.

In the following, when a parametrization X is available, we let TZP be the
z-dependent 3-tensor on R7 defined by

n

P _ k I

T, (vi,v2,v3) = — E i @vjvyv3
i,j.k

such that the kth component of Txf (%¢, x;) equals the right hand side of (1). Note that
TP is symmetric in the first two components since the Christoffel symbols are sym-
metric in 7 and j. Similarly, in the implicit case, we let the z-dependent 3-tensor Tzl’p
and 2-tensor TZI ¥ equal the right hand side of the p and x parts of (2), respectively:

TP (w1, v0) = — (Z TE v1>Hz<F">) V2,

k=1
T (v) = (1 — DZFTDZF> v.

The derivation below of (10) concerns the implicit case.

To derive Fql’v, we let x; ; be a family of geodesics with x; 0 = x;, and define
qs = xo,s and vg = Xq. Assuming jsqo = u and js v9 = w, the Jacobi field
J; equals js Equs (tvs)|s=0, and, therefore, we can obtain J; by differentiating the
geodesic system (2). Since M is embedded in R™, we consider all curves and vectors
to be elements of R,

We use the map p of Section 2.2 to define the tensors

T W) =z v) TH (w1, v2) = = (i vfH(F9) v

TP(v) = (D.F)v, and T2 (v) = (D, F) v.

Note, in particular, that 7,"” (vi, v2)) = TH (T (v1), v2). In addition, we will
use the notation A(A, B) for the right hand side of equation (9) so that the
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derivative of a generalized inverse can be written js (AST) = A (AS, js AS). We

claim that js Exp,, (tvy)[s=0 equals the z-part of the solution of (10) with

(- (2))

I, . . T .
(T @ VLT (T o, &)+ T (T 00— A (T2, V. T2) b i)
= : .
T 0) = A (T2, Vo T T2 (p0) — T2V, T2 (po)
(23)
Here p; = p; o where p; s are the p-parts of the solutions to (2) with initial conditions
qs and vy. To justify the claim, we differentiate the system (2). Using (22), we get

d d d - d rl.p .
dt ds Pt.0 = 44 Pt,0 = 4 Tx,,o (Pr,05 X1,0)

= Vf Xt,OTXIt{ (Txlf(pf)’ )’c,) + Txlzi (ijxt,oTXltL(p’) + T (dds pz,o) ) )'Cf)

+ Tx],’p (Pt, dixt,o)
and

d d _d; _ dylx _ I,x Ix (d
dr ds*X1.0 = %10 = g T 5 (Pro) =V To7(p) + Ty (45 Pr0) -

Note that the tensor derivative V 4, OTX’:' consists of derivatives of H,, (F¥). Both

the derivatives Vo . TF and V4 T:* involve derivatives of generalized inverses.
ds X0 Xt 5.0 X
s § ’

Therefore, we apply (9) to differentiate 7, and get that
T
Vo, Th==A (T2, TP) .
! d

ds*1,0° Xt s 4,0 Xt

The tensor derivative V 4, OTX? consists of derivatives of Dy,  F. Similarly,

Vi It =—n(T0.v,, 1) TP - TPV, TP
By differentiating the initial conditions, we get (10) with y = js P10, 2 = jsx,,o,
and Fql’v as defined in (23).

As noted, we can obtain an IVP in the parametrized case using a similar procedure.
Let o, be a geodesic in the C? manifold M. We assume x : U — M is a local
parametrization containing «;, and we let x; be the curve in U representing oy, i.e.
x oo, =x;. Let g = ¢ and &g = v, and let u, w be vectors in T, M. We associate
T M with R" using x. The Jacobi field J; along «; with Jo = u and th Jo = w can
then be found as the z-part of the solution of the IVP

(i) =Fi <t’ @)) ’ 24)
(2)=()-

with F, q’? , the map constructed below.
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To derive Fqu, we let o; ¢ be a family of geodesics with o g = oy, and define
qs = ap,s and vy = avo . Let x; ¢ represent o 5 using X. Again assuming j qo=1u
and d ;U0 = w, we can obtain J; by differentiating the geodesic system (1). Using
(22) and symmetry of TZP , we have

d d d s d P (. )
42 ds*t.0 = gsX1,0 = g4 Tx, 0(xt 05 X1,0)

d d
Va, T Gk + 217 (4, g0, &)

d d d

ds*0,0 = Us g4 45%0,0 =W (25

because x; s are solutions to (1) with initial conditions g, and v. Therefore, setting
yi= 4 x0andz; = & x, 0, we get (24) with

FP t yt vZfo};('xla-x‘:l)+2Tx}:(yla-x‘:l)
T\ \z Yt '

As noted above, the derivative V fxtoTXf consists of just the component-wise

derivatives of TZID , 1.e. the derivatives of the Christoffel symbols.

For deriving the second order differentials, we will need second order deriva-
tives of generalized inverses. Let A; be an s- and ¢-dependent matrix of full
rank. From repeated application of the product rule and (9), we see that when

the s- and ¢-dependent matrices A; and At , are differentiable with respect to
2 . 2 -
both variables and the mlxed partial derivative azazAf,S exists then Bzaz (At"s) =

]\(At,m g?, Al‘,Ss 385 At,Sv 9591 At s) where
A(A,B,C,D)=—A(A,C)BAT — ATDAT — ATBA(A, ©)
—(A(A, C)A + ATC>BT(A*)TA*
+(1—A*A)(DT(AT)TAT+BT(A(A, O)TAT+(ANHTA(A, C))).
(26)

We start the derivation with the parameterized case. We will use the tensors
introduced in the beginning of this section and for the first order differentials.

We compute the ¢ and r parts of G separately; denote them G,i’go,w, x and

q,v0,W,uU
Givo,w,u, respectively. Let (y;, z;%;) be solutions to (24) with IV’s (w, 0)" and
along the curves x; ; that represents the geodesics o; ;. In addition, let y;” and z;’
denote y,", and z}",, respectively. Let also (y/, z;') be solutions to (24) with IV’s

(u, 0)T along x; = x;.0. Differentiating system (24), we get

. d
4d @y =8¢ =200

and, using symmetry of the tensors,

dt ds (y, ()) = (yt ()) = Zto xto(xt 0, Xt 0)+2ds X0 (y; 0° Xy O)
= V MV wT (x,, x,) + vddsztu,yo Txt (x,, x,) + Q’VZ;” Txt (yl B xt)

+2vzr TXt (ytw’ xt) + 2Txf (c;lsylu,)()’ xt) + 2Tx}: (ytw7 ytu) * (27)
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Therefore, letting ¢; = jsytwo and r; = js 7/, we get G;’go,w,u(t, (re g)7) as

the right hand side of (27) and G;’Jo,w,u(t, (r q,)T) equal to g;. The initial values
are both 0 since y’. and zy'  equal 0 and w, respectively, and, therefore, are not
s-dependent.

For the implicit case, we will again compute the r and ¢ parts of G/

q,v0,wW,u
rately. Let now (y;f’s, z}‘,’s) be solutions to (10) along the geodesics x; s and with IV’s
(w,0)7, and let (yt“, z;‘) be solutions to (10) along x; and with IV’s (u, 0)7". Let also
D1.s denote the p-parts of the solutions to (2) with initial conditions ¢ and vy, and
write p; = pro. ¥’ = /o> and z = z;;. Recall that all curves and vectors are
considered elements of the embedding space R™.

Differentiating system (10), we get

sepa-

dd.ow _ d.w _ dglp ) d H Iz .
dr ds V1,0 = ds V1,0 = ds Txt,O (p’!o’ Zt,O) + ds VZ;‘fo Txt,o (Txt,o(p’s())’ x’!O)

A () AT, 9T o )

ds " Xt,0 X107 %107 Xt,0

Using the map A defined in (26), we have
T
Xt,0° T %,0° 1,0

T
d D D —_ A D 7D D w TP
dsA(T Vo T, ) = A(Txt VTP VuTP Vv, TX[>

Combining the equations, we get
d d. w _ Lp s W Lp(u -w Lp d d _w
dr as¥io=Va T (P 2) + T (51 2) + T " (P gy g522%0)

H - H .
AV Vo TH(TE (p). %) + V P T2 (T (p). %)

1,0
+Vor TxI;I(Txlf(ytu) - A(TxtD’ Ve Txl,))Tpf’ ’.Cf) + Ve TxI;I(Tx’f(Pt), Z?)
+Vu Txfl (TEO) = A(Txl,)v Ve Txl,))TPta 1)
+TxI;I(Tfo ;s Yio) = A(TX?’ Ve Txl,)>TYzws Xt)
T AT Ve T Vo T, Ve Ve Tx?)TPt"‘A(Txl,)v Vu TXL,))Ty;”  Xr)
+T (T80 = AT Vo T2) pia i)

. Substituting O‘ZS z{% yvith i and js Vo With g, we get G ;:%o,w!“ as the right hand
side of the equation. Likewise,

jt jsz;ljo = js Txlt’,(f (ytu,)o) - c?s A(Txlt),o’ VZ;I,'O TX?o)TX?O (p”O) a c?s TXtD,;VZ;‘,)o TXLZO (p”O)
= Va T 08 + T (431%)
- ]\(Txlt)’ Ve Txlt)’ Ve Txlz)’ Veu Vop TxtD)TxtD (1)
- A(Txl,)v Vo Txl,))vd‘ TX?(p;) - A(Txlt)’ Ve TxtD)TxtD(y;/t)

T F
—A(TP, V. T2V TP (p) — TP VoV T2 (p) — TP VTP .

t

Again, after substituting js Yo With g; as above, we get G;’,rvo,w,u as the right hand
side of the equation. As for the parametric case, both initial values are zero.
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Appendix C
The projection differential

For the proof of Proposition 1, we will need the following result to show that equation
(15) is independent of the chosen basis.

Lemma 1 Let S be an open subset of R and U : § — M*>**=D ¢ C! map with
the property that for any v € S, the columns of the matrix (”z” U(v)) constitute

an orthonormal basis for R¥. Let u{) denote the jth column of U(v). Then for any

vo € S and w € R, <jtu{}0+,w|,:0, v0> = —< '{)0, w). As consequence of this, if
U : S — R denotes the map v — U (v)T ”zg” then
vespan(ull) ,...,uﬁ’l) ~
vo 0 O U®W) = —I
. . k—1 1 k—1
in the basis Uyys - - - Uy for span (uvo, s Uy ).
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