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Abstract The Wendland functions are a class of compactly supported radial basis
functions with a user-specified smoothness parameter. We prove that with an appro-
priate rescaling of the variables, both the original and the “missing” Wendland
functions converge uniformly to a Gaussian as the smoothness parameter approaches
infinity. We also explore the convergence numerically with Wendland functions of
different smoothness.
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1 Introduction

Radial basis functions (RBFs) are a popular tool for approximating scattered data and
solving partial differential equations. Recent books covering practical and theoretical
issues are Fasshauer [5] and Wendland [18]. A function � : R

d → R is said to be
radial if there exists a function φ : [0,∞) → R such that �(x) = φ(‖x‖2) for all
x ∈ R

d . Then we can define an RBF for a given centre xi ∈ R
d as

�i(x) = φ(‖x − xi‖2).

An interpolant I for the scattered data interpolation problem, where we are given
data (xj , yj ), j = 1, . . . , n, with xj ∈ R

d and yj ∈ R, can be constructed as a linear
combination

I(x) =
n∑

i=1

ci�i(x), x ∈ R
d , (1)

where the coefficients c1, . . . , cn are chosen so that

I(xj ) = yj , j = 1, . . . , n. (2)

If � is positive definite, then (1) and (2) have a unique solution. We recall that a
continuous function f : R

d → R is positive definite (some would say strictly positive
definite) if for any n distinct points x1, . . . , xn ∈ R

d , the quadratic form

n∑

i=1

n∑

j=1

αiαj f (xi − xj )

is positive for all α = [α1, . . . , αn]T ∈ R
n\{0}.

RBFs can be categorised as either globally supported or compactly supported. The
first category includes Gaussians and multiquadrics [5]. Both have a scale parameter
(also known as a shape or tension parameter), the selection of which is still a major
ongoing research topic [6, 12].

The second category includes Wendland functions [17], Buhmann RBFs [3], Wu’s
RBFs [19] and “Euclid’s hat” [9, 13]. In this paper we consider the Wendland func-
tions, which are piecewise polynomial compactly supported functions. They have the
minimum polynomial degree for any level of smoothness, and are positive definite
since they have a strictly positive Fourier transform. The Wendland functions were
originally derived for integer-order Sobolev spaces in odd dimensions in Wendland
[17] and were then extended to even dimensions in Schaback [14] (Schaback called
these the “missing” Wendland functions). They are uniquely defined for a given spa-
tial dimension d and a smoothness parameter k (up to a constant multiplier). All the
Wendland functions are equal to zero outside [0,1].

Our purpose in this paper is to consider the limit of the original and the missing
Wendland functions as the smoothness parameter k goes to infinity. In Fig. 1, we
can see the original Wendland functions in R

3 for k = 1, . . . , 4, where we have nor-
malised the functions to have value 1 at the origin. The peak narrows as k increases,
demonstrating the need for a change of variable when considering the limit.



Wendland functions with increasing smoothness converge to a Gaussian 187

Fig. 1 The (original) Wendland
functions φ�,k(r) for � = k + 2
and k = 1, . . . , 4, normalised to
have value 1 at r = 0

In Section 2 we define the original and misising Wendland functions, and give
some needed background on Fourier transforms. Then in Section 3 we define the nor-
malised equal area Wendland functions ψ�,k , obtained by a linear change of scale in
the argument of the normalised functions that ensures equal areas under their graphs
for all values of k. In Section 4 we consider the limit as the smoothness parameter
goes to infinity. Our main theorem is Theorem 4.2, which states that the normalised
equal area Wendland functions converge uniformly to a Gaussian on the real half-
line. Section 5 gives numerical illustrations of the results. A reasonable conclusion
from the experiments might be that there is little incentive to use high values for the
smoothness parameter.

The similarity of appropriately scaled Wendland functions to a Gaussian has
been mentioned in [11] and [7], in both cases for R

3 with k = 1. No theoretical
explanations were given in those papers.

2 Background

In this section, we provide background material on the Wendland radial basis
functions and Fourier transforms.

2.1 Wendland functions

Wendland functions were originally introduced in [17] and then more cases were
added by Schaback in [14]. We shall refer to the functions from [17] as the origi-
nal Wendland functions and those from [14] as the missing Wendland functions. We
firstly define the Wendland functions and then discuss their properties.

Throughout the paper k > 0 denotes the smoothness parameter of the Wendland
functions, with k an integer for the original Wendland functions and k a half integer
for the missing Wendland functions. In limits limk→∞ it is to be understood that k

goes to infinity through both integer and half integer values. Also, throughout the
symbol � will stand for

� = �(k) :=
⌊

d

2
+ k

⌋
+ 1 (3)
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where d is the spatial dimension, and the floor function �x� gives the largest integer
less than or equal to x.

Definition 2.1 With d the spatial dimension, 2k a positive integer and � given by (3),
let

φ�,k(r) :=
⎧
⎨

⎩

1

�(k) 2k−1

∫ 1

r

s (1 − s)�
(
s2 − r2)k−1ds for 0 ≤ r ≤ 1,

0 for r > 1.

(4)

This defines the original Wendland functions when k is a positive integer and the
missing Wendland functions when k is a positive half-integer.

Both the original Wendland functions and the missing Wendland functions are
continuous on [0,∞). Note that the choice of � given by (3) is the smallest integer
that ensures that the resulting functions are positive definite. For fixed d we have

� ∼ k as k → ∞, (5)

where x ∼ y denotes asymptotic equality, that is x
y
→ 1.

We give explicit formulae for the original Wendland functions for d = 2, 3 and
k = 1, . . . , 4 (so � = k + 2) in Table 1 where

·= denotes equality up to a positive
constant factor. The support of all the original Wendland functions is [0, 1].

Schaback [14] extended Wendland’s original approach to introduce the missing
Wendland functions. An important diffference between the original Wendland func-
tions and the missing Wendland functions is that the missing Wendland functions,
whilst still being supported on [0, 1], now have logarithmic and square-root multipli-
ers of polynomial components. We give explicit formulae for the missing Wendland
functions for d = 2 and k = 1

2 , 3
2 and 5

2 in Table 2, where

L(r) := log

(
r

1 +√
1 − r2

)
and S(r) :=

√
1 − r2, r ∈ (0, 1].

Hereafter by Wendland functions we will mean both the original and missing
Wendland functions. Both will be denoted by φ�,k(r).

Table 1 The original Wendland functions φ�,k(r) for d = 2, 3 and k = 1, . . . , 4

k Original Wendland function

1 φ3,1(r)
·= (1 − r)4+(4r + 1)

2 φ4,2(r)
·= (1 − r)6+(35r2 + 18r + 3)

3 φ5,3(r)
·= (1 − r)8+(32r3 + 25r2 + 8r + 1)

4 φ6,4(r)
·= (1 − r)10+ (429r4 + 450r3 + 210r2 + 50r + 5)
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Table 2 The missing Wendland functions φ�,k(r) for d = 2 and k = 1
2 , 3

2 , 5
2

k Missing Wendland function

1
2 φ2, 1

2
(r)

·= 3r2L(r) + (2r2 + 1)S(r)

3
2 φ3, 3

2
(r)

·= −15r4(6 + r2)L(r) − (81r4 + 28r2 − 4)S(r)

5
2 φ4, 5

2
(r)

·= (945r8 + 2520r6)L(r) + (256r8 + 2639r6 + 690r4 − 136r2 + 16)S(r)

2.2 Fourier transforms

The subsequent proofs rely heavily on Fourier transforms. This section provides
definitions and outlines key properties. For further information, see [15, 18].

The Fourier transform of f ∈ L1(R
d) is defined as

f̂ (z) := (2π)−
d
2

∫

Rd

f (x) e−iz·x dx, z ∈ R
d .

For the case of a radial function � ∈ L1(R
d), �(x) = φ(‖x‖), with ‖·‖ denoting the

Euclidean norm in R
d , the Fourier transform is also radial, and is given by �̂(z) =

Fdφ(‖z‖) where

Fdφ(z) := z1− d
2

∫ ∞

0
φ(y) y

d
2 Jd

2 −1(z y) dy, (6)

and Jν(y) denotes the Bessel function of the first kind of order ν. In particular, from
the properties

|Jν(x)| ≤ |x|ν
2ν�(ν + 1)

, x ∈ R, |x|−νJν(x) → 1

2ν�(ν + 1)
as x → 0, (7)

for ν ≥ − 1
2 , it follows easily that

Fdφ(0) := 1

2
d
2 −1�

(
d
2

)
∫ ∞

0
φ(y) yd−1 dy. (8)

From the Fourier inversion theorem applied to radial functions, we know that if
� ∈ L1(R

d) with �(x) = φ(‖x‖), φ : [0,∞) → R, and if �̂ ∈ L1(R
d), then

φ(y) = y1− d
2

∫ ∞

0
Fdφ(z) z

d
2 Jd

2 −1(yz) dz. (9)

We also recall that if f ∈ L1(R
d) is continuous at zero and positive definite then

its Fourier transform is in L1(R
d) and is non-negative [15].

The Gaussian radial basis function with scale parameter α > 0, which we denote
by Gα(y), is

Gα(y) := e−α y2
, y ∈ R, (10)

and its Fourier transform is given by

Ĝα(z) = 1

(2α)
d
2

e−
z2
4α , z ∈ R. (11)
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We first define the generalised hypergeometric function and then state the Fourier
transform of the Wendland functions. Further details on generalised hypergeometric
functions can be found in [1] and [2].

Definition 2.2 The generalised hypergeometric function pFq(a1, . . . , ap; b1, . . . ,

bq; x) is

pFq(a1, . . . , ap; b1, . . . , bq; x) :=
∞∑

n=0

(a1)n · · · (ap)n

(b1)n · · · (bq)n

xn

n! ,

where none of b1, . . . , bq is a negative integer or zero and where

(c)n := c(c + 1) · · · (c + n − 1) = �(c + n)

�(c)
, n ≥ 1 (12)

denotes the Pochhammer symbol, with (c)0 = 1.

When p ≤ q the series converges for all finite x and defines an entire function.
When p = q + 1 the series converges absolutely for |x| < 1, and also at x = 1 if

q∑

i=1

bi −
p∑

i=1

ai > 0.

Lemma 2.3 The d-dimensional Fourier transform of φ�,k is given by

Fdφ�,k(z) = C
�,k
d 1F2

(
d + 1

2
+ k; � + d + 1

2
+ k,

� + d + 2

2
+ k;−z2

4

)
, z ≥ 0,

where

C
�,k
d :=

2k+ d
2 �(� + 1)�

(
d+1

2 + k
)

√
π�(� + d + 2k + 1)

.

Proof The proof can be found in [20, Theorem 3].

3 Normalised equal area Wendland functions

Hubbert [10] expresses the Wendland functions in terms of Legendre functions.
Equation (3.4) in [10] states that for r ∈ (0, 1]

φ�,k(r)= �(�+1)

2�+k�(� + k+1)
(1−r2)�+kr−�

2F1

(
�

2
, k + � + 1

2
; � + k + 1; 1 − 1

r2

)
.

(13)
Now we apply the identity [1, 15.3.4]

2F1(a, b; c; z) = (1 − z)−a
2F1

(
a, c − b; c; z

z − 1

)
(14)
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to (13), which gives us, for r ∈ [0, 1],

φ�,k(r) = �(� + 1)

2�+k�(� + k + 1)
(1− r2)�+k

2F1

(
�

2
,
� + 1

2
; � + k + 1; 1 − r2

)
, (15)

where we recover the case of r = 0 by right continuity. We will need to normalise
the Wendland functions, and thus need the value of φ�,k(0).

Lemma 3.1

φ�,k(0) = �(� + 1)�(2k)

2k−1�(k)�(� + 2k + 1)
. (16)

Proof To calculate φ�,k(0) we need the value of the hypergeometric function in (15)
at the argument 1 (since in φ�,k(r) the hypergeometric function has argument 1−r2).
From [1, 15.1.20] we have the identity

2F1(a, b; c; 1) = �(c)�(c − b − a)

�(c − b)�(c − a)
, c − b − a > 0. (17)

Applying (17) to (15) shows that

φ�,k(0) = �(� + 1) �(k + 1
2 )

2�+k �( �
2 + k + 1

2 ) �( �
2 + k + 1)

.

Using the duplication formula for the gamma function [1, 6.1.18]

�(z)�

(
z + 1

2

)
= 21−2z

√
π �(2z), (18)

twice – firstly for �( �
2 + k+ 1

2 )�( �
2 + k+ 1) and then for �(k)�

(
k + 1

2

)
– and with

several terms cancelling out in the numerator and denominator, we get the desired
result.

We will also need the following result for the area under the Wendland functions.

Lemma 3.2
∫ ∞

0
φ�,k(r)dr = 2k �(� + 1) �(k + 1)

�(� + 2k + 2)
. (19)

Proof This follows from (8) and Lemma 2.3 on setting d = 1 (noting that φ�,k has
no explicit d dependence).

Now we can define the normalised equal area Wendland functions ψ�,k . These are
Wendland functions normalised to have the value 1 at 0, and with a change of scale
in the argument so that the normalised equal area Wendland functions have integrals
over the real half-line equal to the integral of exp(−αy2), where α > 0 can be chosen
for the convenience of the user.
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Theorem 3.3 With α an arbitrary positive real number, the normalised equal area
Wendland functions are given by

ψ�,k(y) = 2k−1�(k)�(� + 2k + 1)

�(� + 1)�(2k)

{
φ�,k

(
y

δ�,k(α)

)
for 0 ≤ y ≤ δ�,k(α),

0 for y > δ�,k(α)
, (20)

where

δ�,k(α) :=
(� + 2k + 1) �

(
k + 1

2

)

2
√

α �(k + 1)
. (21)

Proof It follows from Lemmas 3.2 and 3.1 and the duplication formula (18) that the
integral of ψ�,k equals

√
π/(2

√
α), which is the integral of exp (−αy2) over the half

line, and that ψ�,k(0) = 1.

In Fig. 2 we plot the normalised equal area Wendland functions ψ�,k for d = 2, 3,
k = 1, . . . , 4 with α = 1.

We also need the results in the next two lemmas.

Lemma 3.4 For k ≥ min
(

d
2 , 1

)
,

δ�,k(α) ≤ 3
√

k√
α

. (22)

Proof From [16] we have the double inequality
(

x

x + s

)1−s

≤ �(x + s)

xs �(x)
≤ 1,

for 0 < s < 1 and x > 0. With s = 1
2 and using �(k + 1) = k�(k), this gives

δ�,k(α) = (� + 2k + 1)

2
√

α

�
(
k + 1

2

)

�(k + 1)
≤ (� + 2k + 1)

2
√

k α
≤ 3

√
k√
α

.

Fig. 2 The normalised equal
area Wendland functions
ψ3,1(y), ψ4,2(y), ψ5,3(y),
ψ6,4(y) with α = 1 and
exp(−y2)
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Lemma 3.5 Let η > 0. The function fη : (0,∞) → R defined by

fη(y) := �(y + η)

�(y)
, y > 0, (23)

is increasing on (0,∞).

Proof Defining Fη(y) := log fη(y), it is clear that fη is increasing on (0,∞) if and
only if Fη is increasing. But

d Fη(y)

dy
= d log �(y + η)

dy
− d log �(y)

dy
= ψ0(y + η) − ψ0(y),

where ψ0 := d log �(y)/dy is the digamma function. Since the digamma function
is increasing on (0,∞), the result follows.

4 Limit of the Wendland functions as k → ∞

In this section we derive the limit of the normalised equal area Wendland functions
as k → ∞. We start with a convergence result for the Fourier transforms.

Theorem 4.1 Let α be a positive real constant, and let ψ�,k be the normalised equal
area Wendland functions defined by (20) and (21) with � given by (3). Then

lim
k→∞Fdψ�,k(z) = Ĝα(z) (24)

uniformly for z in an arbitrary bounded subinterval of R
+.

Proof Firstly, we express the Fourier transform of ψ�,k in terms of the Fourier trans-
form of φ�,k . Writing δ�,k for δ�,k(α) and using the transformation y = r δ�,k together
with (6) and Theorem 3.3, gives

Fdψ�,k(z) = δd
�,k2k−1�(k)�(� + 2k + 1)

�(� + 1)�(2k)
(Fdφ�,k)(δ�,kz)

= δd
�,k 2− d

2 �(� + 2k + 1)�(k)�(d + 2k)

�(2k)�
(

d
2 + k

)
�(� + d + 2k + 1)

×1F2

(
d + 1

2
+ k; � + d + 2k + 1

2
,
� + d + 2k + 2

2
;−δ2

�,kz
2

4

)

= 2−
d
2

∞∑

n=0

�(d + 2k + 2n)�(� + 2k + 1)�(k)

�(2k)�(� + 2k + 1 + d + 2n)�
(
k + d

2 + n
) δd+2n

�,k

(
− z2

4

)n

n!

= 2−
d
2

∞∑

n=0

wn(k)

(
−z2

4

)n

, (25)
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where

wn(k) := �(d + 2k + 2n)�(� + 2k + 1)�(k)

�(2k)�(� + 2k + 1 + d + 2n)�
(
k + d

2 + n
)

δd+2n
�,k

n! . (26)

Using (18) repeatedly, together with Lemma 3.4 and the following inequalities
(both a consequence of Lemma 3.5)

�(� + 2k + 1)

�(� + 2k + 1 + d + 2n)
≤ �(3k)

�(3k + d + 2n)
,

�
(

d
2 + k + n + 1

2

)

�
(
k + 1

2

) ≤
�

(
d
2 + 3k

2 + n
)

�
(

3k
2

) ,

we have for k ≥ 1

wn(k) =
2d+2n�

(
d
2 + k + n + 1

2

)
�(� + 2k + 1)

�
(
k + 1

2

)
�(� + 2k + 1 + d + 2n)

δd+2n
�,k

n!

≤
2d+2n�

(
d
2 + 3k

2 + n
)

�(3k)

�
(

3k
2

)
�(3k + d + 2n)

δd+2n
�,k

n!

=
�

(
3k+1

2

)

�
(

3k+d+1
2 + n

)
δd+2n
�,k

n! ≤ 1
(

3k
2

) d
2 +n

(
3
√

k√
α

)d+2n
1

n!

=
(

6

α

) d
2 +n 1

n! =: Un,

where in the penultimate step we used the bound [4, 5.6.8]

�(x + a)

�(x + b)
≤ 1

xb−a
, x > 0, b − a ≥ 1, a ≥ 0. (27)

The ratio test shows that
∑

n Un

(
− z2

4

)n

is absolutely convergent for all z ∈ R
+.

Therefore by the dominated convergence theorem we can take the limit as k → ∞
inside the infinite sum in (25), giving

lim
k→∞Fdψ�,k(z) = 2−

d
2

∞∑

n=0

lim
k→∞wn(k)

(
−z2

4

)n

= (2α)−
d
2

∞∑

n=0

(
− z2

4α

)n

n! = Ĝα(z),

where we used (11) and the asymptotic equality, see [4],

�(x + a)

�(x + b)
∼ xa−b. (28)

This proves pointwise convergence of a sequence of continuous functions, which is
necessarily uniform on a compact interval.
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We are now ready to state the main result.

Theorem 4.2 Let α be a positive number and ψ�,k be the normalised equal area
Wendland functions defined by (20), (21) and (3). Then

lim
k→∞ψ�,k(y) = Gα(y), (29)

with uniform convergence for y ∈ R
+.

Proof It follows from (9), with the aid of (7), that for arbitrary y, Z ∈ R
+

�(d
2 )

21− d
2

|ψ�,k(y)−Gα(y)| = �(d
2 )

21− d
2

y1− d
2

∣∣∣∣
∫ ∞

0

(
Fdψ�,k(z) − Ĝα(z)

)
z

d
2 Jd

2 −1(yz) dz

∣∣∣∣

≤
∫ ∞

0
|Fdψ�,k(z) − Ĝα(z)|zd−1 dz

≤
∫ Z

0
|Fdψ�,k(z)−Ĝα(z)|zd−1 dz+

∫ ∞

Z

Fdψ�,k(z) zd−1dz

+
∫ ∞

Z

Ĝα(z) zd−1 dz

=
∫ Z

0
|Fdψ�,k(z) − Ĝα(z)|zd−1 dz

+
∫ Z

0

(
Ĝα(z)−Fdψ�,k(z)

)
zd−1 dz+2

∫ ∞

Z

Ĝα(z) zd−1 dz

≤ 2
∫ Z

0
|Fdψ�,k(z)−Ĝα(z)|zd−1dz+2

∫ ∞

Z

Ĝα(z)zd−1dz,

(30)

where we used the positivity of Fdψ�,k and Ĝα , and
∫ ∞

0
Fdψ�,k(z) zd−1 dz =

∫ ∞

0
Ĝα(z) zd−1 dz = 2

d
2 −1�

(
d

2

)
,

which follow from (8) with Fd replaced by F−1
d .

Since the bound is independent of y, the result now follows from the integrability
of Ĝα(z)zd−1 over R

+, together with the uniform convergence property established
in the preceding theorem.

5 Numerical results

In this section we present numerical results regarding the differences between the
appropriately scaled Wendland functions and the Gaussian limit established in The-
orem 4.2. We also consider an interpolation example using both the Wendland
functions φ�,k and the normalised equal area Wendland functions ψ�,k .
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5.1 Difference with the limiting Gaussian

Let the differences between the normalised equal area Wendland functions and the
limiting Gaussian be

E�,k(y) := ψ�,k(y) − exp(−αy2)

and let

ε�,k := sup
y≥0

|E�,k(y)|.

a b

c d

Fig. 3 E�,k(y) with α = 1 and 0 ≤ y ≤ δ�,k(1). Subplots a and b are for the missing Wendland functions
and subplots c and d are for the original Wendland functions
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Note that the change of variable used to define ψ�,k depends on the parameter α.
Figure 3 shows plots of E�,k(y) with α = 1. The upper plots are for d = 2, and show
k = 1.5, � = 3 and k = 5.5, � = 7 respectively. The lower plots are for d = 3, and
show k = 2, � = 4 and k = 6, � = 8 respectively.

In the absence of theoretical rates of convergence, we show numerical results.
Figure 4 shows ε�,k with α = 1 for k = 1, . . . , 50 and d = 3 and 5 for the original
Wendland functions. Figure 5 shows ε�,k with α = 1 for k = 0.5, . . . , 49.5 and d = 2
and 4 for the missing Wendland functions. Since α is just a scaling factor, the results
do not vary in an essential way for different values of α.

In all cases, we see rapid convergence of ε�,k to zero as the smoothness parameter
k increases. This is consistent with the theoretical convergence results. Note that ε�,k

is not monotonically decreasing in k. We also remark that ε�,k is reached at different
values of y as k increases.

5.2 An interpolation example

We consider an example, in which we show results obtained with both the Wendland
functions φ�,k , normalised to have value 1 at the origin, and the normalised equal
area Wendland functions ψ�,k for different values of k. The aim of the example is to
approximate the 2-dimensional Franke function [8, p.20] on [0, 5]2. For k = 1, . . . , 5
we consider interpolation as in (1) and (2), using the Wendland functions φ�,k and the
normalised equal area Wendland functions ψ�,k with α = 2. We use a 17×17 equally
spaced grid as the centres. The number of centres is thus n = 289. The L2 error was
estimated using Gaussian quadrature with a 120 × 120 tensor product grid of Gauss-
Legendre points and the L∞ error was estimated by using a 360×360 equally spaced
grid. Table 3 shows the L2 and L∞ errors, as well as the 2-norm condition numbers

ba

Fig. 4 ε�,k on a logarithmic scale with α = 1, k = 1, . . . , 50 and d = 3 and 5 for the original Wendland
functions
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a b

Fig. 5 ε�,k on a logarithmic scale with α = 1, k = 0.5, . . . , 49.5 and d = 2 and 4 for the missing
Wendland functions

of the interpolation matrices. We also show the results with the limiting Gaussian of
exp(−2 y2), denoted by k = ∞.

We see from the right-hand part of Table 3 that once the argument is properly
scaled to give approximately constant effective support, increasing the smoothness
has little effect on the error. On the other hand the condition number increases rapidly
as the smoothness increases and is very large for the Gaussian limit. Taken together,
these observations suggest that any benefit gained from the higher smoothness is
likely to be offset by the increased condition numbers of the matrices.

The results with the Wendland functions φ�,k are in the left-hand part of Table 3.
We can see that the condition number is decreasing as k increases, which is due to
the decreasing magnitude of the non-zero elements away from the diagonal. This is

Table 3 Results from the example in Section 5.2 showing L2 and L∞ errors, 2-norm condition numbers
κ and minimum and maximum eigenvalues (λmin and λmax) when using the Wendland RBFs φ�,k and the
normalised equal area Wendland RBFs ψ�,k with α = 2

RBF: φ�,k RBF: ψ�,k

N k L2 error L∞ error κ L2 error L∞ error κ λmin λmax

289 1 7.75e−2 2.26e−1 4.87e1 8.20e−2 2.45e−1 4.77e2 2.25e−2 10.74

2 7.48e−2 2.00e−1 5.64e1 7.98e−2 2.11e−1 3.89e3 3.08e−3 11.97

3 7.47e−2 1.98e−1 3.00e1 7.88e−2 2.00e−1 1.23e4 1.04e−3 12.78

4 7.59e−2 2.12e−1 1.24e1 7.71e−2 2.04e−1 9.88e4 1.33e−4 13.09

5 7.75e−2 2.33e−1 6.85 7.61e−2 2.09e−1 3.77e5 3.55e−5 13.39

∞ 7.23e−2 1.90e−1 2.13e9 7.04e−9 15.00
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due to the fact that as k increases the Wendland functions φ�,k(r), normalised to have
value 1 at r = 0, decay more rapidly with respect to r , as illustrated in Fig. 1.

6 Conclusion

Compactly supported radial basis functions have proved very popular in scattered
data approximation due to the resulting sparsity of the interpolation matrix. This
paper has shown that for both the original and missing Wendland functions, the
limit as the smoothness parameter goes to infinity, after suitable scaling and linear
transformation, is a Gaussian RBF.

In Fig. 1 we saw that the (original) normalised Wendland functions exhibit faster
decay with respect to r as the smoothness parameter k increases. This suggests the
need for a change of variable, not only to have a well-defined limit as considered in
this paper, but perhaps also in practical applications. Without a change of variable,
in the case of interpolation we could have a nearly diagonal interpolation matrix and
consequently high errors between the interpolation points.

The results in the paper have illustrated the trade-off between approximation
power and the condition number of the resulting linear system with Wendland func-
tions of different smoothness. The issue of appropriate scaling and the selection of a
smoothness parameter when using the Wendland functions remains a complex issue
in practice.
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