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Abstract In this paper, we explore the effect of numerical integration on the
Galerkin meshless method used to approximate the solution of an elliptic
partial differential equation with non-constant coefficients with Neumann
boundary conditions. We considered Galerkin meshless methods with shape
functions that reproduce polynomials of degree k ≥ 1. We have obtained an
estimate for the energy norm of the error in the approximate solution under
the presence of numerical integration. This result has been established under
the assumption that the numerical integration rule satisfies a certain discrete
Green’s formula, which is not problem dependent, i.e., does not depend on
the non-constant coefficients of the problem. We have also derived numerical
integration rules satisfying the discrete Green’s formula.
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1 Introduction

For the last 20 years, a lot of progress has been made in the development of
the Meshless Methods (MM) and it has been applied to solve complicated
engineering problems (see e.g., [1–3, 9, 19, 22, 25]). There are many classes
of MM used in practice, e.g., meshless collocation methods, MM based on
Radial Basis Functions, Galerkin MM, etc (see [19, 23]). In this paper we
address the Galerkin MM, where the shape functions reproduce polynomials
[3, 8, 9, 13, 25]. We note that this method is referred to in the literature as the
Galerkin meshfree method, the element free Galerkin method, the method of
spheres, the meshfree method, Galerkin MM, MM, etc. Throughout this paper,
we will refer to this method as Galerkin Meshless Method (GMM). In contrast
to the FEM, the construction of shape functions used in GMM does not
require a mesh, however, the shape functions are not piecewise polynomials.
This feature poses a serious challenge in the use of numerical integration to
compute the elements of the stiffness/mass matrices and the load vector.

The challenge of numerical integration has been recognized from the very
beginning of the development of the GMM, and it has been addressed in
various engineering papers [5, 7, 8, 11–14, 16–18, 20]. Several approaches to
implement numerical integration have been proposed in the literature; we
refer to Section 3 of [6] for a brief review of these approaches. A mathematical
analysis of the effect of numerical integration was first reported in [5], where
it was shown that the approximate solution obtained from the GMM, using
standard numerical integration, may not converge. It was also shown that if
the stiffness matrix (numerically computed with quadrature) satisfies a row
sum condition then the error in the approximate solution (in energy norm)
is O(h + η), where h is the discretization parameter and the parameter η

indicates the accuracy of the underlying numerical integration. Thus with
η = O(h), the GMM with numerical integration yields the optimal order of
convergence. However, the analysis presented in [5] was restricted to the shape
functions of the GMM that reproduce polynomials of degree k = 1 and could
not be extended for k > 1.

Another analysis of the effect of numerical integration on the GMM was
presented later in [6], where the quadrature is required to satisfy a discrete
Green’s formula. This analysis is valid for the GMM, where the shape functions
reproduce polynomials of degree k ≥ 1. It was shown that the energy-norm of
the error in the approximate solution obtained from the GMM is O(hk−1(h +
η)), and optimal order of convergence is obtained with η = O(h). However in
[6], the GMM was used to approximate the solution of a Neumann problem
with constant coefficients and with no lower order term. We further note that
a direct application of the ideas in [6] to the situation, where the GMM is
applied to a problem with non-constant coefficient, requires the quadrature
to be problem dependent, e.g., dependent on the non-constant coefficients of
the problem.

In this paper we extend the analysis in [6] to study the effect of numerical
integration, when the GMM is used to approximate the solution of a Neumann
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problem with non-constant coefficients including the lower order term. We
require the quadrature to satisfy a certain version of the discrete Green’s
formula, which is not problem dependent (but is slightly stronger than the
condition used in [6]). We show that the energy norm of the error in the
approximate solution obtained from the GMM with quadrature is O(hk−1(h +
η)). For a Neumann problem with no lower order term, we mention that the
condition on the quadrature required in this paper is the same as the condi-
tion required in [6] for k = 1. However for k > 1, the situation is different;
a quadrature satisfying the condition proposed in this paper automatically
satisfies the condition required in [6], but not vice versa. In this paper, we
have also investigated the possibility of using different numerical integration
rules to compute the elements of the stiffness matrix, the mass matrix, and the
load vector, which was not done in [6]. Moreover, we have derived numerical
integration rules, satisfying the extended discrete Greene’s formula, in two
dimensions for k = 1 and k = 2 in this paper; numerical integration rules only
for k = 1 in one dimension was presented in [6].

The outline of the paper is as follows: In Section 2, we present the notations
and the elliptic Neumann model problem with non-constant coefficients. The
GMM and the various properties of the associated finite dimensional space
are given in Section 3. In Section 4, we define the GMM with numerical
integration and list the assumptions imposed on the numerical integration
rule. The effect of numerical integration on the energy norm of the error in
the approximate solution, obtained from the GMM, has been investigated
in Section 5. Our main analytical result, Theorem 5.5, has also been pre-
sented in this section. In Section 6, we derive numerical integration rules, in
2-dimensions, that satisfy the main assumption given in Section 4. Finally, we
present some numerical examples in Section 7 that shows the effect of the
numerical integration on the energy norm of the error in the approximate
solution.

2 Preliminaries and model problem

Let N be the set of all positive integers. For a domain D ⊂ R
d, an integer m ∈

N ∪ {0}, and p ∈ N ∪ {∞}, we denote the usual Sobolev space by Wm,p(D) with
the norm ‖ · ‖Wm,p(D) and semi-norm | · |Wm,p(D). We will only consider p = 2, ∞
in this paper. The Sobolev space Wm,p(D) will be represented by Hm(D) in the
case p = 2 and by Lp(D) in the case m = 0. Likewise, for a hypersurface ∂ D
in R

d, we will use the space Lp(∂ D) equipped with the norm ‖ · ‖Lp(∂ D).
Let V be a normed linear space. We define ˜V to be the product space

Vd, where ṽ = [vi]d
i=1 ∈ ˜V is a vector-valued function with its components

vi ∈ V, i = 1, 2, · · · , d. When V = Wm,p(D) or Lp(∂ D), the associated norm

of ˜V is defined by ‖̃v‖V = (∑d
i=1 ‖vi‖p

V

) 1
p in the case 1 ≤ p < ∞ and ‖̃v‖V =

max{‖vi‖V : i = 1, 2, · · · , d} in the case p = ∞; the semi-norm |̃v|V (for V =
Wm,p(D)) is defined by using |vi|V instead of ‖vi‖V in the above definitions.
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A domain D is star-shaped with respect to a ball B ⊂ D if, for all x ∈
D, the closed convex hull of {x} ∪ B is a subset of D. Let ρmax = sup

{

ρ :
D is star-shaped with respect to a ball of radius ρ

}

, then the chunkiness para-
meter of D is defined by

γD = diam(D)

ρmax
.

Let � ⊂ R
d be a bounded domain with Lipschitz continuous boundary � =

∂�. For the model problem, we consider the Neumann problem

Lu ≡ −∇ · (A ∇u
)+ cu = f, in �

A ∇u · �n = g, on � (2.1)

where A(x) = {aij(x)}1≤i, j≤d is a symmetric matrix, aij ∈ Ck(�), c ∈ C(�), f ∈
L2(�) , g ∈ L2(�) and �n is the outward unit normal vector to �. We assume
that there is a constant β > 0 such that

d
∑

i, j=1

uiaij(x)u j ≥ β

d
∑

i=1

u2
i , ∀ u ∈ R

d and c(x) ≥ β, ∀ x ∈ �. (2.2)

We note that for v ∈ H1(�), a∇v is a vector-valued function, but for simplicity
of notation, we do not put a tilde over it.

The associated variational formulation of (2.1) is given by

Find u ∈ H1(�) such that

B(u, v) = L(v), ∀ v ∈ H1(�) (2.3)

where

B(u, v) ≡ B1(u, v) + B0(u, v), L(v) ≡
ˆ

�

f v dx +
ˆ

�

g v ds

and

B1(u, v) ≡
ˆ

�

A ∇u · ∇v dx, B0(u, v) ≡
ˆ

�

c u v dx

The bilinear form B(·, ·) is continuous and coercive (using (2.2)) on H1(�) ×
H1(�), and it is well known [10] that the variational problem (2.3) has a unique
solution.

3 Galerkin meshless methods

The GMM to approximate the solution of the variational problem (2.3) is a
Galerkin method, where the construction of the underlying finite dimensional
subspace either does not depend on a mesh, or uses a mesh only minimally.
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To this end, we consider a one-parameter family of finite dimensional spaces
Vh ⊂ H1(�), given by

Vh = span
{

φh
i ∈ C(�) : i ∈ Nh

} ; Nh is an index set.

The functions {φh
i }i∈Nh are referred to as shape functions and their construction

either does not depend on a mesh or depends only minimally. Each φh
i has

compact support and we let ωh
i denote the interior of supp φh

i with hi =
diam ωh

i . We assume that each ωh
i is star-shaped with respect to a ball oh

i ⊂ ωh
i

and their chunkiness parameters satisfy γωh
i

≤ C, ∀ i ∈ Nh.

Often the shape functions {φh
i }i∈Nh are constructed relative to a set of

particles Xh = {xh
i : i ∈ Nh} ⊂ R

d and each φh
i is associated with a particle xh

i .
When ωh

i ∩ � = ∅, then the associated particle xh
i ∈ ωh

i . But when ωh
i ∩ � �= ∅,

then the associated particle xh
i could be outside �. We divide the index set Nh

into two disjoint parts, N′
h and N′′

h , where,

N′
h = {i ∈ Nh : ∂ωi ∩ � �= ∅} and N′′

h = {i ∈ Nh : ω̄i ⊂ �} .

Now, we make several assumptions on the space Vh.

A1 For i ∈ Nh, let Si ≡ { j ∈ Nh : ωh
i ∩ ωh

j �= ∅}. We assume that there is a
constant κ , independent of i, j, and h, such that

card Si ≤ κ, ∀ i ∈ Nh.

Remark 3.1 This property is referred to as the f inite overlap property. If we let
Sx = { j ∈ Nh : x ∈ ωh

j }, then the finite overlap property implies

card Sx ≤ κ, ∀ x ∈ �. (3.1)

A2 There exist positive constants C2 and C2, independent of h and i,
such that

C1 ≤ hi

h
≤ C2, C1hd ≤ |ωi| ≤ C2hd, and C1hd−1 ≤ |ω̄i ∩ �| ≤ C2hd−1, (3.2)

where |ωi| is the “area” of ωi in R
d and |ωi ∩ �| is the “length” of ωi ∩ �

in R
d−1.

A3 The shape functions reproduce polynomials of degree k, i.e.,
∑

i∈Nh

p
(

xh
i

)

φh
i (x) = p(x), ∀p ∈ Pk and x ∈ �. (3.3)

A4 There exists a positive constant C, independent of i and h, such that
∥

∥Dαφh
i

∥

∥

L∞(�)
≤ Ch−|α|

i for |α| ≤ q for some q ≥ 1, (3.4)

where α is a multi-index. In this paper, we will assume q = k + 1.
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A5 There exist positive constants C1, C2, independent of h and i, such that
for any i ∈ Nh,

C1‖v‖2
L2(ωi)

≤ hd
i

∑

j∈Si

v2
j ≤ C2‖v‖2

L2(ωi)
, (3.5)

C1‖v‖2
L2(∂ωi∩�) ≤ hd−1

i

∑

j∈S′
i

v2
j ≤ C2‖v‖2

L2(∂ωi∩�), (3.6)

C1|v|2H1(ωi)
≤ hd−2

i

∑

j∈Si

(v j − vi)
2 ≤ C2|v|2H1(ωi)

(3.7)

where v ∈ Vh is of the form v = ∑

i∈Nh
vi φ

h
i and S′

i ≡ { j ∈ N′
h : ∂ω j ∩ (∂ωi ∩

�) �= ∅} ⊂ Nh.

Remark 3.2 The finite dimensional space Vh could be viewed as a general-
ization of the standard piecewise linear finite element space based on quasi-
uniform mesh. In the finite element setting, the shape functions φh

i are hat
functions, the particles xh

i are the finite element nodes, and the supports ωh
i

are the finite element “stars”. The quasi-uniform finite elements satisfy the
assumptions A1 and A2, whereas the hat functions satisfy A3 and A4 with
k = 1. The inequalities (3.5)–(3.7) are also true for piecewise linear finite
elements. But finite elements are piecewise polynomials and their construction
requires a mesh.

Remark 3.3 Many approaches to construct shape functions for GMM are
available primarily in the engineering literature; we refer to [8, 9, 16, 21, 23, 24]
for details. In all these approaches, the shape functions are not piecewise
polynomials and are not available in terms of explicit mathematical formulas
that could be easily evaluated. This is the price one pays for avoiding a mesh.
For example, in the reproducing kernel particle (RKP) technique, one starts
with a weight function w(x) with compact support such that the origin is in the
interior of the support. The shape function φh

i is sought in the form

φh
i (x) = wh

i (x)
∑

|α|≤k

(

x − xh
i

)α
b h

α(x), (α is a multi-index)

where wh
i (x) = w( x−xi

hi
). For each x ∈ �, b h

α(x) are chosen so that (3.3) is
satisfied, which requires solving a linear system. For details, we refer the reader
to [21, 25]. We also note that the shape functions φh

i (x), constructed using these
approaches, do not satisfy the Kronecker delta property, i.e., φh

i (xh
j ) �= δij. We

further note that if the weight function w ∈ Cq(�), then the shape function
φh

i ∈ Cq(�). Thus it is easy to construct smooth shape functions, in particular
with q = k + 1, as assumed in assumption A4.

Remark 3.4 The inequality (3.5) in assumption A5 implies the local linear
independence of the shape functions {φ j : j ∈ Si} on ωi. The constants C1 and
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C2 appearing in A5 may depend on the geometry of ωi and ω j with j ∈ Si, but
are independent of i and h.

Remark 3.5 Summing the terms of the inequality (3.5) over i ∈ Nh and using
the assumptions A1 and A2, we can obtain

C1‖v‖2
L2(�) ≤ hd

∑

i∈Nh

v2
i ≤ C2‖v‖2

L2(�), ∀ v =
∑

i∈Nh

viφi ∈ Vh (3.8)

Similarly, we obtain

C1‖v‖2
L2(�) ≤ hd−1

∑

i∈N′
h

v2
i ≤ C2‖v‖2

L2(�), ∀ v =
∑

i∈N′
h

viφi ∈ Vh. (3.9)

In particular, substituting v = 1 in these two inequalities, we get

C1h−d ≤ |Nh| ≤ C2h−d, C2h−d ≤ ∣

∣N′′
h

∣

∣ ≤ C2h−d

C1h−(d−1) ≤ ∣

∣N′
h

∣

∣ ≤ C2h−(d−1) (3.10)

These estimates will be used later in the paper.

In the rest of the paper, we will suppress the parameter h for notational
clarity and write φi, xi, ωi, and oi for φh

i , xh
i , ωh

i , and oh
i , respectively, with the

understanding that they depend on h.
Based on the finite dimensional space Vh ⊂ H1(�), as described above, the

Galerkin meshless method to approximate the solution of (2.3) is given by

Find uh ∈ Vh such that

B(uh, vh) = L(vh), ∀ vh ∈ Vh (3.11)

The approximation of the exact solution u ∈ H1(�) by the solution uh ∈ Vh

of (3.11) depends on the approximation property of the space Vh, which has
been studied in [21, 25]. But in these studies, the set of particles, Xh, has been
assumed to be in �, which may give rise to boundary layer in the error as
indicated in [4]. This is precisely the reason that some of the particles have
been allowed to be outside � in this paper, as well as in [3, 5, 6]. But the
approximation result for Vh remains the same as in [21, 25], even when some
of the particles are allowed to outside �; only the analysis requires slight
modification based on an extension result. For completeness, we present the
modified analysis in this paper.

For a function u ∈ Wk+1,∞(Rd), we define its Vh-“interpolant” on � by Ihu,
given by

Ihu(x) =
∑

i∈Nh

u(xi)φi(x), x ∈ �. (3.12)

It is clear from the reproducing property (3.3) that Ih p(x) = p(x), for
x ∈ � and p ∈ Pk. Strictly speaking, Ih is not an interpolation operator
since Ihu(x j) �= u(x j) for x j ∈ Xh; Ih is a quasi-interpolation operator. We
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will use the terms interpolation and interpolant throughout this paper, with
an understanding that they are quasi-interpolation and quasi-interpolant,
respectively.

When u is defined only on �, the interpolant Ihu is undefined as some of
the particles xi may be outside �. To address this issue, we use the well-known
extension theorem (see [10, 26]), which provides us with an extension operator

E : L2(�) → L2(R
d),

u �→ ū ≡ Eu

such that

ū(x) = u(x), for x ∈ � and ‖Eu‖Wk+1,∞(Rd) ≤ C‖u‖Wk+1,∞(�) (3.13)

where constant C is independent of u ∈ L2(�). We now define the Vh-
interpolant of u ∈ Wk+1,∞(�) by Ihu(x) ≡ Ihū(x), for x ∈ �. We now present
an interpolation result that indicates the approximation property of Vh.

Theorem 3.1 Let u ∈ Wk+1,∞(�) and Ihu be the Vh-interpolant of u. Then there
is a positive constant C, independent of h, such that

‖u − Ihu‖Wl,p(�) ≤ Chk+1−l‖u‖Wk+1,∞(�) ∀ 0 ≤ l ≤ k + 1 and p ≥ 1. (3.14)

Proof For i ∈ Nh, let ω̂i be the smallest ball containing the set ∪ j∈Siω j. Con-
sider Qk+1

i Eu(x), the Taylor polynomial of degree k (i.e., of order k + 1) of
Eu averaged over the ball ω̂i (see the Definition 4.1.3 in [10]). Then from the
Lemma 4.3.8 of [10] and assumption A1, we have

‖Eu − Qk+1
i Eu‖Wl,∞(ω̂i) ≤ Chk+1−l|Eu|Wk+1,∞(ω̂i) ∀ 0 ≤ l ≤ k + 1. (3.15)

The constant C depends on κ and the chunkiness parameter of ω̂i, which is 1,
and thus C is independent of i.

For x ∈ ωi, we note that φ j(x) = 0 for j �∈ Si. Therefore, for x ∈ ωi, we have

u(x) − Ihu(x) = Eu(x) − Qk+1
i Eu(x) + Qk+1

i Eu(x)

−
∑

j∈Si

[

Eu(x j) − Qk+1
i Eu(x j)

]

φ j(x) −
∑

j∈Si

[

Qk+1
i Eu(x j)

]

φ j(x)

= Eu(x) − Qk+1
i Eu(x) −

∑

j∈Si

[

Eu(x j) − Qk+1
i Eu(x j)

]

φ j(x),
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where we used (3.3) with p(x) = Qk+1
i Eu(x). Therefore, from (3.15) and

assumptions A4, A1, A2 we get

‖u − Ihu‖Wl,∞(ωi)
≤
∥

∥

∥Eu − Qk+1
i Eu

∥

∥

∥

Wl,∞(ω̂i)

+
∑

j∈Si

∥

∥

∥Eu − Qk+1
i Eu

∥

∥

∥

W0,∞(ω̂i)
‖φ j‖Wl,∞(ω̂i)

≤ Chk+1−l‖Eu‖Wk+1,∞(ω̂i) +
∑

j∈Si

Chk+1‖Eu‖Wk+1,∞(ω̂i)h
−l

≤ Chk+1−l‖Eu‖Wk+1,∞(ω̂i), (3.16)

where C may depend on κ . Thus we immediately get

‖u − Ihu‖Wl,p(ωi)
≤ Ch

d
p hk+1−l‖Eu‖Wk+1,∞(ω̂i). (3.17)

Finally, using (3.16), (3.17), the assumption A1, and (3.10), we get

‖u − Ihu‖Wl,∞(�) ≤ sup
i∈Nh

‖u − Ihu‖Wl,∞(ωi)
≤ Chk+1−l sup

i∈Nh

‖Eu‖Wk+1,∞(ω̂i)

≤ Chk+1−l‖Eu‖Wk+1,∞(Rd) ≤ Chk+1−l‖u‖Wk+1,∞(�)

and

‖u − Ihu‖Wl,p(�) ≤
⎡

⎣

∑

i∈Nh

‖u − Ihu‖p
Wl,p(ωi)

⎤

⎦

1
p

≤ Ch
d
p hk+1−l‖ū‖Wk+1,∞(Rd)|Nh| 1

p

≤ Chk+1−l‖u‖Wk+1,∞(�),

which gives the desired result. ��

Remark 3.6 We note that Theorem 3.1 holds for u ∈ Wk+1,p(�), 1 < p < ∞,
provided k + 1 > d/p (k + 1 ≥ d when p = 1). Also for a given l, we only need
q = l in assumption A4 (instead of q = k + 1).

Now, with Lax–Milgram Theorem, Céa’ Theorem [10] and (3.14), the fol-
lowing approximation result for the GMM with exact integration is immediate:

Theorem 3.2 Let u ∈ Wk+1,∞(�). Then there is a unique solution uh ∈ Vh of
the variational problem (3.11) satisfying

‖u − uh‖H1(�) ≤ Chk‖u‖Wk+1,∞(�), (3.18)

where C is independent of h.
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Another consequence of the error estimate (3.14) in Theorem 3.1 is

‖Ihu‖Wk+1,∞(�) ≤ ‖u‖Wk+1,∞(�) + ‖u − Ihu‖Wk+1,∞(�)

≤ C‖u‖Wk+1,∞(�), (3.19)

which will be used later in this paper. This is the reason that we required q =
k + 1 in assumption A4.

4 The Galerkin meshless method with numerical integration

In this section, we will present the GMM with numerical integration (also
referred to as quadrature). We will also state the assumptions imposed on the
underlying numerical integration rule and discuss them.

To motivate the quadrature in the GMM, we write the solution uh of (3.11)
as uh = ∑

j∈Nh
c jφ j. Then the coefficients {c j} j∈Nh can be determined uniquely

from the linear system
∑

j∈Nh

(

γij + σij
)

c j = li, ∀ i ∈ Nh,

where

γij ≡ B1(φ j, φi) =
ˆ

�

A∇φ j · ∇φi dx =
ˆ

ωi

A∇φ j · ∇φi dx,

σij ≡ B0(φ j, φi) =
ˆ

�

c φ jφi dx =
ˆ

ωi

c φ jφi dx,

and

li ≡ L(φi) =
ˆ

�

fφi dx +
ˆ

�

gφi ds =
ˆ

ωi

fφi dx +
ˆ

∂ωi∩�

gφi ds;

we recall that the shape function φi has compact support ωi. We mention
that ωi ∩ ω j can also be used as the domain of integration in the definition
of γij and σij, since the shape function φ j has compact ω j. Consequently, the
matrices {γij} and {σij} are symmetric. We have used ωi (instead of ωi ∩ ω j) in
the definition of γij and σij to motivate the numerical integration scheme in this
paper. The integrals γij, σij,

´
ωi

fφi dx and
´

∂ωi∩�
gφi ds have to be computed nu-

merically using numerical integration formulas on ωi, i ∈ Nh and on ∂ωi ∩ �,

i ∈ N′
h. Let

γ ∗
ij ≡ B∗

1(φ j, φi) ≡
 s

ωi

A∇φ j · ∇φi dx, σ ∗
ij ≡ B∗

0(φ j, φi) ≡
 m

ωi

cφ jφi dx,

and

l∗i ≡
 l

ωi

fφi dx +
 

∂ωi∩�

gφi ds,
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where
ffl s

ωi
,
ffl m

ωi
, and

ffl l
ωi

denote the numerical integration rules, defined on
ωi, to approximate the entries of the stiffness matrix, mass matrix, and the
load vector (only the volume integrals), respectively;

ffl
∂ωi∩�

is the numerical
integration rule to approximate the “boundary integral” in the elements of the
load vector.

We note that for a given i ∈ Nh, we use the same quadrature rule
ffl s

ωi
to

compute γ ∗
ij for each j ∈ Si (recall the definition of Si in assumption A1 in

Section 3); similarly, the same quadrature rule
ffl m

ωi
is used to compute σ ∗

ij

for j ∈ Si. But the quadrature rules
ffl s

ωi
and

ffl m
ωi

could possibly be different,
i.e., different quadrature rules could be used to approximate the integrals in
the stiffness matrix and the mass matrix. The idea of using possibly different
quadrature rules to compute the stiffness and mass matrix was not considered
in [6].

Remark 4.1 It is easy the check that

∑

j∈Nh

γij = 0, (4.1)

namely, matrix {γij}i, j∈Nh satisfies “zero row-sum” condition. The same is true
for the matrix {γ ∗

ij }i, j∈Nh . Suppose (yl,i, vl,i)
M
l=1 be the set of integration points

and corresponding weights of an M-point quadrature rule
ffl s

ωi
. Then

∑

j∈Nh

γ ∗
ij =

∑

j∈Nh

 s

ωi

A∇φ j · ∇φi dx

=
∑

j∈Nh

M
∑

l=1

A(yl,i)∇φ j(yl,i) · ∇φi(yl,i) vl,i

=
M
∑

l=1

A(yl,i)∇
⎡

⎣

∑

j∈Nh

φ j(yl,i)

⎤

⎦ · ∇φi(yl,i) vl,i

=
M
∑

l=1

A(yl,i)∇1 · ∇φi(yl,i) vl,i = 0. (4.2)

We note that (4.2) was an assumption on the quadrature rule in [5], where γ ∗
ij

was defined by using quadrature on ωi ∩ ω j. This is one of the reasons that we
defined γ ∗

ij by numerically integrating over ωi in this paper (also in [6]) so that
(4.2) is automatically satisfied.
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Let vh = ∑

i∈Nh
viφi and wh = ∑

i∈Nh
wiφi be arbitrary elements in Vh. Then

B1(vh, wh) =
∑

i, j∈Nh

viγ jiw j, B0(vh, wh) =
∑

i, j∈Nh

viσ jiw j,

B(vh, wh) =
∑

i, j∈Nh

vi
(

γ ji + σ ji
)

w j, and L(vh) =
∑

i∈Nh

vili.

Therefore, we naturally define

B∗
1(vh, wh) ≡

∑

i, j∈Nh

viγ
∗
jiw j, B∗

0(vh, wh) ≡
∑

i, j∈Nh

viσ
∗
jiw j, (4.3)

B∗(vh, wh) ≡
∑

i, j∈Nh

vi
(

γ ∗
ji + σ ∗

ji

)

w j, and L∗(vh) ≡
∑

i∈Nh

vil∗i . (4.4)

From this definition, the functional L∗(·) is linear on Vh and the forms B∗
1(·, ·),

B∗
0(·, ·), B∗(·, ·) are bilinear on Vh × Vh. Also from (4.2) and (4.1), it is clear

that

B∗
1(1, φi) = 0 = B1(1, φi), ∀ i ∈ Nh. (4.5)

But it is important to note that the matrix {γ ∗
ij }i, j∈Nh may not be symmetric (in

contrast to {γij}i, j∈Nh ), since

γ ∗
ij =

 s

ωi

A∇φ j · ∇φi dx �=
 s

ω j

A∇φi · ∇φ j dx = γ ∗
ji .

Therefore, B∗
1(φi, 1), ∀ i ∈ Nh may not be zero. Similarly, we can show that the

matrix {σ ∗
ij}i, j∈Nh may not be symmetric, and consequently, the matrix {γ ∗

ij +
σ ∗

ij }i, j∈Nh may not be symmetric.
The GMM with numerical quadrature to approximate the solution of (2.3)

is given by

Find u∗
h ∈ Vh such that

B∗(u∗
h, vh) = L∗(vh), ∀ vh ∈ Vh, (4.6)

where B∗(·, ·) and L∗(·) is defined in (4.4). We note that the bilinear form
B∗(·, ·) is not symmetric.

Next, we state certain assumptions on the quadrature used in the GMM.
Some of these assumptions were given in [6]. We include these assumptions
also in this paper for completeness.

QA 4.1 There exist positive constants η and τ , small enough and independent
of i and h, such that

∣

∣

∣

∣

ˆ t

ωi

� dx −
 t

ωi

� dx

∣

∣

∣

∣

≤ η |ωi| ‖�‖L∞(ωi), t = s, m, l, (4.7)
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and
∣

∣

∣

∣

ˆ
∂ωi∩�

ϑ ds −
 

∂ωi∩�

ϑ ds

∣

∣

∣

∣

≤ τ |∂ωi ∩ �| ‖ϑ‖L∞(∂ωi∩�) (4.8)

for a class of functions � ∈ Wm1,∞(ωi) and ϑ ∈ Wm2,∞(∂ωi ∩ �) satisfying

‖Dα�‖L∞(ωi) ≤ C(hi)
−|α|‖�‖L∞(ωi), |α| ≤ m1 (4.9)

and

‖Dαϑ‖L∞(∂ωi∩�) ≤ C(hi)
−|α|‖ϑ‖L∞(∂ωi∩�), |α| ≤ m2 (4.10)

where C > 0 is independent of i ∈ Nh and m1, m2 > 1 may depend on the
numerical integration rules and the assumption A4 in Section 2.

Remark 4.2 The constants η and τ are associated with the numerical integra-
tion rules. It is possible to choose numerical integration rules (e.g., by taking
more integration points) such that η and τ are small enough. We refer to
Remark 3.3 of [6] for specific examples. We mention that in all the numerically
approximated integrals in this paper, the integrands satisfy the conditions (4.9)
and (4.10).

QA 4.2 For each i ∈ Nh, let G∗
i : ˜C1(ω̄i) → R be a linear functional given by

G∗
i (̃v) =

 s

ωi

ṽ · ∇φi dx +
 l

ωi

∇ · ṽ φi dx −
 

∂ωi∩�

ṽ · �n φi ds (4.11)

where �n is the outward normal to ∂ωi ∩ �. We assume that

G∗
i ( p̃) = 0, ∀ p̃ ∈ ˜Pk−1 (4.12)

where Pk−1 is the space of polynomials of degree k − 1.

Remark 4.3 For each i ∈ Nh, we consider linear functional Gi : ˜H1(ωi) → R

given by

Gi(̃v) =
ˆ

ωi

ṽ · ∇φi dx +
ˆ

ωi

∇ · ṽ φi dx −
ˆ

∂ωi∩�

ṽ · �n φi ds (4.13)

It is clear from the Green Theorem that

Gi( p̃) = 0, ∀ p̃ ∈ ˜Pk−1 (4.14)

Hence, the assumption (4.12) mimics (4.14) and could be viewed as a discrete
version of the Green Theorem on a particular class of functions ˜Pk−1. We will
show how to construct the quadrature rules satisfying (4.12) later.

Remark 4.4 We note that the assumption QA 4.2, in particular (4.12), is
slightly stronger than a similar assumption QA3 used in [6]. We mention
however, that for problems with non-constant coefficients A(x), a direct use
of the ideas presented in [6] will require the underlying numerical integration
rule to satisfy a modified version of the assumption QA3 of [6] involving A(x).
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Numerical integration rules, satisfying this modified assumption, will depend
on A(x), i.e., will be problem dependent. The assumption QA 4.2 in this paper
does not require the quadrature rules to depend on A(x).

Remark 4.5 Using ṽ ∈ ˜P0 (i.e., k = 1) in (4.11), we have for each i ∈ Nh, s

ωi

∂φi

∂x j
dx =

 
∂ωi∩�

n jφi ds. j = 1, 2, · · · , d. (4.15)

This is the Integration Constraint in the SCNI method described in [13]. SCNI
uses nodal integration and a strain smoothing technique so that (4.15), or (4.11)
with k = 1 holds. In Sections 6 and 7, we will construct quadrature rule on ωi

such that (4.11) is satisfied for 1 ≤ k ≤ 2.

QA 4.3 For each i ∈ Nh, we assume
ffl m

ωi
= ffl l

ωi
, i.e., the elements of the mass

matrix and the volume integrals in the elements the load vector are computed
using the same integration rule.

We note that the integration rules
ffl s

ωi
and

ffl l
ωi

could be different.

QA 4.4 There is a constant C > 0 such that for η small enough,
∣

∣B∗
1(wh, vh)

∣

∣ ≤ C‖wh‖H1(�)‖vh‖H1(�), ∀ wh, vh ∈ Vh, (4.16)

and

B∗
1(vh, vh) ≥ C‖vh‖2

H1(�), ∀ vh ∈ Vh. (4.17)

Lemma 4.1 Suppose the quadrature satisfy the assumptions QA 4.1 and
QA 4.4. Then for η, small enough, there are constants C1 and C2, independent
of h, such that

∣

∣B∗(wh, vh)
∣

∣ ≤ C1‖wh‖H1(�)‖vh‖H1(�) and B∗(vh, vh) ≥ C2‖vh‖2
H1(�)

for any wh, vh ∈ Vh.

Proof Let wh = ∑

i∈Nh
wiφi and vh = ∑

i∈Nh
viφi be in Vh. We first estimate

|B0(wh, vh) − B∗
0(wh, vh)|. For any i ∈ Nh, using (4.7), the assumption A1, and

(3.5), we have

∣

∣B0(wh, φi) − B∗
0(wh, φi)

∣

∣ =
∣

∣

∣

∣

ˆ m

ωi

c wh φi dx −
 m

ωi

c wh φi dx

∣

∣

∣

∣

≤ C
∑

j∈Si

|w j|
∣

∣

∣

∣

ˆ m

ωi

c φ j φi dx −
 m

ωi

c φ j φi dx

∣

∣

∣

∣

≤ Cη |ωi| ‖c φ j φi‖L∞(ωi)

⎛

⎝

∑

j∈Si

|w j|2
⎞

⎠

1
2 √

κ

≤ Cη hd h− d
2 ‖wh‖L2(ωi)

√
κ. (4.18)
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Therefore, squaring both sides of the above inequality and summing over all
i ∈ Nh, we get

∣

∣B0(wh, vh) − B∗
0(wh, vh)

∣

∣ ≤
⎛

⎝

∑

i∈Nh

[

B0(wh, φi) − B∗
0(wh, φi)

]2

⎞

⎠

1
2
⎛

⎝

∑

i∈Nh

v2
i

⎞

⎠

1
2

≤ Cηh
d
2

⎛

⎝

∑

i∈Nh

‖wh‖2
L2(ωi)

⎞

⎠

1
2

C h− d
2 ‖vh‖L2(�)

≤ C η‖wh‖L2(�)‖vh‖L2(�), (4.19)

where the second and the last inequalities were obtained from (3.8) and the
assumption A1, respectively.

Finally, from the assumption (4.4) and (4.19), we get
∣

∣B∗(wh, vh)
∣

∣ ≤ ∣

∣B∗
1(wh, vh)

∣

∣+ |B0(wh, vh)| + ∣

∣B0(wh, vh) − B∗
0(wh, vh)

∣

∣

≤ C‖wh‖H1(�)‖vh‖H1(�) + C(1 + η)‖wh‖L2(�)‖vh‖L2(�)

≤ C(1 + η)‖wh‖H1(�)‖vh‖H1(�)

and from (2.2)
∣

∣B∗(vh, vh)
∣

∣ ≥ B∗
1(vh, vh) + B0(vh, vh) − ∣

∣B0(vh, vh) − B∗
0(vh, vh)

∣

∣

≥ C‖vh‖2
H1(�) + β‖vh‖2

L2(�) − C η‖vh‖2
L2(�)

≥ min{C, β − Cη}‖vh‖2
H1(�).

We get the desired result by considering η < β/C. ��

It is clear from Lemma 4.1 that the bilinear form B∗(·, ·) is bounded and
coercive, and therefore from the Lax–Milgram lemma we conclude that the
problem (4.6) has a unique solution u∗

h ∈ Vh.

Remark 4.6 We note that Assumption QA 4.4 is not needed if we put a
restriction on η, namely, η ≤ Ch. Under this restrictive condition on η, we
can prove (4.16), (4.17), and incorporate it into the proof of Lemma 4.1
(as in Lemma 3.1 of [6] for A = I). However, from our computational expe-
rience we have noticed that (4.16), (4.17) hold without the condition η ≤ Ch,
i.e., the condition is not necessary. Precisely for this reason we assume (4.16),
(4.17) under QA 4.4, and do not use η ≤ Ch.

Remark 4.7 It is instructive to illustrate the assumption QA 4.2, i.e., (4.12) in
simpler situations. Let � ⊂ R

2 and k = 1, then ˜Pk−1 = ˜P0 = span
{[1, 0], [0, 1]}

Considering p̃(x1, x2) = [1, 0] in (4.12), we get

G∗
i

([1, 0]) =
 s

ωi

∂φi

∂x1
dx −

 
∂ωi∩�

n1φi ds = 0, i ∈ Nh, (4.20)
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where �n = [n1, n2]. Similarly, considering p̃(x1, x2) = [0, 1] in (4.12), we get

G∗
i

([0, 1]) =
 s

ωi

∂φi

∂x2
dx −

 
∂ωi∩�

n2φi ds = 0, i ∈ Nh (4.21)

Thus for k = 1, the quadrature must satisfy the two conditions (4.20) and (4.21)
for each i ∈ Nh. In particular, the quadrature must satisfy s

ωi

∇φi dx = 0, ∀i ∈ N′′
h . (4.22)

We now illustrate (4.12) for k = 2. In this case, we know that

˜Pk−1 = ˜P1 = span
{[1, 0], [0, 1], [x1, 0], [x2, 0], [0, x1], [0, x2]

}

.

Considering p̃(x1, x2) = [x1, 0] in (4.12), we get

Gi
([x1, 0]) =

 s

ωi

x1
∂φi

∂x1
dx +

 l

ωi

φi dx −
 

∂ωi∩�

x1 n1 φi ds = 0, ∀i ∈ Nh

(4.23)
Similarly, considering p̃(x1, x2) = [x2, 0], p(x1, x2) = [0, x1], and p̃(x1, x2) =
[0, x2] in (4.12), we get

Gi
([x2, 0]) =

 s

ωi

x2
∂φi

∂x1
dx −

 
∂ωi∩�

x2 n1 φi ds = 0, ∀i ∈ Nh, (4.24)

Gi
([0, x1]

) =
 s

ωi

x1
∂φi

∂x2
dx −

 
∂ωi∩�

x1 n2 φi ds = 0, ∀i ∈ Nh, (4.25)

and

Gi
([0, x2]

) =
 s

ωi

x2
∂φi

∂x2
dx +

 l

ωi

φi dx −
 

∂ωi∩�

x2 n2 φi ds = 0, ∀i ∈ Nh

(4.26)
Thus, for k = 2, the quadrature must satisfy (4.23)–(4.26) in addition to the
assumptions (4.20) and (4.21).

Remark 4.8 It is clear from (4.20) and (4.21) that for k = 1, only the quadra-
ture rule to compute the elements of the stiffness matrix , i.e.,

ffl s
ωi

, and the
elements of the load vector associated with the boundary, i.e.,

ffl
∂ωi∩�

have to
satisfy the assumption QA 4.2; the quadrature rule to compute the elements of
the mass matrix and the volume integrals in the elements of the load vector,
i.e.,

ffl m
ωi

(it is the same as
ffl l

ωi
), do not have to satisfy QA 4.2 and it could be any

accurate rule satisfying assumption QA 4.1. We note that in SCNI method [13],ffl
∂ωi∩�

needs to be consistent with the boundary integration of the smoothed
gradient to satisfy condition (4.15), while in this paper, there is no constraint
(other than accuracy) on

ffl
∂ωi∩�

;
ffl s

ωi
is carefully chosen such that (4.20), (4.21)

hold. For k = 2, the conditions (4.23) and (4.26) indicate that
ffl s

ωi
and

ffl l
ωi

must

be related. Even in this situation,
ffl l

ωi
(which is same as

ffl m
ωi

)) could be any
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accurate quadrature rule, but
ffl s

ωi
has to satisfy (4.23) and (4.26). We will obtainffl s

ωi
later in the paper with this feature.

5 Effect of numerical integration

In this section, we will investigate the effect of numerical integration on the
GMM; in particular, we will estimate the error ‖u − u∗

h‖H1(�), where u is
the solution of the problem (2.3) and u∗

h is the solution of the GMM (4.6)
with numerical integration. We recall from Theorem 3.2 that ‖u − uh‖H1(�) =
O(hk), where uh is the solution of (3.11)—the GMM with exact integration. We
will show in this section that ‖u − u∗

h‖H1(�) �= O(hk) in general, and the error
depends on the quadrature parameters η and τ , defined in (4.7) and (4.8),
respectively. We will assume in this section that the exact solution u of (2.3)
is smooth, i.e., u ∈ Wk+1,∞(�); this will enable us to focus only on numerical
integration and will allow us to present the main ideas effectively.

It is well-known that Strang’s Lemma [15, 27] is one of the main tools to
study the perturbation in the solution of a Galerkin method due to variational
crimes, e.g., numerical integration in a Galerkin method. We present a slight
variation of the Strang’s Lemma in the following result, which will provide us
with an abstract framework to study the error u − u∗

h.

Lemma 5.1 Suppose the quadrature rules satisfy the conditions in the lemma
4.1, and u and u∗

h are the solutions of the variational problems (2.3) and (4.6),
respectively. Then there is a constant C > 0, independent of h, such that, for any
wh ∈ Vh,

‖u − u∗
h‖H1(�) ≤ C‖u − wh‖H1(�)

+ sup
vh∈Vh

∣

∣

∣

[

B(wh, vh) − L(vh)
]− [

B∗(wh, vh) − L∗(vh)
]

∣

∣

∣

‖vh‖H1(�)

.

Proof Let wh ∈ Vh be arbitrary. Using the coercivity of the bilinear form
B∗(·, ·) (see Lemma 4.1), we have

C‖u∗
h − wh‖2

H1(�) ≤ B∗(u∗
h − wh, u∗

h − wh)

= B(u − wh, u∗
h − wh)

+ B(wh, u∗
h − wh) − B∗(wh, u∗

h − wh)

− B(u, u∗
h − wh) + B∗(u∗

h, u∗
h − wh)

= B(u − wh, u∗
h − wh)

+ [

B(wh, u∗
h − wh) − L(u∗

h − wh)
]

− [

B∗(wh, u∗
h − wh) − L∗(u∗

h − wh)
]

.
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Therefore, dividing the above inequality by ‖u∗
h − wh‖H1(�) and using the

boundedness of B(·, ·), we get

‖u∗
h − wh‖H1(�) ≤ C‖u − wh‖H1(�)

+ sup
vh∈Vh

∣

∣

∣

[

B(wh, vh) − L(vh)
]− [

B∗(wh, vh) − L∗(vh)
]

∣

∣

∣

‖vh‖H1(�)

Now, using the triangle inequality, we immediately get

‖u − u∗
h‖H1(�) ≤ (C + 1)‖u − wh‖H1(�)

+ sup
vh∈Vh

∣

∣

∣

[

B(wh, vh) − L(vh)
]− [

B∗(wh, vh) − L∗(vh)
]

∣

∣

∣

‖vh‖H1(�)

,

which is the desired result. ��

Remark 5.1 It is clear from Lemma 5.1 that we need to estimate the consis-
tency errors

sup
vh∈Vh

∣

∣

∣

[

B(wh, vh) − L(vh)
]− [

B∗(wh, vh) − L∗(vh)
]

∣

∣

∣

‖vh‖H1(�)

(5.1)

to estimate the error ‖u − u∗
h‖H1(�). We note that in the Strang’s Lemma as

presented in [15], this term is further divided into two terms

sup
vh∈Vh

∣

∣

∣B(wh, vh) − B∗(wh, vh)

∣

∣

∣

‖vh‖H1(�)

and sup
vh∈Vh

∣

∣

∣L(vh) − L∗(vh)

∣

∣

∣

‖vh‖H1(�)

.

Keeping the terms together, as in (5.1), is crucial for our analysis of the effect
of numerical integration in the GMM.

We now present some notions and associated results that we will use later
in this section. We first define a norm and semi-norm of the matrix-valued
function A(x); recall that we assumed aij(x) ∈ Ck(�), ∀ i, j = 1, 2, · · · , d.
Suppose D ⊂ � be a domain and let

|A|Wl,∞(D) ≡ max

⎧

⎨

⎩

d
∑

j=1

∣

∣aij
∣

∣

Wl,∞(D)
: 1 ≤ i ≤ d

⎫

⎬

⎭

and ‖A‖Wl,∞(D) ≡ max
{|A|Wm,∞(D) : 0 ≤ m ≤ l

}

,

for any non-negative integer l ≤ k.

Lemma 5.2 For 0 ≤ l ≤ k, there exists a constant C > 0, depending only on l
and d, such that

‖A ṽ‖Wl,∞(D) ≤ C‖A‖Wl,∞(D)‖̃v‖Wl,∞(D), ∀ ṽ ∈ ˜Wk,∞(D). (5.2)
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Proof Let 0 ≤ � ≤ l and suppose ṽ = [v j]d
j=1. Then using Leibnitz formula, we

have

|A ṽ|W�,∞(D) = max
1≤i≤d

⎧

⎨

⎩

∣

∣

d
∑

j=1

aijv j
∣

∣

W�,∞(D)

⎫

⎬

⎭

≤ C max
1≤i≤d

⎧

⎨

⎩

d
∑

j=1

�
∑

m=0

∣

∣aij
∣

∣

W�−m,∞(D)

∣

∣v j
∣

∣

Wm,∞(D)

⎫

⎬

⎭

≤ C
�
∑

m=0

∣

∣ṽ
∣

∣

Wm,∞(D)
max
1≤i≤d

⎧

⎨

⎩

d
∑

j=1

∣

∣aij
∣

∣

W�−m,∞(D)

⎫

⎬

⎭

= C
�
∑

m=0

∣

∣ṽ
∣

∣

Wm,∞(D)
|A|W�−m,∞(D)

≤ C‖A‖W�,∞(D)‖̃v‖W�,∞(D) ≤ C‖A‖Wl,∞(D)‖̃v‖Wl,∞(D),

where the constant C only depends on l and d. Therefore,

‖A ṽ‖Wl,∞(D) ≤ C‖A‖Wl,∞(D)‖̃v‖Wl,∞(D),

which is the desired result. ��

We now present the next result. For a smooth function v and i ∈ Nh, let

Tk−1
i v(x) =

∑

|α|≤k−1

Dαv(x̄i)

α! (x − x̄i)
α

be the (k − 1)th degree Taylor polynomial of v associated with the center x̄i of
the ball oi ⊂ ωi (recall in Section 2 that ωi is star-shaped with respect to the
ball oi). It is well known that [10]

∣

∣

∣v − Tk−1
i v

∣

∣

∣

W j,∞(ωi)
≤ Chk− j

(k − j)! ‖v‖Wk,∞(ωi), j = 0, 1, . . . , k (5.3)

For a smooth vector-valued function ṽ = [v j]d
j=1 we define

˜Tk−1
i ṽ(x) =

[

Tk−1
i v j]d

j=1.

˜Tk−1
i ṽ(x) is also a vector-valued function with its components being the

(k − 1)th degree Taylor polynomials of the corresponding components of ṽ,
centered at x̄i. We will refer to ˜Tk−1

i ṽ(x) as the Taylor polynomial of ṽ

associated with x̄i.
We define

˜Ri ≡ A∇Ihu − ˜Tk−1
i (A∇Ihu), (5.4)

where Ihu is the Vh-interpolant of u, defined in (3.12) through (3.13). Clearly
˜Ri is the “remainder” of the Taylor polynomial ˜Tk−1

i ṽ(x) with ṽ = A∇Ihu.
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Lemma 5.3 Let 0 ≤ j ≤ k. Then there exists a constant C > 0 such that
∣

∣˜Ri
∣

∣

W j,∞(ωi)
≤ Chk− j‖A‖Wk,∞(�)‖u‖Wk+1,∞(�) (5.5)

Proof Let ṽ ∈ Wk,∞(ωi). Then from the definition of norm of vector-valued
functions and from (5.3), we immediately get

∣

∣

∣̃v − ˜Tk−1
i ṽ

∣

∣

∣

W j,∞(ωi)
≤ C hk− j‖̃v‖Wk,∞(ωi), j = 0, 1, . . . , k

Now substituting ṽ = A∇Ihu in the above inequality, and using (5.2) and
(3.19), we get, for j = 0, 1, . . . , k,

∣

∣˜Ri
∣

∣

W j,∞(ωi)
≤ Chk− j‖A∇Ihu‖Wk,∞(ωi)

≤ Chk− j‖A‖Wk,∞(ωi)‖∇Ihu‖Wk,∞(ωi)

≤ Chk− j‖A‖Wk,∞(�)‖∇Ihu‖Wk,∞(�)

≤ Chk− j‖A‖Wk,∞(�)‖u‖Wk+1,∞(�),

which is the desired result. ��

The next lemma provides us with an estimate of the error in the numerical
integration for a particular integrand, and it is an important ingredient in
the proof of the main result of the paper. This result is a generalization of
Lemma 4.2 in [6] in the context of variable coefficients A(x) = [aij(x)]1≤i, j≤d;
we mention that the matrix A(x) = I was considered in [6].

Lemma 5.4 For any i ∈ Nh, let Gi(·) and G∗
i (·) be functionals def ined by

(4.13), (4.11), respectively. Assume that the quadrature formulas satisfy the
assumptions (4.7), (4.8), and (4.12). Then there exists a positive constant C,
independent of h and i, such that, for i ∈ N′′

h,
∣

∣Gi(A∇Ihu) − G∗
i (A∇Ihu)

∣

∣ ≤ Cηhk+d−1‖A‖Wk,∞(�)‖u‖Wk+1,∞(�),

and, for i ∈ N′
h,

∣

∣Gi(A∇Ihu) − G∗
i (A∇Ihu)

∣

∣ ≤ C(η + τ)hk+d−1‖A‖Wk,∞(�)‖u‖Wk+1,∞(�).

Proof For i ∈ Nh, let x̄i be the center of the ball oi ⊂ ωi. We expand the vector-
valued function A∇Ihu with respect to x̄i using (5.4) as

A∇Ihu = ˜Tk−1
i (A∇Ihu) + ˜Ri.

We note that ˜Tk−1
i (A∇Ihu) ∈ ˜Pk−1. Therefore from the assumption on the

quadrature (4.12) and the fact (4.14), we have

G∗
i

(

˜Tk−1
i (A∇Ihu)

) = 0 and Gi
(

˜Tk−1
i (A∇Ihu)

) = 0.



Numerical integration in Galerkin meshless methods 473

Hence, for i ∈ N′
h,

∣

∣Gi(A∇Ihu) − G∗
i (A∇Ihu)

∣

∣ = ∣

∣Gi(˜Ri) − G∗
i (
˜Ri)
∣

∣

≤
∣

∣

∣

∣

ˆ
ωi

˜Ri · ∇φi dx −
 s

ωi

˜Ri · ∇φi dx

∣

∣

∣

∣

+
∣

∣

∣

∣

∣

ˆ
ωi

∇ · ˜Ri φi dx −
 l

ωi

∇ · ˜Ri φi dx

∣

∣

∣

∣

∣

+
∣

∣

∣

∣

ˆ
∂ωi∩�

˜Ri · �n φi ds −
 

∂ωi∩�

˜Ri · �n φi ds

∣

∣

∣

∣

.

(5.6)

Also for i ∈ N′′
h , recalling that φi = 0 on ∂ωi, we get

∣

∣Gi(A∇Ihu) − G∗
i (A∇Ihu)

∣

∣ = ∣

∣Gi(˜Ri) − G∗
i (
˜Ri)
∣

∣

≤
∣

∣

∣

∣

ˆ
ωi

˜Ri · ∇φi dx −
 s

ωi

˜Ri · ∇φi dx

∣

∣

∣

∣

+
∣

∣

∣

∣

∣

ˆ
ωi

∇ · ˜Ri φi dx −
 l

ωi

∇ · ˜Ri φi dx

∣

∣

∣

∣

∣

. (5.7)

Now, from (5.6), the assumptions QA 4.1, A4, A2, and the remainder
estimate (5.5), we obtain for i ∈ N′

h

∣

∣Gi(A∇Ihu) − G∗
i (A∇Ihu)

∣

∣ = η
∣

∣˜Ri · ∇φi
∣

∣

L∞(ωi)
|ωi| + η|∇ · ˜Ri φi|L∞(ωi)|ωi|

+ τ
∣

∣˜Ri · �n φi
∣

∣

L∞(∂ωi∩�)
|∂ωi ∩ �|

≤ 2Cηhk−1+d‖A‖Wk,∞(ωi)‖u‖Wk+1,∞(ωi)

+ Cτhk−1+d‖A‖Wk,∞(ωi)‖u‖Wk+1,∞(ωi)

≤ C(η + τ)hk−1+d‖A‖Wk,∞(�)‖u‖Wk+1,∞(�),

which is the desired result for i ∈ N′
h. Also using (5.6) and similar arguments

as above, we get for i ∈ N′′
h

∣

∣Gi(A∇Ihu) − G∗
i (A∇Ihu)

∣

∣ ≤ Cηhk−1+d‖A‖Wk,∞(�)‖u‖Wk+1,∞(�),

which completes the proof. ��

Now, we present our main result, where we estimate the energy norm of
the error u − u∗

h; recall that u∗
h is the unique solution of the GMM (4.6) with

numerical integration.
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Theorem 5.5 Let u ∈ Wk+1,∞(�), aij ∈ Ck(�), for i, j = 1, 2, · · · , d and c ∈
C(�). Suppose the subspace Vh satisf ies assumptions A1–A5 and the quadra-
ture schemes satisfy QA1–QA4. Then, for η small enough, there is a positive
constant C, independent of u, η, τ , and h, such that

‖u − u∗
h‖H1(�)

≤ Chk‖u‖Wk+1,∞(�)

+ [

Cη
(‖A‖Wk,∞(�) + ‖c‖L∞(�)h2)+ (η + τ)

(‖A‖Wk,∞(�) + ‖c‖L∞(�)h2) h
]

× hk−1‖u‖Wk+1,∞(�). (5.8)

Proof First, we substitute wh = Ihu in the result of Lemma 5.1 and get

‖u − u∗
h‖H1(�) ≤ C‖u − Ihu‖H1(�)

+ sup
vh∈Vh

∣

∣

∣

[

B(Ihu, vh) − L(vh)
]− [

B∗(Ihu, vh) − L∗(vh)
]

∣

∣

∣

‖vh‖H1(�)

.

(5.9)

We will now estimate the second part of the RHS of (5.9) to prove (5.8). For
any vh = ∑

i∈Nh
viφi ∈ Vh, we have

[

B(Ihu, vh) − L(vh)
]− [

B∗(Ihu, vh) − L∗(vh)
]

=
∑

i∈Nh

vi
([

B(Ihu, φi) − L(φi)
]− [

B∗(Ihu, φi) − L∗(φi)
] )

. (5.10)

For simplicity, in the rest of the proof we denote

Ei ≡
∣

∣

∣

[

B(Ihu, φi) − L(φi)
]− [

B∗(Ihu, φi) − L∗(φi)
]

∣

∣

∣.

Therefore, from (5.10), (3.9), (3.8), and (3.10), we get
∣

∣

∣

[

B(Ihu, vh) − L(vh)
]− [

B∗(Ihu, vh) − L∗(vh)
]

∣

∣

∣

≤ sup
i∈N′

h

Ei

∑

i∈N′
h

|vi| + sup
i∈N′′

h

Ei

∑

i∈N′′
h

|vi|

≤ C sup
i∈N′

h

Ei

⎛

⎝

∑

i∈N′
h

|vi|2
⎞

⎠

1
2

|N′
h|

1
2 + C sup

i∈N′′
h

Ei

⎛

⎝

∑

i∈N′′
h

|vi|2
⎞

⎠

1
2

|N′′
h| 1

2

≤ C sup
i∈N′

h

Eih−(d−1)‖vh‖L2(�) + C sup
i∈N′′

h

Eih−d‖vh‖L2(�)

≤ C sup
i∈N′

h

Eih−(d−1)‖vh‖H1(�) + C sup
i∈N′′

h

Eih−d‖vh‖L2(�) (5.11)
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where the last inequality was obtained using the Trace theorem (see [10]). We
will now estimate the terms Ei, ∀ i ∈ Nh. For any i ∈ Nh, we have from the
problem (2.1)

ˆ
ωi

fφi dx = −
ˆ

ωi

∇ · (A∇u
)

φi dx +
ˆ

ωi

cuφi dx

= −
ˆ

ωi

∇ · (A∇Ihu
)

φi dx

−
ˆ

ωi

∇ · [A∇(u − Ihu
)]

φi dx +
ˆ

ωi

cuφi dx

and ˆ
∂ωi∩�

gφi ds =
ˆ

∂ωi∩�

A∇u · �nφi ds

=
ˆ

∂ωi∩�

A∇Ihu · �nφi ds +
ˆ

∂ωi∩�

A∇(u − Ihu
) · �nφi ds.

Now setting eI ≡ u − Ihu and recalling the definition (4.13) of the functional
Gi, we get

B(Ihu, φi) − L(φi) = B(Ihu, φi) −
ˆ

ωi

fφi dx −
ˆ

∂ωi∩�

gφi ds

=
ˆ

ωi

A∇Ihu · ∇φi dx +
ˆ

ωi

∇ · (A∇Ihu
)

φi dx

−
ˆ

∂ωi∩�

A∇Ihu · �nφi ds +
ˆ

ωi

∇ · [A∇(u − Ihu
)]

φi dx

−
ˆ

∂ωi∩�

A∇(u − Ihu
) · �nφi ds +

ˆ
ωi

c Ihu φi dx

−
ˆ

ωi

cuφi dx

= Gi(A∇Ihu) +
ˆ

ωi

∇ · (A∇eI
)

φi dx

−
ˆ

∂ωi∩�

A∇eI · �nφi ds −
ˆ

ωi

ceIφi dx. (5.12)

Similarly, again from the problem (2.1) and the quadratures developed in
Section 4, we have
 l

ωi

fφi dx = −
 l

ωi

∇ · (A∇u
)

φi dx +
 l

ωi

cuφi dx

= −
 l

ωi

∇ · (A∇Ihu
)

φi dx −
 l

ωi

∇ · [A∇(u − Ihu
)]

φi dx +
 l

ωi

cuφi dx
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and  
∂ωi∩�

gφi ds =
 

∂ωi∩�

A∇u · �nφi ds

=
 

∂ωi∩�

A∇Ihu · �nφi ds +
 

∂ωi∩�

A∇(u − Ihu
) · �nφi ds.

Then recalling the definition (4.11) of the functional G∗
i , we get

B∗(Ihu, φi) − L∗(φi) = B∗(Ihu, φi) −
 l

ωi

fφi dx −
 

∂ωi∩�

gφi ds

=
 s

ωi

A∇Ihu · ∇φi dx +
 l

ωi

∇ · (A∇Ihu
)

φi dx

−
 

∂ωi∩�

A∇Ihu · �nφi ds

+
 l

ωi

∇ · [A∇(u − Ihu
)]

φi dx

−
 

∂ωi∩�

A∇(u − Ihu
) · �nφi ds

+
 m

ωi

c Ihu φi dx −
 l

ωi

cuφi dx

= G∗
i (A∇Ihu) +

 l

ωi

∇ · (A∇eI
)

φi dx

−
 

∂ωi∩�

A∇eI · �nφi ds −
 l

ωi

ceIφi dx, (5.13)

where the last equality is due to the assumption
ffl l

ωi
= ffl m

ωi
. Therefore, from

(5.12), (5.13) and the assumptions (4.7), (4.8), we get the following estimates
for i ∈ N′

h, namely,

Ei ≤ ∣

∣Gi(A∇Ihu) − G∗
i (A∇Ihu)

∣

∣

+
∣

∣

∣

∣

∣

ˆ
ωi

∇ · (A∇eI
)

φi dx −
 l

ωi

∇ · (A∇eI
)

φi dx

∣

∣

∣

∣

∣

+
∣

∣

∣

∣

ˆ
∂ωi∩�

A∇eI · �nφi ds −
 

∂ωi∩�

A∇eI · �nφi ds

∣

∣

∣

∣

+
∣

∣

∣

∣

∣

ˆ
ωi

ceIφi dx −
 l

ωi

ceIφi dx

∣

∣

∣

∣

∣

≤ ∣

∣Gi(A∇Ihu) − G∗
i (A∇Ihu)

∣

∣+ η|ωi|
∣

∣

(

A∇eI
)

φi
∣

∣

W1,∞(ωi)

+ τ |∂ωi ∩ �|‖A∇eI · �nφi‖L∞(∂ωi∩�) + η|ωi|‖ceIφi‖L∞(ωi), (5.14)
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and similarly, for i ∈ N′′
h , recalling that φi = 0 on ∂ωi, we have

Ei ≤ ∣

∣Gi(A∇Ihu) − G∗
i (A∇Ihu)

∣

∣

+ η|ωi|
∣

∣

(

A∇eI
)

φi
∣

∣

W1,∞(ωi)
+ η|ωi|‖ceIφi‖L∞(ωi), (5.15)

Now, from (5.2), the interpolation error (3.14), and the boundedness of φi, it
immediately follows that for i ∈ Nh,

∣

∣

(

A∇eI
)

φi
∣

∣

W1,∞(ωi)
≤ C‖A‖W1,∞(ωi)h

k−1‖u‖Wk+1,∞(�)

and ‖ceIφi‖L∞(ωi) ≤ C‖c‖L∞(ωi)h
k+1‖u‖Wk+1,∞(�),

and for i ∈ N′
h,

‖A∇eI · �nφi‖L∞(∂ωi∩�) ≤ C‖A‖L∞(ωi)h
k‖u‖Wk+1,∞(�).

Therefore, from (5.14), (5.15), the assumption A2, and Lemma 5.4, we get

Ei ≤
{

C
[

(η + τ)(‖A‖Wk,∞(�) + ‖c‖L∞(�)h2)
]

hk+d−1‖u‖Wk+1,∞(�), i ∈ N′
h;

C
[

η(‖A‖Wk,∞(�) + ‖c‖L∞(�)h2)
]

hk+d−1‖u‖Wk+1,∞(�), i ∈ N′′
h .

(5.16)

Finally, from (5.9), the interpolation error (3.14), (5.11), and (5.16), we get

‖u − u∗
h‖H1(�) ≤ Chk‖u‖Wk+1,∞(�)

+
[

Cη(‖A‖Wk,∞(�) + ‖c‖L∞(�)h2)

+(η + τ)(‖A‖Wk,∞(�) + ‖c‖L∞(�)h2)h
]

× hk−1‖u‖Wk+1,∞(�),

which is the required result. ��

Remark 5.2 The result (5.8) of Theorem 5.5 shows that ‖u − u∗
h‖H1(�) =

O[hk + (η + τ)hk + ηhk−1]. Thus we do not have the optimal order of conver-
gence (compare with (3.18)). But if we consider numerical integration such
that η = O(h), i.e, we use more accurate integration scheme as we refine h,
we get back the optimal order of convergence ‖u − u∗

h‖H1(�) = O(hk). This
feature of the GMM is very different from the standard FEM, where the same
numerical integration can be used for all values of h to obtain the optimal
order of convergence. We further note that (5.8) indicates that for larger values
of h (i.e., in the pre-asymptotic range), the error ‖u − u∗

h‖H1(�) may behave
like O(hk). But as h becomes smaller, we get ‖u − u∗

h‖H1(�) = O(hk−1). We will
show this feature in our numerical experiments.

Corollary 5.6 Suppose all the assumptions in Theorem 5.5 hold, except for the
assumption QA 4.2, which is replaced as follows: For a non-negative integer
l < k,

G∗
i ( p̃) = 0, ∀ p̃ ∈ ˜P l−1 and ∀ i ∈ Nh; (5.17)
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for the case l = 0, we assume that the condition (5.17) is vacuous, namely,
numerical integration rules satisfy only QA 4.1, QA 4.3, and QA 4.4. Then,
for η small enough, there is a positive constant C, independent of u, η, τ , and h,
such that

‖u − u∗
h‖H1(�) ≤ C

[

hk + (η + τ)hl + ηhl−1]‖u‖Wk+1,∞(�).

Proof (Only a sketch) It can be easily shown by following the proof of the
Lemma 5.4 that for 0 ≤ l ≤ k,

|Gi(A∇Ihu) − G∗
i (A∇Ihu)|

≤
{

C(η + τ)hl+d−1‖A‖Wk,∞(�)‖u‖Wk+1,∞(�), i ∈ N′
h

Cηhl+d−1‖A‖Wk,∞(�)‖u‖Wk+1,∞(�), i ∈ N′′
h

. (5.18)

Moreover, for l = 0, we do not need to use the Taylor polynomial of A∇Ihu
(as in the proof of Lemma 5.4) to get, (5.18). Now, instead of using the result
of Lemma 5.4, we use (5.18) in the proof of Theorem 5.5 to get the desired
result. ��

Remark 5.3 The result in Corollary 5.6 shows that if the quadrature rules
satisfy (4.12) of the assumption QA 4.2 with k replaced by l and l < k, then
‖u − u∗

h‖H1(�) = O(hl−1). Also, if the quadrature rules do not satisfy (4.12) (i.e.,
l = 0), then ‖u − u∗

h‖H1(�) ≤ Ch−1, which indicates that the error may increase
as h → 0.

We note that for the case k = 1, Theorem 5.5 yields ‖u − u∗
h‖H1(�) =

O(h + η). In fact a similar result for k = 1 can be obtained using less re-
strictions on the numerical integration. We state the result in the following
corollary.

Corollary 5.7 Let u ∈ C2(�), aij ∈ C1(�), and c ∈ C(�). Suppose the subspace
Vh, with k = 1, satisf ies assumptions A1–A5 and the quadrature schemes satisfy
QA 4.1, QA 4.4, and (4.12) only for i ∈ N′′

h. Then, for η small enough, there is a
positive constant C, independent of u, η, τ , and h, such that

‖u − u∗
h‖H1(�) ≤ C(h + η + τ)‖u‖W2,∞(�).

The proof of this result can be obtained by slightly modifying the proofs of
Lemma 5.4 and Theorem 5.5; we do not present the complete proof here.

6 Construction of numerical integration formula

In this section, we will derive numerical integration rules that satisfy the
assumption QA 4.2, i.e., the condition (4.12) for k = 1 and k = 2 in two
dimensions. We note that we have illustrated the conditions (4.12) in
Remark 4.7.
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To approximate the integral
´ s

ωi
�(x) dx, we seek a p-point quadrature rule

Qi
c(�) on ωi, of the form

Qi
c(�) ≡

p
∑

l=1

ζ i
c,l�(yi

c,l), � ∈ C0(ω̄i) and yi
c,l ∈ ω̄i, (6.1)

that satisfies (4.12) with
ffl s

ωi
replaced by Qi

c.

The case k = 1 Recall that in this case, the shape functions {φi}i∈Nh reproduce
polynomials of degree k = 1. We will find the weights ζ i

c,l and the integration
points yi

c,l in (6.1) such that (4.12), i.e., (4.20) and (4.21), are satisfied with
ffl s

ωi

replaced by Qi
c(·). Suppose we have at our disposal a quadrature rule

Qi
B(g) ≡

 
∂ωi∩�

g(s) ds, g ∈ C0(ω̄i) (6.2)

that accurately approximates the boundary integral
´

∂ωi∩�
g(s) ds. We start with

an accurate p-point quadrature rule Qi(�) on ωi of the form

Qi(�) ≡
p
∑

l=1

�(yi
l)ζ

i
l . (6.3)

We then define for 1 ≤ l ≤ p,

yi
c,l = yi

l

ζ i
c,l = ζ i

l + θ i
1ζ

i
l
∂φi

∂x1

(

yi
l

)+ θ i
2ζ

i
l
∂φi

∂x2

(

yi
l

)

, (6.4)

and choose θ i
1 and θ i

2 such that (4.20) and (4.21) are satisfied, i.e.,

Qi
c

(

∂φi

∂x1

)

=
 

∂ωi∩�

n1φi ds = Qi
B(n1φi)

Qi
c

(

∂φi

∂x2

)

=
 

∂ωi∩�

n2φi ds = Qi
B(n2φi).

This yields the linear system
⎡

⎢

⎢

⎣

Qi

(

(

∂φi
∂x1

)2
)

Qi
(

∂φi
∂x1

∂φi
∂x2

)

Qi
(

∂φi
∂x2

∂φi
∂x1

)

Qi

(

(

∂φi
∂x2

)2
)

⎤

⎥

⎥

⎦

[

θ i
1

θ i
2

]

=
⎡

⎣

Qi
B (n1φi) − Qi

(

∂φi
∂x1

)

Qi
B

(

n2φi
)−Qi

(

∂φi
∂x2

)

⎤

⎦ (6.5)

The components θ i
1 and θ i

2 of the solution of the above system are used in the
definition of ζ i

c,l (see (6.4)), and consequently, the resulting Qi
c(�) satisfies the

condition (4.12). We note that for i ∈ N′′
h , the RHS of (6.5) does not contain the

terms Qi
B(n1φi) and Qi

B(n2φi). We further note that Qi
c(�) could be viewed as
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a corrected form of Qi(�), such that Qi
c(�) satisfies the condition (4.12); we will

often refer to Qi
c(�) as the corrected numerical integration formula for k = 1.

We note that Qi
c(�) for k = 1 in the one dimensional case was derived in [6].

Remark 6.1 To discuss the solvability of the system (6.5), we define a weighted
inner product in R

p by

〈u, v〉w ≡
p
∑

l=1

ulvlζ
i
l , ∀ u = (u1, · · · , up) and v = (v1, · · · , vp) ∈ R

p

Let V1 = (

∂φi
∂x1

(yi
1), · · · ,

∂φi
∂x1

(yi
p)
)

and V2 = (

∂φi
∂x2

(yi
1), · · · ,

∂φi
∂x2

(yi
p)
)

, then the
coefficient matrix of the linear system (6.5) is

[ 〈V1, V1〉w 〈V1, V2〉w
〈V2, V1〉w 〈V2, V2〉w

]

, (6.6)

which is the Gramm matrix of the vectors V1 and V2 with respect to the inner
product 〈·, ·〉w. This Gramm matrix is positive when V1 and V2 are linearly
independent. Suppose p ≥ 2 and let there be two integration points yi

m and yi
n

in the set of integration points {yi
l}p

l=1 such that the vectors ∇φi(yi
m) and ∇φi(yi

n)

are linearly independent, then it is easy to show that the vectors V1 and V2 are
linearly independent.

The case k = 2 We recall that in this case, the shape functions {φi}i∈Nh

reproduce polynomials of degree k = 2. We will find ζ i
c,l and yi

c,l in (6.1) such
that (4.12), with

ffl s
ωi

replaced by Qi
c, is satisfied for k = 2.

Suppose in addition to the quadrature rule Qi
B(g) (see (6.2)), we also have

at our disposal a quadrature rule

Qi
F( f ) ≡

 l

ωi

f (x) dx

that accurately approximates the integral
´ l

ωi
f (x) dx. As in the case k = 1, we

start with an accurate p-point quadrature rule Qi(�) (see (6.3)). We note that
we could choose Qi(·) to be the same as Qi

F(·). Suppose B = { p̃m}6
n=1 be a basis

for ˜P1 (recall that dim ˜P1 = 6; a basis of ˜P1 is given in Remark 4.7). Then for
k = 2, the condition (4.12), with

ffl s
ωi

replaced by Qi
c(·), is equivalent to

Qi
c

(

p̃m · ∇φi
) = Qi

B

(

p̃m · �nφi
)− Qi

F

(∇ · p̃mφi
)

, for 1 ≤ m ≤ 6. (6.7)

We now define, for 1 ≤ l ≤ p,

yi
c,l = yi

l

ζ i
c,l = ζ i

l +
6
∑

n=1

θ i
nζ

i
l

(

p̃n · ∇φi
)

(yi
l), (6.8)
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where {θ i
n}6

n=1 are chosen such that (6.7) is satisfied. We first note that from the
definition of Qi

c(·) in (6.1), with yi
c,l, ζ

i
c,l as defined above, we get for 1 ≤ m ≤ 6,

Qi
c( p̃m · ∇φi) = Qi( p̃m · ∇φi

)+
p
∑

l=1

6
∑

n=1

θ i
nζ

i
l

(

p̃n · ∇φi
)

(yi
l)
(

p̃m · ∇φi
)

(yi
l)

= Qi( p̃m · ∇φi
)+

6
∑

n=1

θ i
n Qi

(

( p̃n · ∇φi) ( p̃m · ∇φi)
)

Therefore (6.7) is equivalent to the linear system

6
∑

n=1

θ i
n Qi

(

( p̃n · ∇φi) ( p̃m · ∇φi)
)

= Qi
B

(

p̃m · �nφi
)− Qi

F

(∇ · p̃mφi
)− Qi( p̃m · ∇φi

)

,

for 1 ≤ m ≤ 6. (6.9)

We use the solution {θn}6
n=1 of the above linear system in the definition of ζ i

c,l

(see (6.8)), and consequently, Qi
c(�) will satisfy the condition (4.12). We will

often refer to Qi
c(�) as the corrected numerical integration formula for k = 2.

We note that solving the linear system (6.9) could be facilitated by consid-
ering the basis B = { p̃m}6

m=1 = {(1, 0), (x1 − xi1, 0), (x2 − xi2, 0), (0, 1), (0, x1 −
xi1), (0, x2 − xi2)}, where xi = (xi1, xi2) is the particle associated with ωi.

Remark 6.2 To discuss the solvability of the system (6.9), we define a weighted
inner product for R

p by

〈u, v〉w ≡
p
∑

l=1

ulvlζ
i
l , ∀ u = (u1, · · · , up) and v = (v1, · · · , vp) ∈ R

p

Let Vn =
(

[

p̃n · ∇φi
]

(yi
1), · · · ,

[

p̃n · ∇φi
]

(yi
p)
)

, 1 ≤ n ≤ 6, then the coefficient

matrix of the linear system (6.9) is

⎡

⎢

⎢

⎢

⎣

〈V1, V1〉w 〈V1, V2〉w · · · 〈V1, V6〉w
〈V2, V1〉w 〈V2, V2〉w · · · 〈V2, V6〉w

...
...

. . .
...

〈V6, V1〉w 〈V6, V2〉w · · · 〈V6, V6〉w

⎤

⎥

⎥

⎥

⎦

which is exactly the Gramm matrix of the vectors Vn, 1 ≤ n ≤ 6 with respect to
the inner product 〈·, ·〉w. This Gramm matrix is positive if the vectors {Vl}6

l=1 are
linearly independent. We note that p ≥ 6 is a necessary condition for the linear
independence of the vectors {Vl}6

l=1. We further mention that the positivity of



482 Q. Zhang, U. Banerjee

the Gramm matrix is subtle. When ωi is a square, our computations show that
the Gramm matrix is positive when Qi is the 4 × 4 Gauss rule on ωi, but it has
a zero eigenvalue when Qi is the 3 × 3 Gauss rule.

Remark 6.3 The quadrature rule Qi
c, which depends on Qi, satisfies QA 4.1

provided Qi is accurate enough. We give a brief sketch of the argument if
ωi ⊂⊂ �. Let Qi be accurate and satisfy QA 4.1 with η = ηQi . For example,
if ωi is a square, Qi could be an n × n Gauss rule; it is well known that
ηQi = O(p−m1), where m1 is as in (4.8) (see Remark 3.3 in [6]). Since k = 1,
from (4.14) we have

´
ωi

∂φi
∂x j

= 0. Therefore the components of the vector in

the RHS of (6.5) are extremely small, provided Qi is accurate enough. Hence
θ i

1, θ
i
2 are small, ζ i

c,l ≈ ζ i
l , and Qi

c is close to Qi. Since Qi satisfies QA 4.1,
one can show that Qi

c also satisfy QA 4.1 with η = ηQi
c
≥ ηQi . We note that if

Qi(∂φi/∂x j) = 0, then Qi
c = Qi, as shown in an example in Section 7 (see (7.2)).

As mentioned before, Qi
c will satisfy QA 4.4 under the restrictive condition

ηQi
c
≤ Ch. We have numerically checked that QA 4.4 holds for Qi

c for various
Qi if p is large. For k = 2, the situation is similar.

We now give a brief sketch of the derivation of the numerical integration
rule Qi

c(·), in 1 dimension (i.e., when d = 1) with ωi = (αi, βi), such that (4.12)
for k = 2 is satisfied with

ffl s
ωi

replaced by Qi
c. We will use the one dimensional

quadrature rule in our numerical examples in the next section.
As before, we start with the quadrature rules Qi

F(·) and Qi(·); we recall that
both the rules could also be same. We first note that, for d = 1, the “boundary
integral” term in (4.11) is vφi

∣

∣

βi

αi
; thus we do not need the quadrature rule Qi

B(·).
We further note that ˜P1 = P1 and therefore m = dim P1 = 2. Thus (6.7), for
d = 1, is written as

⎧

⎨

⎩

Qi
c(φ

′
i(x)) = φi(x)

∣

∣

βi

αi

Qi
c

([

(x − xi)φ
′
i(x)

]) = (x − xi)φi(x)
∣

∣

βi

αi
− Qi

F(φi)
(6.10)

We now define yi
c,l, ζ i

c,l (compare with (6.8)) as
{

yi
c,l = yi

l
ζ i

c,l = ζ i
l + θ i

1ζ
i
l φ

′
i(yi

l) + θ i
2ζ

i
l

[

(yi
l − xi)φ

′
i(yi

l)
]

,
(6.11)

where θ i
1, θ i

2 are chosen such that (6.10) is satisfied. Using Qi
c(·), with yi

c,l, ζ i
c,l

as defined above, in (6.10) yields the linear system for θ i
1, θ i

2, namely,
[

Qi(φ′2
i (x)) Qi

[

(x − xi)φ
′2
i (x)

]

Qi
[

(x − xi)φ
′2
i (x)

]

Qi
[

(x − xi)
2φ′2

i (x)
]

][

θ i
1

θ i
2

]

=
[

φi(x)|βi
αi

− Qi(φ′
i)

(x − xi)φi(x)|βi
αi

− Qi
[

(x − xi)φ
′
i(x)

]− Qi
F(φi)

]

.

]

(6.12)
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7 Numerical results

We present numerical examples to illuminate the results obtained in Section
5. Let � = (0, 1) and we consider the Neumann problem with non-constant
coefficients, namely,

−(au′)′ + cu = f, x ∈ �

a(0)u′(0) = 1, a(1)u′(1) = 2e,

where a(x) = 1 + x3, c(x) = 1 + sin2 x, and f (x) = ex(sin2 x − x3 − 3x2). The
exact solution of the problem is u(x) = ex.

To approximate the solution u(x) of the above problem by the GMM (4.6),
we first define the shape functions of the finite dimensional space Vh. For a
given non-negative integer k and a positive real number R, let φ(x) be the
basic RKP shape function with compact support [−R, R] satisfying

∑

i∈Z

ilφ(x − i) = xl, ∀ x ∈ R and l = 0, 1, . . . , k. (7.1)

We mention that there exists φ(x) satisfying (7.1) when R ≥ (k + 1)/2 (see e.g.,
[3]). Consider a positive integer N and for h = 1/N, we consider the index set

Nh = {−[R], · · · , 0, 1, · · · , N, · · · , N + [R]},
where [R] is the integer part of R. For each i ∈ Nh, we define the RKP shape
functions

φi(x) ≡ φ
( x

h
− i
)

, x ∈ �.

Then supp φi = [αi, βi] = [ih − Rh, ih + Rh] ∩ [0, 1]. Defining the set of par-
ticles Xh = {xi = ih, i ∈ Nh}, it can be easily shown that {φi}Nh

i=1 reproduce
polynomials of degree k, i.e.,

∑

i∈Nh

xl
iφi(x) = xl, ∀ x ∈ � and l = 0, 1, . . . , k.

Moreover, recalling the definitions of the index sets N′
h and N′′

h , we have

N′
h = {−[R], · · · , [R], N − [R], · · · , N + [R]} and

N′′
h = {[R] + 1, · · · , N − [R] − 1}

We note that the function φ(x) has been constructed following the ideas
mentioned in Remark 3.3 (using h = 1, x j = j ∈ Z, and i = 0, i.e., φ(x) =
φ1

0(x)), where we have used the cubic spline weight function for w(x) with
compact support [−R, R]; for the definition of cubic spline weight function,
we refer to [3, 4]. We further note that the cubic spline weight function is
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symmetric in [−R, R], and consequently the associated shape functions φi(x),
i ∈ N′′

h , are also symmetric in [αi, βi].

The case k = 1 The basic shape function φ(x) was constructed with R = 1.8.
For i ∈ Nh, we consider the standard p-point Gaussian integration rule on
[αi, βi], namely,

Qi
g( f ) ≡

p
∑

l=1

f (yi
l)ζ

i
l , ∀ f ∈ C(ωi),

where {yi
l : 1 ≤ l ≤ p} are the Gaussian integration points in [αi, βi] and {ζ i

l :
1 ≤ l ≤ p} are the associated weights. It is well known that the points yi

l are
symmetrically placed in the interval [αi, βi]; also the weights ζ i

l are symmetric,
i.e., ζ i

s = ζ i
p+1−s, s = 1, 2, . . . , p.

Recall that φi(x), for i ∈ N′′
h , is symmetric, and consequently, φ′

i(x), i ∈ N′′
h ,

is anti-symmetric in [αi, βi] about the mid-point. Therefore, we get

Qi
g(φ

′
i) = 0, ∀ i ∈ N′′

h . (7.2)

Thus the numerical integration rule Qi
g satisfies the condition (4.12), i.e.,

the discrete Green’s formula, for i ∈ N′′
h (see also (4.22)). We used Qi

g, with
p = 8, 16, 32, and 64 to compute γ ∗

ij , σ
∗
ij , and l∗i in the variational problem (4.6).

We note that in the one dimensional case, evaluation of the boundary integrals
is trivial. We further note that Qi

c = Qi
g satisfies QA 4.1 with η = O(p−s),

where s depends on the regularity of f (see Remark 3.3 in [6]). We have
computed the solution u∗

h of (4.6) and have presented the error ‖u − u∗
h‖H1(�)

for various values of h in Table 1. We also presented the log-log graph of
‖u − u∗

h‖H1(�) with respect to h in Fig. 1. It is clear that for p = 16, 32 and

Table 1 GMM with k = 1. Standard Gaussian integration rule

h ‖u − u∗
h‖H1(�)

8 points 16 points 32 points 64 points

1/10 1.9883E−02 3.4312E−03 3.4040E−03 3.3908E−03
1/20 2.3933E−02 1.7751E−03 1.7851E−03 1.7427E−03
1/40 2.6763E−02 9.1993E−04 9.8673E−04 8.8411E−04
1/80 2.8425E−02 4.9672E−04 6.4523E−04 4.4625E−04
1/160 2.9324E−02 3.0333E−04 5.3111E−04 2.2612E−04
1/320 2.9791E−02 2.2761E−04 5.0200E−04 1.1769E−04
1/640 3.0029E−02 2.0272E−04 4.9631E−04 6.7007E−05
1/1280 3.0150E−02 1.9519E−04 4.9581E−04 4.6261E−05

The H1 norm of the error, ‖u − u∗
h‖H1(�), where u = ex and u∗

h is the solution of the GMM, em-
ploying shape functions that reproduce polynomials of degree k = 1. Standard p-point Gaussian
integration rule, with p = 8, 16, 32 and 64, was used in the GMM. These rules satisfy the discrete
Green’s formula in the interior for k = 1, i.e., the assumption (7.2)
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Fig. 1 The log-log plot of
‖u − u∗

h‖H1(�) with respect
to h, where u = ex and u∗

h is
the solution of the GMM,
employing shape functions
that reproduce polynomials
of degree k = 1. Standard
p-point Gaussian rule is
used, which satisfies the
assumption (7.2)

h

10–1

10–2

10–3

10–4

10–5

64, the error ‖u − u∗
h‖H1(�) first decreases and then “levels off”, which suggests

that ‖u − u∗
h‖H1(�) = O(h + η). This illuminates the result of the Corollary 5.7.

We now show that the condition (4.12) on the underlying quadrature
rule is a necessary condition for the result presented in Theorem 5.5, i.e.,
‖u − u∗

h‖H1(�) = O(h + η). We consider a non-symmetric Gaussian integration
rule that does not satisfy the condition (4.12), i.e., does not satisfy the discrete
Green’s formula. For i ∈ Nh, we consider the mapping Ti : [αi, βi] → [αi, βi]
given by

z = Ti(y) = y + 0.2
βi − αi

[

(

y − αi + βi

2

)2

−
(

βi − αi

2

)2
]

Therefore, for a smooth function f , we have
ˆ βi

αi

f (z)dz =
ˆ βi

αi

f (Ti(y)) T ′
i (y)dy.

The integral on the RHS of the above equality could be approximated by
the Gaussian rule Qi

g to obtain an integration rule on [αi, βi] to approximate

the integral
´ βi

αi
f (z)dz, namely,

Qi
ng( f ) ≡

p
∑

l=1

f
(

yi
nl

)

ζ i
nl, (7.3)

where yi
nl = Ti(yi

l) and ζ i
nl = T ′

i (yi
l)ζ

i
l . We will refer to Qi

ng as a p-point non-
symmetric Gaussian integration rule on [αi, βi]. It is well known that the
algebraic precision of Qi

g is 2p − 1; we can show that the algebraic precision of
Qi

ng is p − 1.
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Table 2 GMM with k = 1. Non-symmetric Gaussian integration rule

h ‖u − u∗
h‖H1(�)

8 points 16 points 32 points 64 points

1/10 4.5373E−01 8.5286E−03 3.4098E−03 3.3908E−03
1/20 1.1694E+00 2.0281E−02 2.0558E−03 1.7425E−03
1/40 2.7436E+00 4.4534E−02 2.8166E−03 8.8444E−04
1/80 6.3125E+00 9.2759E−02 5.9275E−03 4.5245E−04
1160 1.4474E+01 1.8844E−01 1.2420E−02 2.7798E−04
1/320 3.2278E+01 3.7713E−01 2.5442E−02 3.5063E−04
1/640 6.9243E+01 7.4415E−01 5.1451E−02 6.6803E−04
1/1280 1.4414E+02 1.4379E+00 1.0329E−01 1.3328E−03

The H1 norm of the error, ‖u − u∗
h‖H1(�), where u = ex and u∗

h is the solution of the GMM,
employing shape functions that reproduce polynomials of degree k = 1. Non-symmetric p-point
Gaussian integration rule, with p = 8, 16, 32 and 64, was used in the GMM. These integration rules
do not satisfy the discrete Green’s formula for k = 1

We use the non-symmetric Gaussian integration rule Qi
ng, with p = 8,

16, 32, and 64, to compute γ ∗
ij , σ ∗

ij , and l∗i in the variational problem (4.6).
We computed the solution u∗

h of (4.6) and presented the error ‖u − u∗
h‖H1(�)

for various values of h in Table 2. We also presented the log-log plot of
‖u − u∗

h‖H1(�) with respect to h in Fig. 2. It is clear that ‖u − u∗
h‖H1(�) increases

as h decreases; for p = 32 and 64, the error first decreases and then increases.
In all the cases, the error ‖u − u∗

h‖H1(�) behaves like O(h−1), as indicated in
Corollary 5.6 and Remark 5.3.

 8 point
16 point
32 point
64 point

h

101

10–1

10–2

10–3

10–4

100

102

103

Fig. 2 The log-log plot of ‖u − u∗
h‖H1(�) with respect to h, where u = ex and u∗

h is the solution of
the GMM, employing shape functions that reproduce polynomials of degree k = 1. Non-symmetric
p-point Gaussian integration rules were used, which do not satisfy the discrete Green’s formula
for k = 1
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Now following the ideas presented in Section 6, we will correct the non-
symmetric Gaussian integration rule Qi

ng(·) (given in (7.3)), such that the
corrected numerical integration rule (see (6.1))

Qi
c(�) ≡ Qi

ng,c(�) =
p
∑

l=1

�
(

yi
c,l

)

ζ i
c,l

satisfies the condition (4.12). We note that for d = 1, the condition (4.12) for
k = 1 is

Qi
ng,c(φ

′
i) = φ(βi) − φ(αi). (7.4)

For 1 ≤ i ≤ p, we consider

yi
c,l = yi

nl and ζ i
c,l = ζ i

nl + θ iζ i
nlφ

′
i(yi

nl),

with

θ i = φi(βi) − φi(αi) −∑p
l=1 φ′

i(yi
nl)ζ

i
nl

∑p
l=1 φ′2

i (yi
nl)ζ

i
nl

.

Then it can be shown, following the ideas in Section 6 for d = 1, that
Qi

ng,c(·) satisfies the condition (4.12), i.e., (7.4). However, we note that unlike
the standard Gaussian integration rule Qi

g(·), the integration points for the
quadrature rule Qi

ng,c(·) are not symmetrically placed in [αi, βi]. The expression
for the corrected numerical integration rule for d = 1 was also derived in [6]
for a slightly different situation. We will refer to Qi

ng,c(·) as the corrected non-
symmetric Gaussian integration rule for k = 1. Qi

ng,c(·) satisfies QA 4.1 with an
η, which is close to η associated with Qi

ng and is small for large p.
We now use the corrected integration rule Qi

ng,c(·) to compute γ ∗
ij in problem

(4.6); the terms σ ∗
ij and l∗i in (4.6) are computed using the integration rule Qi

ng

(uncorrected). We computed the solution u∗
h of (4.6) and have presented the

error ‖u − u∗
h‖H1(�), for various values of h in Table 3. We also presented the

Table 3 GMM with k = 1. Corrected non-symmetric Gaussian integration rule for k = 1

h ‖u − u∗
h‖H1(�)

8 points 16 points 32 points 64 points

1/10 5.6887E−03 3.4243E−03 3.4004E−03 3.3907E−03
1/20 4.8897E−03 1.7538E−03 1.7735E−03 1.7424E−03
1/40 4.9036E−03 9.8324E−04 9.5897E−04 8.8351E−04
1/80 5.0486E−03 7.3643E−04 5.9529E−04 4.4492E−04
1/160 5.1580E−03 7.0595E−04 4.6444E−04 2.2331E−04
1/320 5.2221E−03 7.2101E−04 4.2812E−04 1.1201E−04
1/640 5.2564E−03 7.3597E−04 4.2001E−04 5.6271E−05
1/1280 5.2742E−03 7.4520E−04 4.1871E−04 2.8400E−05

The H1 norm of the error, ‖u − u∗
h‖H1(�), where u = ex and u∗

h is the solution of the GMM,
employing shape functions that reproduce polynomials of degree k = 1. Corrected non-symmetric
Gaussian integration rule for k = 1, with p = 8, 16, 32 and 64, was used in the GMM. The
integration rules satisfy the discrete Green’s formula for k = 1
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Fig. 3 The log-log plot of
‖u − u∗

h‖H1(�) with respect
to h, where u = ex and u∗

h is
the solution of the GMM,
employing shape functions
that reproduce polynomials
of degree k = 1. Corrected
p-point non-symmetric
Gaussian rules for k = 1
were used, which satisfy
the discrete Green’s
formula for k = 1

8 point
16 point
32 point
64 point

h

10–4

10–3

10–2

10–5

log-log plot of ‖u − u∗
h‖H1(�) with respect to h in Fig. 3. It is clear that ‖u −

u∗
h‖H1(�) levels off as h decreases; the error first decreases and then levels off

for p = 16, 32, and 64. This suggests that ‖u − u∗
h‖H1(�) = O(h + η).

The case k = 2 The basic shape function φ(x), satisfying (7.1) with k = 2, was
constructed with R = 2.2. Let Qi(·) = Qi

ng(·) be the p-point non-symmetric
Gaussian integration rule on [αi, βi], as given in (7.3). We consider the associ-
ated corrected non-symmetric Gaussian integration rule Qi

c(·) for k = 2; Qi
c(·)

satisfies the discrete Green’s formula (4.12) for k = 2, d = 1, i.e., it satisfies
(6.10). The integration points {yi

c,l}p
l=1 and the associated weights {ζ i

c,l}p
l=1 of

Qi
c(·) are given by (6.11) with yi

l = yi
n,l and ζ i

l = ζ i
n,l for 1 ≤ l ≤ p. We mention

that θ i
1, θ i

2 in (6.11) are obtained from the solution of (6.12), with Qi
F(φi) =

Table 4 GMM with k = 2. Corrected non-symmetric Gaussian rule for k = 2

h ‖u − u∗
h‖H1(�)

8 points 16 points 32 points 64 points

1/10 6.8778E−03 1.3037E−03 7.0255E−04 6.8283E−04
1/20 4.4966E−03 8.3073E−04 2.1238E−04 1.7378E−04
1/40 2.5677E−03 4.8134E−04 8.4965E−05 4.4034E−05
1/80 1.3736E−03 2.5972E−04 4.1096E−05 1.1258E−05
1/160 7.1071E−04 1.3494E−04 2.0824E−05 3.0523E−06
1/320 3.6153E−04 6.8783E−05 1.0558E−05 9.6564E−07
1/640 1.8234E−04 3.4724E−05 5.3252E−06 3.8283E−07
1/1280 9.1564E−05 1.7446E−05 2.6751E−06 1.7719E−07

The H1 norm of the error, ‖u − u∗
h‖H1(�), where u = ex and u∗

h is the solution of the GMM,
employing shape functions that reproduce polynomials of degree k = 2. Corrected p-point
non-symmetric Gaussian integration rule for k = 2, with p = 8, 16, 32 and 64, was used in the
GMM. The integration rules satisfy the discrete Green’s formula for k = 2
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Fig. 4 The log-log plot of the

ratio
‖u−u∗

h‖H1(�)

h with respect
to h, where u = ex and u∗

h is
the solution of the GMM,
employing shape functions
that reproduce polynomials
of degree k = 2. Corrected
p-point non-symmetric
Gaussian rules for k = 2
were used, which satisfy
the discrete Green’s
formula for k = 2

 8 point
16 point
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64 point
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Qi
ng(φi). We used the corrected non-symmetric Gaussian integration rule Qi

c(·)
(for k = 2) to compute the terms γ ∗

ij in the variational problem (4.6). The
terms σ ∗

ij and l∗i were computed using the non-symmetric Gaussian integration
rule (uncorrected) Qi

ng(·). We computed the solution u∗
h of (4.6) and have

presented the values of ‖u − u∗
h‖H1(�), for various values of h in Table 4. We

also presented the log-log plot of the ratio
‖u−u∗

h‖H1(�)

h with respect to h in Fig. 4.
It is clear that u∗

h converges to u, the solution of (2.3), as h becomes smaller.
The Fig. 4 also indicates that ‖u − u∗

h‖H1(�) = O[h(h + η)], illuminating the
result of Theorem 5.5 for k = 2.

We will now show the effect of quadrature on ‖u − u∗
h‖H1(�), when the

quadrature does not satisfy the condition (4.12) for k = 2. We first computed

Table 5 GMM with k = 2. Corrected non-symmetric Gaussian rule for k = 1

h ‖u − u∗
h‖H1(�)

8 points 16 points 32 points 64 points

1/10 3.8161E−02 6.3683E−03 1.8719E−03 6.9042E−04
1/20 4.0997E−02 1.2019E−02 1.9499E−03 2.2130E−04
1/40 3.9586E−02 1.5615E−02 2.0005E−03 1.5928E−04
1/80 3.8040E−02 1.7666E−02 2.0156E−03 1.6104E−04
1/160 3.7035E−02 1.8762E−02 2.0196E−03 1.6434E−04
1/320 3.6472E−02 1.9330E−02 2.0205E−03 1.6610E−04
1/640 3.6174E−02 1.9619E−02 2.0208E−03 1.6699E−04
1/1280 3.6022E−02 1.9764E−02 2.0208E−03 1.6743E−04

The H1 norm of the error, ‖u − u∗
h‖H1(�), where u = ex and u∗

h is the solution of the GMM,
employing shape functions that reproduce polynomials of degree k = 2. Corrected p-point
non-symmetric Gaussian integration rules for k = 1 (not corrected for k = 2), with p = 8, 16, 32
and 64, were used in the GMM. The integration rules do not satisfy the discrete Green’s formula
for k = 2
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Fig. 5 The log-log plot of
‖u − u∗

h‖H1(�) with respect
to h, where u = ex and u∗

h is
the solution of the GMM,
employing shape functions
that reproduce polynomials
of degree k = 2. Corrected
p-point non-symmetric
Gaussian rules for k = 1
were used, which do not
satisfy the discrete Green’s
formula for k = 2
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32 point
64 point

h

10–3

10–2

10–1

10–4

γ ∗
ij in (4.6) using the corrected p-point non-symmetric integration rule for

k = 1 (see Qi
ng,c(·) given before). We note that this quadrature rule satisfies

only the first condition in (6.10). The terms σ ∗
ij and l∗i were computed using

the p-point non-symmetric gaussian integration rule Qi
ng(·). The error ‖u −

u∗
h‖H1(�) for various values of h and the associated log-log plot are given in

Table 5 and Fig. 5, respectively. These results indicate that ‖u − u∗
h‖H1(�) =

O(h + η) and u∗
h � u as h → 0.

Finally, we used Qi
ng(·) to compute γ ∗

ij in (4.6); Qi
ng(·) does not satisfy any

of the conditions in (6.10). The terms σ ∗
ij and l∗i were again computed using

Qi
ng(·). The error ‖u − u∗

h‖H1(�) for various values of h and the associated log-
log plot are given in Table 6 and Fig. 6, respectively. It is clear that the error

Table 6 Non-symmetric (no correction) Gaussian rule: k = 2

h ‖u − u∗
h‖H1(�)

8 points 16 points 32 points 64 points

1/10 9.4346E−01 4.6767E−02 7.5982E−03 7.6165E−04
1/20 2.0155E+00 4.5294E−02 2.1562E−02 1.0294E−03
1/40 4.3714E+00 9.2717E−02 5.0461E−02 2.3620E−03
1/80 9.7615E+00 2.8436E−01 1.0883E−01 5.0628E−03
1/160 2.1885E+01 7.1121E−01 2.2511E−01 1.0474E−02
1/320 4.7659E+01 1.6259E+00 4.5406E−01 2.1309E−02
1/640 1.0044E+02 3.6444E+00 8.9677E−01 4.3013E−02
1/1280 2.0680E+02 8.2709E+00 1.7231E+00 8.6554E−02

The H1 norm of the error, ‖u − u∗
h‖H1(�), where u = ex and u∗

h is the solution of the GMM,
employing shape functions that reproduce polynomials of degree k = 2. Non-symmetric p-point
Gaussian integration rules, with p = 8, 16, 32 and 64, were used in the GMM. The integration rules
do not satisfy the discrete Green’s formula for k = 2
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Fig. 6 The log-log plot of
‖u − u∗

h‖H1(�) with respect
to h, where u = ex and u∗

h is
the solution of the GMM,
employing shape functions
that reproduce polynomials of
degree k = 2. Non-symmetric
p-point Gaussian integration
rules were used, which do not
satisfy the discrete Green’s
formula for k = 2

 8 point
16 point
32 point
64 point

h

101

10–1

10–2

10–3

10–4

100

102

103

‖u − u∗
h‖H1(�) diverges as h decreases; in fact ‖u − u∗

h‖H1(�) behaves like O(h−1)

as suggested by Corollary 5.6 for k = 2.

8 Conclusion

In this paper, we have studied the effect of numerical integration on GMM
to approximate the solution of a Neumann problem with non-constant
coefficients and a lower order term. We have proposed a set of axioms on
the quadrature rules used in the GMM and have studied the effect of the
quadrature (satisfying these axioms) on the associated approximation error,
when the shape functions of the GMM reproduce polynomials of degree k.
The quadrature rules satisfying these axioms, particularly the axiom QA 4.2—
a discrete Green’s identity, do not depend on the non-constant coefficients
of the Neumann problem. We also note that the Integration Constraint in
[13] is precisely QA 4.2 for k = 1. Our analysis shows that the optimal order
of convergence of the approximation error in energy norm, with respect to
the discretization parameter h, can be achieved provided quadratures with in-
creasing accuracy are used as h → 0. We have outlined procedures to construct
quadrature rules in 2-d for k = 1, 2 satisfying the axioms, in particular QA 4.2.
Also the theoretical results have been illuminated with numerical experiment.
We note however that problems with essential boundary conditions will re-
quire a different treatment and will be reported in future.

References

1. Atluri, S.N., Shen, S.: The Meshless Local Petrov Galerkin Method. Tech. Sci. Press (2002)
2. Atluri, S.N., Zhu, T.: A new meshless local petrov-galerkin (mlpg) approach in computational

mechanics. Comput. Mech. 22, 117–127 (1998)



492 Q. Zhang, U. Banerjee

3. Babuška, I., Banerjee, U., Osborn, J.: Survey of meshless and generalized finite element
methods: a unified approach. Acta Numer. 12, 1–125 (2003)

4. Babuška, I., Banerjee, U., Osborn, J.: On the approximability and the selection of particle
shape functions. Numer. Math. 96, 601–640 (2004)

5. Babuška, I., Banerjee, U., Osborn, J., Li, Q.: Quadrature for meshless methods. Int. J. Numer.
Methods Eng. 76, 1434–1470 (2008)

6. Babuška, I., Banerjee, U., Osborn, J., Zhang, Q.: Effect of numerical integration on meshless
methods. Comput. Methods Appl. Mech. Eng. 198, 2886–2897 (2009)

7. Beissel, S., Belytschko, T.: Nodal integration of the element-free Galerkin method. Comput.
Methods Appl. Mech. Eng. 139, 49–74 (1996)

8. Belytschko, T., Lu, Y.Y., Gu, L.: Element-free Galerkin methods. Int. J. Numer. Methods Eng.
37, 229–256 (1994)

9. Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., Krysl, P.: Meshless methods: An
overview and recent developments. Comput. Methods Appl. Mech. Eng. 139, 3–47 (1996)

10. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer,
New York (2007)

11. Carpinteri, A., Ferro, G., Ventura, G.: The partition of unity quadrature in meshless methods.
Int. J. Numer. Methods Eng. 54, 987–1006 (2002)

12. Carpinteri, A., Ferro, G., Ventura, G.: The partition of unity quadrature in element free crack
modelling. Comput. Struct. 81, 1783–1794 (2003)

13. Chen, J.-S., Wu, C.-T., Yoon, S., You, Y.: A stabilized conformal nodal integration for a
Galerkin mesh-free method. Int. J. Numer. Methods Eng. 50, 435–466 (2001)

14. Chen, J.-S., Yoon, S., Wu, C.-T.: Non-linear version of stabilized conforming nodal integration
Galerkin mesh-free methods. Int. J. Numer. Methods Eng. 53, 2587–6515 (2002)

15. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam
(1978)

16. De, S., Bathe, K.J.: The method of finite spheres. Comput. Mech. 25, 329–345 (2000)
17. De, S., Bathe, K.J.: The method of finite squares with improved numerical integration.

Comput. Struct. 79, 2183–2196 (2001)
18. Dolbow, J., Belytschko, T.: Numerical integration of the Galerkin weak form in meshfree

methods. Comput. Mech. 23, 219–230 (1999)
19. Fries, T.-P., Matthies, H.-G.: Classification and overview of meshfree methods. Technical

report, Technical University Braunschweig, Brunswick, Germany (2004)
20. Griebel, M., Schweitzer, M.A.: A particle-partition of unity method. II. Efficient cover con-

struction and reliable integration. SIAM J. Sci. Comput. 23, 1655–1682 (2002)
21. Han, W., Meng, X.: Error analysis of the reproducing kernel particle method. Comput.

Methods Appl. Mech. Eng. 190, 6157–6181 (2001)
22. Li, S., Liu, W.K.: Meshfree and particle methods and their application. Appl. Mech. Rev. 55,

1–34 (2002)
23. Li, S., Liu, W.K.: Meshfree Particle Methods. Springer, New York (2004)
24. Liu, W.K., Jun, S., Zhang, Y.F.: Reproducing kernel particle methods. Int. J. Numer. Methods

Fluids 20, 1081–1106 (1995)
25. Melenk, J.M.: On approximation in meshless methods. In: Blowey, J., Craig, A. (eds.)

Frontiers in Numerical Analysis, Durham 2004. Springer, New York (2005)
26. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton

University Press, Princeton (1970)
27. Strang, G.: Variational crimes in the finite element method. In: Aziz, A.K. (ed.) Mathematical

Foundations of the Finite Element Method with Applications to Partial Differential Equa-
tions, pp. 698–710. Academic, New York (1972)


	Numerical integration in Galerkin meshless methods, applied to elliptic Neumann problem with non-constant coefficients
	Abstract
	Introduction
	Preliminaries and model problem
	Galerkin meshless methods
	The Galerkin meshless method with numerical integration
	Effect of numerical integration
	Construction of numerical integration formula
	Numerical results
	Conclusion
	References


