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320 V.N. Temlyakov et al.

1 Introduction

We study the efficiency of greedy algorithms for m-term nonlinear approxima-
tions with regard to bases. Let X be an infinite-dimensional separable Banach
space with a norm || - || := | - | x and let W := {3,,};°, be a normalized basis
for X (|¥,]l = 1, n € N). All bases considered in our paper are assumed to be
normalized. For a given f € X we define the best m-term approximation with
regard to W as follows:

= by

keA

)

X

on(f, V) x = bln[f\
ks

where the inf is taken over coefficients by and sets A of indices with cardinality
|A| = m. There is a natural algorithm of constructing an m-term approximant.
For a given element f € X we consider the expansion

f=> alf, ¥)yr.

k=1

We call a permutation p, p(j) =k, j=1,2,..., of the positive integers
decreasing and write p € D(f) if

ek, (f, W] = e (L)) = ...

In the case of strict inequalities here D( f) consists of only one permutation.
We define the m-th greedy approximant of f with regard to the basis W
corresponding to a permutation p € D( f) by formula

Gn(f) = Gul( £, ¥) 1= GE(f0) = Gl £, W, p) i= 3 ci (. W)Y

j=1

This algorithm is known in the theory of nonlinear approximation under the
name of Thresholding Greedy Algorithm (TGA).
The best we can achieve with the algorithm G, is

I f—=Gu(f, W)llx =0on(f,¥)x,
or a little weaker
I f—=Gu(f,Wlx < Con(f,¥)x 1)

for all f € X with a constant C independent of f and m. Bases satisfying (1)
are of special interest in nonlinear approximation. The following concept of a
greedy basis has been introduced in [6].

Definition 1 We call a basis W a greedy basis if for every f € X there exists a
permutation p € D(f) such that

with a constant C independent of f and m.
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Greedy approximation 321

It is clear that an orthonormal basis is a greedy basis of a Hilbert space. It
was proved in [13] that any basis equivalent to the Haar basis in L ([0, 1]) is a
greedy basis of L,([0, 1]), I < p < co. On the other hand, it is proved in [10]
that there are other greedy bases in L,([0,1]), 1 < p < 0o, p # 2, than the
Haar basis and bases equivalent to it.

We recall the definition of the Haar basis. Denote the univariate Haar sys-
tem by H := {H};, where I are dyadic intervals of the form I = [(j — 1)27",
27, j=1,...,2"n=0,1,...and I = [0, 1] with

H[(),l](x) =1 for xe [0, 1) ,

212, xel[(j—1D27", (j—1/2)27")
Hij_ypn jony = =2"%, xe[(j—1/227", j27")
0, otherwise.

We denote by H, the Haar basis ‘H renormalized in L,([0, 1]). We define
the multivariate Haar basis H‘; :=H, x --- x H, as the tensor product of the
univariate Haar bases. It consists of functions

d
Hpp(x) = ]_[H,j,,,(x,»), I=1 x-x1I; x=(xi,...,%4)-
j=1

The main goal of this paper is to understand which properties of a basis are
important for certain direct and inverse theorems in nonlinear approximation.
The problem of direct and inverse theorems in nonlinear approximation has a
rich history (see [2, 17]). We refer the reader for a detailed historical discussion
to [17], pp. 288-293. The general direction of previous results can be briefly
expressed in the following way.

Establish a result for the 7.

Establish a similar result for a greedy basis.

Establish a similar result for a quasi-greedy basis with special properties.
Establish a result for the multivariate Haar basis.

Establish a similar result for a basis that is a tensor product of d univariate
bases.

Nk W=

Results of Section 2 of this paper fall into the group 5. We refer the reader
to Section 2 for a detailed discussion of known results from groups 1-4.
In Section 2 we extend results known for the Haar basis Hf, onto the case
W? =W x ... x W with ¥ a greedy basis. We note that it is known that Hz
is not a greedy basis of L, ([0, 11%) if p # 2. However, it is known that Hi

is an unconditional basis of L, ([0, 11%, 1 < p < oo. In Section 2 we discuss
some properties of a basis that are important for direct and inverse theorems.
We prove equivalence of these properties under the assumption that the
basis is quasi-greedy (this assumption is weaker than the unconditionality
assumption).
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322 V.N. Temlyakov et al.

A typical problem from approximation theory is to find a decay of errors
of an approximation method for a given function class. In Section 3 we
apply results of Section 2 to study errors of greedy approximation for some
smoothness classes. In Section 4 we discuss greedy approximation with regard
to a quasi-greedy basis in a Hilbert space or in the L, space. We observe that a
special structure of Hilbert spaces allows us to obtain the following inequality
forany fe H

If = Gum(f, Wllg = CAom(f, VIu, A>1, 2)

for a quasi-greedy basis W. We note that if G, can be replaced by G, in (2)
then W is a greedy basis. It is known ([18], p. 301) that for a separable, infinite
dimensional Hilbert space H there exists a quasi-greedy basis that is not an
unconditional basis. Therefore, by [6] this basis is not a greedy basis. Thus,
one cannot replace the restriction A > 1 by A > 1 in (2). We present a related
discussion in Section 4. In Section 4 we also consider quasi-greedy bases of the
L, space, 1 < p < oo. We prove the following inequality for each f e L,

I f = Gu(f. W), < Cpym" > VP, (f, W), .

This inequality was known (see [18]) in the case of unconditional bases V.

Let us agree to denote by C various positive absolute constants and by C
with arguments or indices (C(g, p), C, and so on) positive numbers which de-
pend on the arguments indicated. For two nonnegative sequences a = {a,},°,
and b = {b,}32, the relation (order inequality) a, < b, means that there is

a number C(a, b) such that a,, < C(a, b)b,, for all n; and the relation a, =< b,,
means a, < b, and b, < a,.

2 Some direct and inverse theorems

The direct theorems of approximation theory provide bounds of approxi-
mation error (in our case o, (f, ¥)) in terms of smoothness properties of a
function f. These theorems are also known under the name of Jackson-type
inequalities. The inverse theorems of approximation theory (also known as
Bernstein-type inequalities) provide some smoothness properties of a function
f from the sequence of approximation errors (in our case {o,,( f, ¥)}).

In the case, when we study best m-term approximation with regard to bases
that are L,-equivalent to the Haar basis H,, the theory of Jackson and
Bernstein inequalities has been developed in [1]. It was used in [1] for a
description of approximation spaces defined in terms of {o,,( f, ¥)}.

It was pointed out in [14] that in the special case of bases that are L,-
equivalent to the Haar basis there exists a simple direct way to describe the
approximation spaces defined in terms of {o,,( f, ¥)}. Further investigations in
[5] and [7] showed that the above direct way of description of approximation
spaces can be extended to some more general bases. In this section we continue
these investigations.
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Greedy approximation 323

We begin with the greedy bases in L,([0, 1]%). In the case d = 1 the Haar
basis is a greedy basis for L,, 1 < p < co. The following characterization
theorem has been established in [14] (for the case p = 2 see [3, 11]). We will
use the notation

an(f. p) = |cx, (£ HY)|

for the decreasing rearrangement of the coefficients of f.

Theorem1 Letd=1,1< p <ooand 0 < q < oo. Then, for any positive r we
have the equivalence relation

Zam(f, HYIm' ™! < 0o = Z“"(f’ p)YInra=1HaP < oo,

m=1 n=1

Let us recall the definition of the Lorentz spaces of sequences and the
definition of spaces which provide finer (logarithmic) scale. Let for a sequence
{xr}3o, asequence {x,x) )z, be a decreasing rearrangement

[xXom| = X = ...

Forr > 0,0 < g < oo denote

o0

by = {{)ck}zo:1 : Z X0 |11 < oo}

k=1

or, equivalently,

[09]
b, = {{xk},;“;l : Z | X020 |12" < oo} .

5s=0

Forr>0,beR,0 < g < oo define

00
E;h = i{xk}zozl : Z (pr(za)ﬂmsh)q < OO] .

s=1

It is clear that €0 = €.
The proof of Theorem 1 was based on the following two lemmas.

Lemma 1 For any two positive integers N < M we have

am(f, p) < C(p)on(f, H) (M — N)~/P.

Lemma 2 For any sequence my < my < ... of nonnegative integers we have

o, (f, H)p < C(P) Y am (f, p)(migy — mp)'/7.

i=s

The following multivariate analogues of the above lemmas have been
proved in [5].
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324 V.N. Temlyakov et al.

Lemma 3 For any two positive integers N < M we have
ayu(f. p) < C(p, dyon(f.H) (M = N)"/P, 2< p < o0;

au(f, p) < C(p, Don(f. HY (M — N) VP log MY PP 1 < p<2
with h(p, d) == (d — 1)|1/2 —1/pl|.

Lemma 4 For any sequence my < m; < ... of nonnegative integers we have

om,(f. HYp < C(p, d) Y (. p)(miyy —mp)P (logmi )" PP, 2< p < o0;

om, (£ HYp < Cp, d) Y am,(f, p)migs —m)''P, 1< p=<2.

It was pointed out in [5] that by using Lemmas 3 and 4 one can establish
the following embedding theorem in the same way as Theorem 1 was deduced
from Lemmas 1 and 2 in [14].

Theorem 2 Let 1 < p < co. Denote

o(Npi={om(LHYp} 0, and a(f, p) = {an(f. Pl
Then we have the implications:

(’(f)pee;’b = a(ﬁp)€€;+l/p’b, 2 < p < oo;
o(Hpeld = a(fip)efrb-hed g p <o,
a(f.p) e HPr = o(f), e GPMPD 2 < p < oo;

a(f.p) e = o(fel l<ps2

In this section we will establish an analogue of Theorem 2 for a basis W¢ that
is a tensor product of d greedy bases W.

Theorem 3 Let 1 < p < 0o and let ¥ be a normalized greedy basis for L, and
We:= U x ... x U. Denote as above o(f)p = 1{om(f, \I/d)p}f,f’:1 and a(f, p) =
{an(f, D))oz, where a,(f, p) = lck, (f, W) |. Then we have the implications:

o(f)p ety
o(fpet;’

a(f. p) e ¢1/r?

a(f,p) e PP, 2 < p<oo;
a(f, p) € e IPP=hed 1 < p <2

o(f)pe ;P MPd 2 < p <o

U

a(f. p) e ;t/r? a(fpetit, 1<p=<2.
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Greedy approximation 325

The proof of this theorem is similar to the proof of Theorem 2. We point
out the key difference in the proofs. The proof of Theorem 2 was based on the
following known result for the multivariate Haar system.

Theorem A Let 1 < p < oo. Then for any A, |A| = m, we have

> aHp,

IeA

C! m'Pmin|¢| <
p.d IeA -
p

< Cpgm'? (logm)" PV max /|, 2 < p < o0;

ZCIHI,p

IeA

c? dml/"(logm)_h(‘"d) min |¢7| <
P IeA
P

<t dml/”max|c1|, l<p=<2.
P IeA

Theorem A ford = 1,1 < p < oo has been proved in [13]. In the case d = 2,
4/3 < p <4, it has been proved in [14]. Theorem A in the general case has
been proved in [18]. It is known [15] that the extra logarithmic in m factors in
Theorem A are sharp.

Let ¥ be a normalized basis for L,([0, 1]). For the space L,([0, 11%
we define W9 := W x .- x U(d times); ¥n(X) := ¥, (X)) - Y, (Xq), X =
(x1,...,xg),m = (ny, ..., ny). The following theorem has been proved in [§].

Theorem B Let 1 < p < oo and let W be a greedy basis for L (|0, 11). Then for
any A, |A| = m, we have

Z Cn¥n

neA

CS ml/‘ min C, <
p.d | n| =
p

< Cf, dml/p(logm)h(p’d) max lenl, 2 < p < o0;
’ ne

Z Cn¥n

neA

CZ, P (log m)~"P-D min |c,| <
’ neA

p

<8 dml/pmax|cn|, l<p=<2.
P, neA

It is clear that Theorem B is a full generalization of Theorem A to the case
of tensor product of greedy bases. This allows us to use Theorem B in the
proof of Theorem 3 in the same way as Theorem A was used in the proof of
Theorem 2. In order to illustrate how Theorem B can be used we give a sketch
of the proof of the following theorem.
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326 V.N. Temlyakov et al.

Theorem 4 Let 1 < p < oo and let W be a greedy basis for L,([0,1]). The
following relations hold for V¢ = W x ... x W

om(f)p < (m+ 1) (log(m +1))"
= a,(fip)<nPlogn+1)", 2= p<oc;
an(f, p) < n" "7 (log(n + 1))
= ou(f)p < (m+ D)7 (log(m + 1)) ?HPD 2 < p < 0.
om(f)p < (m+ 1) (log(m +1))""
= ay(f. p) <n”"P(log(n+ 1)) PRI 1 < p <2;
an(f, p) < n”""P(log(n + 1))"
= on(fH), < m+1)"logm+ 1), 1<p<2

Proof Theorem 4 follows from the following analogues of Lemmas 3 and 4.
O

LemmaS5 Let 1 < p < oo and let W be a normalized greedy basis for L, and
Ve =W x ... x W. For any two positive integers N < M we have

au(f, p) < C(p, don(f. ¥ ,(M - N)"P, 2 < p < oc;
au(f, p) < C(p, don(f, ¥ ,(M — N)""Plog MY"PD 1 <p<2 (3)
with h(p, d) := (d — 1)|1/2 — 1/ pl|.

Lemma 6 Let 1 < p < oo and let W be a normalized greedy basis for L, and
Wl =W x ... x W. For any sequence my < m; < ... of nonnegative integers
we have

om,(f, ¥, < C(p.d) Zami(ﬁ p)(mi —m)" P (logm )" PP, 2 < p < oo;

i=s

o, (W) < C(p,d) Y am (f, pYomigs —mp)'/?, 1< p<2. (4)

i=s

The proofs are similar in both cases 1 < p <2and2 < p < co. We will give
a proof in the case 2 < p < co. Lemma 6 follows directly from Theorem B.
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Greedy approximation 327

To prove Lemma 5, for given f =) ca¥n p, let Ay and {un, m € Ay} be
the set of indices with #A y = N and coefficients such that

'f_ Z UnYn,p

neAy
Moreover, let Gy = {ny,...,ny}, where {n;} are defined as ay(f, p) =
lcn, (f, ¥9)|. By unconditionality of ¥¢ we have

< 2on(f, ¥),.

p

H f - Z Can,p <C f - Z unl/fn,p = 2C0N(f9 \Ild)p
neAy » neAy P
and
Z ann,p f C f_ Z ann,p
neGy\An p neAy p

As#(Gy \ Ay) > M — N, Lemma 5 follows now from Theorem B.

Remark 1 In Theorems 1, 2, 3, and 4 the best m-term approximation oy, ( f),
can be replaced by the m-term greedy approximation || f — G,,(f)ll .

Statement of the above remark is obvious in one direction, when we bound
{a.(f, p)} from conditions on {0,,( f),}. In the other direction it follows from
the proofs of those theorems.

The inequalities of the type of (3) and (4) play an important role in the above
investigations. We now present some necessary and sufficient conditions for
having inequalities (3) and (4) for a basis W. We will prove some results under
weaker conditions on W than the above assumption that W is a tensor product
of d greedy bases. We begin with the case of quasi-greedy basis.

In [6] the concept of quasi-greedy basis was introduced.

Definition 2 The basis W is called quasi-greedy if there exists some constant C
such that for all f € X,

sup |G (f. W = CII fII-

Subsequently, Wojtaszczyk [18] proved that these are precisely the bases for
which the TGA merely converges, i.e.,

lim Gy(f) = f.

It will be convenient to define the quasi-greedy constant K to be the least
constant such that

IGm(HI= KIIfIl and || f = Gu(HI < KIfll. [feX.

We will need the following known lemma (see, for instance, [17], p. 269).
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328 V.N. Temlyakov et al.

Lemma 7 Suppose V is a quasi-greedy basis with a quasi-greedy constant K.
Then, for any real numbers a; and any finite set of indices P, we have

(4K2)*lrjr;i})1|a/-| vl =D e §2Kr§_1€eg<|a,-| > |-

jeP jeP jeP
We will use the notation

ax(f) = lcn (f, W)

for the decreasing rearrangement of the coefficients of f. We will also intro-
duce the m-th greedy remainder

Theorem 5 Let V be a quasi-greedy basis of Banach space X. Then for a > 0
and b € R, the following three statements are equivalent.
i) For any sequence my < m; < ... of non-negative integers we have
Om, (W) x KD am ()misy — my)* (log(myy + 1)
i=s
ii) For any finite set A of indices

lefk

keA

< |A|*(log(JA] + 1)’
X

iii) For any sequence my < m; < ... of non-negative integers we have

| Ho, (£ ) <Y i, (F)migy — mi)*Qog(miy + 1)°.

i=s

Proof For f =73, . ¥x, we set mg =0, m; = |A|. Then oo(f, ¥) = | f|| and
ii) follows directly from i).

Next we prove ii) = iii). Let X* denote the dual space of X. By Hahn-
Banach theorem there exists a F € X* such that

F (chwk> = > v

keA keA

and | F|| = 1. Note that

F (Z ckwk> =D aFW < ) ledl Fol.

keA keA keA
We write | F(Yx)| as e, F (), where g, = 1 or —1. Then we have

D lekll Fgnol < max || F (Z skwk> < max el | ) exyi

keA keA keA
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Then by Lemma 7 we obtain

> v

keA

Z’#k

keA

< 2K max |cg|
keA

X

Based on this inequality it is easy to derive iii) from ii). Note that iii) = i) is
trivial. We complete the proof of Theorem 5. O

Theorem 6 Let \V be an unconditional basis of Banach space X. Then fora > 0
and b € R, the following three statements are equivalent.

i) For any finite set A of indices

Zlﬂk

keA

> c|Al*(log |A])7".

ii) For any two positive integers N < M we have
au(f) < on(H)(M — N)"(log(M — N))".
iii) For any two positive integers N < M we have

au(f) < IHn(H)I(M — N) *(log(M — N))".

Proof We first prove i) = ii). For given f = ), cx¥, let Ay and {uy, k € An}
be the set of indices with |A 5| = N and coefficients such that

F= > | < 208(f ).

keAy

Moreover, let Gy = {ky, ..., ky}, and a,(f) = |ck, (f, ¥)|. By unconditionality
of ¥ we have

= | <C|f= D wvn| <2Con(f, W)

keAn keAn

and

Yooaw|=C|f- ) vk

ke Gu\AN keAn

Any unconditional basis is a quasi-greedy basis. Therefore, by Lemma 7 we get

au(H| D | =C| D evl-

keGy\AN keGy\ANn

As |Gy \ An| > M — N, ii) follows now from 1).
Clearly ii) implies iii).
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330 V.N. Temlyakov et al.

Next, we show that iii) implies i). For any finite set A of indices, let N = 1
and M = |[A| + 1. Take any index n ¢ A and define f := )", _, ¥« + 2¢,,. Then
by iii), we have

1« |A]™“(log |A®.

Zlﬁk

keA

Thus we get the desired result. O

Proposition 1 Let WV be a quasi-greedy basis of Banach space X. Then fora > 0
and b € R, the following two statements are equivalent.
i) For any finite set A of indices

Zlﬂk

keA

> c|Al*(log |A]) .

il) For any two positive integers N < M we have

au(f) < I Hn(H)II(M — N)™*(log(M — N))".

Proof 1t is clear that ii) implies i) from the proof of Theorem 6. The other
direction can be easily derived by Lemma 7. So we complete the proof. O

3 Some results on approximation of classes

In this section we demonstrate how results of Section 2 can be applied in
studying greedy approximation of smoothness classes. We consider here the
following classes. For r > 0 we define

Fr(W):=FL (W) :={f:le, (LW <k k=12.}.

Similar to Section 2 we define W¥ := W x ... x W(d times) as a tensor product
of univariate bases W. It is known (see [16]) that the tensor product struc-
ture of multivariate wavelet bases makes them universal for approximation
of anisotropic smoothness classes with different anisotropy. Theorem 4 and
Remark 1 imply the following theorem.

Theorem 7 Let W be a greedy basis of L,([0, 1]).
Then for2 < p < oo, r > %,

sup || f — Gu(f, WD, < m"P~" (log m)" P,
feFr(wd)

where h(p, d) = (d — 1)(3 — %).
1
p’

sup || f— Gu(f, WIl, < m"P,
feFr(wd)

Forl < p<2r> - onehas
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We want to point out that the bounds in Theorem 7 are sharp. Let us con-
sider the tensor product of Haar basis. We define

om(F, W)x := sup oy (f, ¥)x,
feF

and

Gn(F, W)y = ;ugllf— Gu(f, Wlx.

Theorem 8 Let IIIZ = Hf) be the tensor product of Haar basis.

Thenf0r2<p<oo,r>%,

om(F' Hy) , = Gu(F7, Hy) , =< m!/P~ (log m)" P9,
forl<p<2r> %, we have

om(F', HS)p =< Gu(F", HY)p < m'/P7.

Proof The upper bounds follow from Theorem 7. We only need to prove the
lower bounds. To prove lower bounds we need the following lemma.

Lemma 8 Let A(n) :={I:|I| =27"}. For k > [|[A(n)|/2] + 1 consider two sets
of indices A1 C A(n) with |A{| = k, and A, a set of k disjoint intervals I. Define
forl < p<oo

gi=» Hpp i=12
IeA;
Then

d—1)/2 d—1
Igillp = 2Pn“=DR gyl < 27/Pn'D/P.

Proof First of all, we note that it is well known and easy to see that |A(n)| <
2159=1 The estimate for g» is trivial because of the assumption that intervals
from A, are disjoint:

1/p

lgallp = | D I H,l5

IEAZ
We prove the estimate for g;. By the Littlewood-Paley theorem
1/2

gl =< || D Hi, : (5)

IeA,

P
As Hj, is normalized in L,, we have || Hj ,llo = |1|71/P = 2"/P Denote for
SZ(SI,...,Sd)

Js 2={I€A121=Il X"-XId,|1j|=2_sj,j=1,...,d}, AS :=U1€‘]“I.
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332 V.N. Temlyakov et al.

Then we obtain from (5)

1/2
lgill, = 277 (Z xAs) . (6)

p

Using the following two inequalities

S =lls il =nll [ 3 gadv=ke " zclis: st =l
s [

0,114 B
we get from (6)
lgillp = 2/Pnt=172,

]

Now let us return to the proof of Theorem 8. We begin with the case 2 < p <
oo. For a given m find an n in such a way that it is a minimal natural number
satisfying m < [|A(n)|/2], where A(n) is defined in Lemma 8. Note that m =<

2"n%1 and n =< logm. We consider the function g,, = m"g,. It is clear that
gm € F"(HY). For

oo
f = ZC[(f, HZ)HI»P
1
we define the following expansional best m-term approximation of f

Gm(f) = inf

|Al=m

f=> al(fHy)Hr,

IeA

It follows from Lemma 8 that
Om(gm)p = c(log m)hPD g/ p=r

It is known that for an unconditional basis ¥ we have

om(f) = om( ).
Therefore we complete the proofin the case 2 < p < co. Thecaseof 1 < p <2
can be proved in a similar way by setting g, = m~"g». O

In Theorem 7 we assume that a basis W¢ has a special structure, namely,
W4 is a tensor product of greedy bases. Also, Theorem 7 holds for a special
Banach space L,([0, 1]%), 1 < p < co. We now discuss a question of under
which other assumptions on a basis and a Banach space we can obtain results
similar to Theorem 7. We first recall the definition of bases which are called
unconditional for constant coefficients, cf. [18].
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Greedy approximation 333

Definition 3 A basis W is called unconditional for constant coefficients (UCC)
if there exist constants C; and C, such that for each finite subset A C N and
for each choice of signs ¢; = £1 we have

R > e

i€cA €A

C <G

=

va,-'.

i€eA

To formulate our results we need some of the basic concepts of the Banach
space theory from [9]. First, let us recall the definition of type and cotype. Let
{e; := ri(w)} be a sequence of independent Rademacher variables. We write

n p 1] n
Zekfk :=/ Z"k(a))fk
k=1 0 k=1

We say that a Banach space X has type p if there exists a universal constant
C; such that for f € X

n p\ 1/p n 1/p
(Aveek:ﬂ > ek ) <G (Z ||fk||f’> :
k=1 k=1

and X is of cotype q if there exists a universal constant C, such that for f; € X

n a\ 1/a n 1/q
(Avesk:ﬂ > ek ) > Cy (Z ||fk||q> :
k=1

k=1

p
Avegk:ﬂ dw.

Theorem 9 Let X be a Banach space with type 1 < p < 2. If a basis V of X is
UCC, then forr > 1/p

Gu(F", W) « m'/P",
Proof Since X has type p, we have

p\ l/p 1/p
(Aves:il > et ) sC(anknP> < AP

keA keA
Our assumption that ¥ is UCC implies

PR > et

keA keA

p\ 1/p
) < |A|'P.

= (Avegzil

We now need the following lemma.

Lemma 9 Assume that V satisfies the Definition 3. Then for any finite subset
A C None has

> v

keA

Zlﬁk

ke A

< C, max |ck|
keA

The proof of this lemma repeats the argument from the proof of Theorem 5.
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So we obtain

> e

keA

<« max |cg| - |A|VP.
keA

Therefore, for any f € F" we get

) 2tm 00
1 =GuDI =Y | D (D] < D_@m)y"@m)'/? < m"/r~.
s=0 || k=25m+1 5s=0

O

Let us make some comparison of Theorem 7 with Theorem 9. It is known
that L, ([0, 119, 1 < p < o0, has type min(2, p). It is also known that a greedy
basis W is an unconditional basis and, therefore, ¥¢ is an unconditional basis
for L,([0,1]%), 1 < p < oo. Thus, in the case 1 < p <2, Theorem 7 follows
from Theorem 9. In the case 2 < p < oo Theorem 7 gives a better bound than
Theorem 9.

4 Greedy approximation with regard to quasi-greedy bases

We now proceed to a further discussion of quasi-greedy bases. In particular,
Lemma 7 implies that a quasi-greedy basis is a UCC basis. We begin our dis-
cussion with the case of a Hilbert space. It is easy to see that for a normalized
basis &

Ave,—i <Z €xVks Zellﬁ1> = [Al

keA leA

Therefore, for a normalized UCC basis W of a Hilbert space one has

ZI//k

keA

= |A|Y2.

This means that a quasi-greedy basis of a Hilbert space is automatically a
democratic basis, which in general is defined as follows.

Definition 4 We recall that a basis {v,,}2 | in a Banach space X is called demo-
cratic if for any two finite sets of indices P and Q with the same cardinality,
we have

> U

neP

<D|> v

neQ

with a constant D independent of P and Q.
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The above property of quasi-greedy bases in Hilbert spaces was observed
in [18]. In [4] it was proved that for any quasi-greedy and democratic basis
(almost greedy basis) W of a Banach space X the following inequality holds
forany fe Xand A > 1

If = Gun(f W = C)om(f, V).

Concluding the above discussion, we can formulate the following theorem.

Theorem 10 Let W be a normalized quasi-greedy basis of a Hilbert space H.
Then, forany f € Hand » > 1

If = Gum(f, W = Cowm(f, ).

We pointed out in the Introduction that it follows from the known results
that we cannot let 1 to take value 1 in Theorem 10. It is mentioned in [18] that
in this case (2 = 1) one has the following inequality

If = Gu(f. W) = Cdogm)om(f, V).

We do not know if the above inequality is sharp in the sense that an extra factor
log m cannot be replaced by a slower growing factor. It follows from the above
discussion that it cannot be replaced by a constant.

We now proceed to a discussion of quasi-greedy bases in L, spaces. The
results that we present extend the corresponding results for a Hilbert space
from [18]. Following [18] we will use the following notations here. For a
sequence {ay} € co we denote

lag | = la,| = ..., a, = lay,|.

Theorem 11 Let ()32 be a quasi-greedy basis of the L, space, 1 < p < oo.
Then for each f =", axyi we have

o0
Ci(p)supn'Pay < || fll, < Ca(p) Y n~Vay, 2< p < oo

n=1

oo
Cs(p)supn'?a; < || fll, < Ca(p) Y _n'/P7'a}, 1 <p<2
n

n=1

Proof Denote N; :={n:a’ > 27"} and N, := |N;|. The proofs in both cases
l <p<2and?2<p< oo are similar. We will give a proof only in the case
2 < p < oo. First, we prove the upper bound for || f||,. In this case we have

Iy <lawl+ > D aru,

s neN\WN_ »
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Using Lemma 7 we get
1fllp < lae | +4KY 2710 Y | - (7
s neN\N;-

The L, space has type 2 for 2 < p < oo. Therefore,

Y. Yn| =CpN, (8)
neN;\N-1

and

Ns
1FI < lafl+ C(p) Y 27 N2 < laj| + C(p) Y 27 “n'V?

n=1

oo
<lajl+C(p) Y n"ay < Cop) Y nVay,.

n=1 n=1

Second, we prove the lower bound for the || f||,. From the definition of
quasi-greedy basis we have for each n

1l = K> ar v, )
=1 »
By Lemma 7 we get
S| = @K Mag | D v, (10)
=1 » =1 »
The L, space with 2 < p < oo is of cotype p. Therefore,
> Y| = Cipn''r. (11)
=1 »
Combining (9)—(11) we obtain the required lower bound. ]

As a direct corollary of Theorem 11 we get the following inequality for any
P and Q of cardinality m

Z‘/fk / lefk

keP keQ
It is well known (see [14, 18]) how inequalities like (12) can be used in esti-
mating || f — G, (/)| in terms of 6,,,( f). In particular, (12) and Theorem 4 from
[18] imply the following result.

< C(p)m'l/zfl/p‘, 1 <p<oo. (12)

p p
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Theorem 12 Let 1 < p < oo and let ¥V be a quasi-greedy basis of the L, space.
Then for each f € L, we have

I f— Gu(f, )|, < C(pym"/*VPlg, (fW).

We note (see [12]) that similar inequality holds for the trigonometric system
that is not a quasi-greedy basis for L, p # 2.
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