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Abstract The inverse problem we consider in this paper is to determine the
shape of an obstacle from the knowledge of the far field pattern for scattering
of time-harmonic plane waves. In the case of scattering from a sound-soft
obstacle, we will interpret Huygens’ principle as a system of two integral
equations, named data and field equation, for the unknown boundary of the
scatterer and the induced surface flux, i.e., the unknown normal derivative
of the total field on the boundary. Reflecting the ill-posedness of the inverse
obstacle scattering problem these integral equations are ill-posed. They are
linear with respect to the unknown flux and nonlinear with respect to the un-
known boundary and offer, in principle, three immediate possibilities for their
iterative solution via linearization and regularization. In addition to presenting
new results on injectivity and dense range for the linearized operators, the
main purpose of this paper is to establish and illuminate relations between
these three solution methods based on Huygens’ principle in inverse obstacle
scattering. Furthermore, we will exhibit connections and differences to the
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traditional regularized Newton type iterations as applied to the boundary to
far field map, including alternatives for the implementation of these Newton
iterations.
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1 Introduction

The scattering of a time-harmonic acoustic incident wave ' by a sound-soft
obstacle D, that is, a bounded domain D C IR™ for m = 2, 3 with a connected
complement, is modeled by an exterior boundary value problem for the
Helmbholtz equation

AW+ Ku' =0 inIR™\ D (1.1)

with positive wave number k. The scattered wave u* has to satisfy the Dirichlet
boundary condition

W+u'=0 ondD 12)
and the Sommerfeld radiation condition

ou’
ar

1
—iku' =o0 <?) , r=|x| > oo, (1.3)
rz

uniformly for all directions. The total wave u is obtained via superposition u =
u' + u® and, for most of this paper we assume the incident wave to be a plane
wave, that is,

ui(x’ d) — eikx~d

where the unit vector d is the direction of propagation.

Although most of our analysis has extensions to the impedance and/or
the Neumann boundary condition, for the sake of exposition and simplicity,
we have deliberately chosen to confine our presentation to the case of the
Dirichlet boundary condition.

The Sommerfeld radiation condition characterizes outgoing waves and
ensures uniqueness for the obstacle scattering problem (see [3]). For brevity,
solutions u* to the Helmholtz equation that satisfy the Sommerfeld radiation
condition are called radiating solutions. They can be shown to have an asymp-
totic behavior of the form

oiklx]

w(x) = —— {uoo X +o0 <i>} x> o0, k= o (1.4)

x| |x| x|’

uniformly with respect to all directions. The function u., is known as the far
field pattern of the scattered wave and is an analytic function of X on the
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unit sphere §”! := {x € IR" : |x| = 1}. As one of the most important tools in
scattering theory, Rellich’s lemma (see Theorem 2.13 in [3]) provides a one-to-
one correspondence between a radiating solution #* to the Helmholtz equation
and its far field pattern u., in the sense that u., = 0 on $”~! (or on an open
subset of §”~1) implies that #* = 0 in its domain of definition.

The inverse scattering problem that we are concerned with is to determine
the shape and location of the scatterer D from the knowledge of the far field
pattern u., for one incident plane wave. We note that this inverse problem
is nonlinear in the sense that the scattered wave depends nonlinearly on the
scatterer D. More importantly, it is ill-posed since the determination of D does
not depend continuously on the far field pattern in any reasonable norm.

The question of uniqueness for the inverse scattering problem for sound-
soft obstacles is not yet completely resolved. However, the far field pattern
for one incident plane wave is sufficient to uniquely determine the obstacle D
if we have the a priori information that the diameter of D is less than 2¢,,/k
where ¢, is the smallest positive zero of the Bessel function J,,,/, of order m/2,
see [5, 10]. For detailed presentations on inverse obstacle scattering including
the issue of uniqueness we refer to the monographs [1, 3, 33] and the surveys [2,
4,26, 35, 36].

Here, for the foundation of a class of iterative reconstruction methods we
start from Green’s representation for the scattered wave for a sound-soft
obstacle

ou _
u'(x) = —/ 3, M ey ds(y), xeIR™\ D, (1.5)
ap OV
in terms of the fundamental solution

i
7 H Klx—yD, x#y, m=2,

d(x,y) =
(x, y) Skl

T 5 =3’
ey T

where H(()l) denotes the Hankel function of the first kind and order zero (see
Theorem 3.12 in [3]). The unit normal vector v to 3 D is assumed to be directed
into the exterior of D. The far field pattern of (1.5) is given by

0 N
loo(R) = —Vim / e dsty), ke s, (1.6)
9D dv
where
el
, m=2,
8k
Ym =

1

—, m=3

4
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The representations (1.5) and (1.6) of the scattered field and its far field pattern
in terms of its secondary sources on the boundary is known as Huygens’
principle.

In view of the sound-soft boundary condition (1.2) from (1.5) we conclude
that

. 9
i (%) =/ a—”(y)cb(x, V) ds(y), xeaD. 1.7)
ap OV

Now we can interpret Huygens’ principle, that is, (1.6) and (1.7) as a system of
two integral equations for the unknown boundary 9 D of the scatterer and the
induced surface flux

0
@ = _ ondD.
av

Although, in principle, we are not interested in the surface flux in methods
based on the simultaneous solution of (1.6) and (1.7) we cannot avoid solving
also for ¢. It is convenient to call (1.6) the data equation since it contains the
given far field for the inverse problem and (1.7) as the field equation since it
represents the boundary condition. Both equations are linear with respect to
the flux and nonlinear with respect to the boundary. Equation (1.6) is severely
ill-posed whereas (1.7) is only mildly ill-posed.

Obviously we have three options for an iterative solution of (1.6) and (1.7).
In the first method, given a current approximation for the boundary d D we can
solve the mildly ill-posed integral equation of the first kind (1.7) for ¢. Then,
keeping ¢ fixed we linearize the equation (1.6) with respect to d D to update
the boundary approximation. This approach has been suggested by Johansson
and Sleeman [23] and analyzed further by Ivanyshyn and Johansson [19, 20].
In the second method, following ideas first developed for the Laplace equation
by Kress and Rundell [28], one also can solve the system (1.6) and (1.7)
simultaneously for d D and ¢ by Newton iterations, that is, by linearizing both
equations with respect to both unknowns. This approach has been intensively
studied by Ivanyshyn, Johansson and Kress [15-18, 21, 22]. Whereas in the
first method the burden of the ill-posedness and nonlinearity is put on one
equation, in the third method a more even distribution of the difficulties
is obtained by reversing the roles of (1.6) and (1.7), that is, by solving the
severely ill-posed equation (1.6) for ¢ and linearize (1.7) for gaining the
boundary update. In a slight modification, this approach may be interpreted
also as a decomposition method since to some extent it separates the ill-
posedness and the nonlinearity. It combines the traditional decomposition
method with elements of Newton iterations. Therefore it has also been termed
as a hybrid method and as such analyzed in a series of papers by Kress and
Serranho [27, 29, 30, 37-39].

The paper is organized as follows. In Section 2 we present parameterized
versions of the integral operators in the data and the field equations and their
Fréchet derivatives with respect to the boundary shape. Then, in Subsection 3.1
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we discuss the first method, i.e., the iterative scheme obtained via solving
the well-posed linear field equation for the flux and updating the boundary
via linearization of the data equation. We generalize a result on injectivity
and dense range of the linearized operator from the two-dimensional to the
three-dimensional case. Further, we establish a new relation of this method
with the traditional Newton iterations for the boundary to far field map.
In Subsection 3.2 we proceed with investigating the second method, i.e.,
the simultaneous linearization of both the data and the field equation with
respect to both unknowns. Again we present a new connection between this
approach and the Newton iterations for the boundary to far field map. From
this we deduce a result on injectivity and dense range for the two-by-two
system of the linearized equations. In addition, we illustrate the use of the
connection as an alternative approach for implementing the Newton iterations
for the boundary to far field map. In Section 4 we finally consider the third
method, i.e., first solving the ill-posed linear data equation for the flux and
then updating the boundary by linearizing the field equation. In particular, we
exhibit both the relation and the difference to the so-called hybrid method as
suggested by Kress and Serranho and conclude with some numerical examples
for reconstructions in three dimensions.

2 Parameterized operators and derivatives

In order to define the operators occurring in (1.6) and (1.7) rigorously, for
ease of presentation, we restrict ourselves to boundaries 9D that can be
parameterized through mapping them globally onto the unit sphere $™7!,
that is,

ID={p&) : ke s},

for some injective C* function p : "~! — IR™. As simple example, the reader
should consider the case of starlike domains, where

pE) =r(®)x, xeS™, (2.1)

with a radial distance function r: §”~' — (0, c0). Now, we introduce the
parameterized single-layer operator and far field operator

A A : C (SR x L2 (8™, C) > L* (8™, €)

by

AP @ = [ @ (@ pO) UGB G, tesT @)
and

Aco (P ) () = Y fs Oy @ds), kes™l (23
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Then the (1.6) and (1.7) can be written in the operator form

Aco(p, V) = o (24)

and
A(p.¥) =—u'op (2:5)
where we have incorporated the surface element into the density function via
Y@ =J® ¢ (p®) (2.6)

with the Jacobian J of the mapping p. The linearization of these equations
requires the Fréchet derivatives of the operators A and A, with respect
to p. According to [32], these can be obtained by formally differentiating their
kernels with respect to p, that s,

A(p, ;) = /

Sm

| grad, @ (p(X), p())) - [¢(®) —g(P)] v(P) ds(P) (2.7)
and

APV )R = —ikym / RO 3 G Y@ ds()  (2.8)

Sm—1

for X € §™~!. The operators A’ and A/ are linear with respect to ¢ and they
represent linearizations in the sense that

1A +4.9) = A ) = AP DLz = 0 (19l En )
and

| AP+ 4. 9) = Acc(P. V) = AL (P 3 Dl 25y = 0 (1250 ) -

3 Iterative solution of the integral equations
3.1 Linearization of the data equation

Johansson and Sleeman [23] suggested the following iterative method for
approximately solving the system (2.4) and (2.5) for the two-dimensional case.
For fixed p, provided k? is not a Dirichlet eigenvalue of the negative Laplacian
in D, both in a Hélder space setting A(p, ) : C*¥(S" ") — Ch*(§"!) or
in a Sobolev space setting A(p, -) : H~/2(S""") — H'/?(§™"1), the operator
A(p, -) is a homeomorphism (see [3]). In this case, given an approximation to
the boundary parameterization p we can solve the field equation (2.5) for the
density 1. Then, keeping v fixed, we linearize the data equation (2.4) with
respect to p to obtain the linear equation

AL (P, [A(P, )7 W 0 p); @) = —tieo — Ano(p, [A(p, )] (W 0 p))  (3.1)
-y -
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for g to update the parameterization p via p + q. This procedure is repeated
until some stopping criterium is satisfied.
In principle, the parameterization of the update

3D, ={p®) +q® :x eS8}

is not unique. To cope with the ambiguity, the simplest possibility is to allow
only perturbations of the form

gq=2zvop (32)

with a scalar function z defined on the unit sphere $™~! and denote the
corresponding linear space of normal L? vector fields by L2 (S™7).

For fixed p the operator A, (p, [A(p, )7 ' @ o p); -) has a smooth kernel
and therefore is severely ill-posed. This requires stabilization, for example,
via Tikhonov regularization. The following result ensures injectivity and
dense range as prerequesits for Tikhonov regularization. It generalizes results
from [17], were only the two-dimensional case was considered.

Theorem 3.1 Assume that k> is not a Neumann eigenvalue of the negative
Laplacian in D. Then the operator

Al (p, [Ap. )] (& o p); ) t Liorma (8"71) = L*(8™71)
is injective and has dense range.

Proof We abbreviate ¢ := —[A(p,-)]”'(u/ o p) and assume that g =z vo p
satisfies A (p, ¥; g) = 0. Then, from (2.8) we observe that the double-layer
potential

v = [ (b)) grad, @ (5. p(3) ) 2 s

has vanishing far field pattern. Hence, by Rellich’s lemma we can conclude that
v vanishes outside of D. By the L? jump relations for double-layer potentials
together with the Fredholm alternative in dual systems it can be concluded
that z is continuous (see the proof of Theorem 5.5 in [3]). This in turn, by
the jump relations, implies that v solves the homogeneous Neumann problem
in D and therefore vanishes identically in D by our assumption on k. A
third application of the jump relations yields ¥z = 0 on §”~!. However, by
Holmgren’s theorem v = —[A(p, -)]~' (& o p) cannot vanish on open subsets
of §”~1 since it represents the normal derivative du/dv of the total field u for
scattering of the plane wave ' from D. Consequently, we have z = 0 on §"~!.
Now, let g be a solution to the homogeneous adjoint equation

v (p(®) - /S 2 5P g (5)g(R) ds(k) =0, Pe S
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Then, keeping in mind that v cannot vanish on open subsets of $”~!, this
implies that the Herglotz wave function

w(y) = /S @ ds®),  yeR",

has a vanishing normal derivative on d D. By the assumption of the theorem
on k, this implies that w vanishes identically in D and by analyticity w vanishes
everywhere. Therefore, the kernel g of the Herglotz wave function must be
identically zero (see Theorem 3.15 in [3]). ]

We can relate the above approach to traditional Newton iterations for
solving the inverse obstacle scattering problem. Denoting by F : p — u the
operator that maps the boundary d D represented by the parameterization p
onto the far field pattern for scattering of the incident wave u’ from D, the
inverse problem is equivalent to solving the nonlinear operator equation

With the above notations, in the case when k? is not a Dirichlet eigenvalue of
the negative Laplacian in D, we can represent

F(p) = —Ax (p.[A(p.)] ' (4 p)). (3.4)

By the product and chain rule this implies the Fréchet derivative
F(p;q) = —AL (p, [A(p, )] (4o p); q)
+4w (P[] A (. [AP ] (o p)ia)) B
~ 4w (p.[AP. )] ((gradu) o p) - q).

Hence, we have established a new interrelation between the iterative scheme
of Johannson and Sleeman and the traditional Newton iterations for the
boundary to far field map as expressed by the following theorem.

Theorem 3.2 The iteration scheme as given through (3.1) can be interpreted
as Newton iterations for (3.3) with the derivate of F approximated through
the first term in the representation (3.5) only, which corresponds to keep-
ing v = —[A(p, )" (W o p) fixed in the linearization process.

The iteration scheme given through (3.1) has been successfully numerically
implemented in two dimensions (see [18,23]). As to be expected from the close
relations to Newton iterations for (3.3) as just pointed out, the quality of the
reconstructions can compete with those of Newton iterations with the benefit
of reduced computational costs.

The above method of linearizing the data equation has also been extended
to the case of sound-hard obstacles [20] in two dimensions.

@ Springer



Huygens’ principle 421

3.2 Simultaneous linearization of both equations

Extending a method proposed by Kress and Rundell [28] for an inverse
Dirichlet problem for the Laplace equation, a second approach for iteratively
solving the system (2.4) and (2.5) consists in simultaneously linearizing both
equations with respect to both unknowns. In this case, given approximations p
and i both for the boundary parameterization and the density we obtain the
system of linear equations

AP, @) + Ac(p, ) = —Ace(p. V) + o (3.6)

and
A(p,v; @) + ((gradu’) o p) -q+ A(p, x) = —A(p,¥) —u'op.  (37)

This system has to be solved for g and x in order to obtain updates p + ¢ for
the boundary parameterization and v + x for the density. This procedure is
repeated until some stopping criterium is satisfied.

Again we restrict the updates to normal fields of the form (3.2) and note that
due to the smoothness of the kernels both (3.6) and (3.7) are severely ill-posed
and require regularization with respect to both variables. In particular, for the
parameterization update it is appropriate to incorporate penalties for Sobolev
norms of g to guarantee smoothness of the boundary, whereas for the density
L? penalty terms on y are sufficient.

The simultaneous iterations (3.6) and (3.7) again exhibit relations to the
Newton iteration

F'(p;q) = us — F(p) (3.8)

obtained by linearization of (3.3). We present these new insights in the
structure of iterative methods in inverse obstacle scattering by the following
theorem.

Theorem 3.3 Assume that k> is not a Dirichlet eigenvalue of the negative
Laplacian in D and set v := —[A(p,)]”' (' o p). Provided q satisfies the
linearized boundary to far field equation (3.8) then q and

xi=—[A@. )] (A'(p. ¥ @) + ((grad i) o p) - q)

satisfy the linearized data and field equations (3.6) and (3.7). Conversely, if q
and x solve (3.6) and (3.7) then q satisfies (3.8).

Proof From (3.4) and the definition of ¥ we have

F(p: @) = tog — Asc(p, V).

The representation (3.5) of the derivative of F yields
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and combining this with the previous equation establishes that (3.6) holds.
From the definition of x we observe

A(p, x)+ A'(p,¥; @) + ((gradu’) o p) - q) =0

Therefore, in view of A(p, ¥) = —u' o p we also have (3.7) satisfied.
Conversely, the second equation (3.7) implies that

x=—[Ap. )] (A (p.vi ) + ((gradu) o p) - q)

and inserting this into (3.6) leads to

ALV @) = Ax (. [A@ ] (A0, Y3 @) + ((eradw) 0 p) - )
= _Aoo(p’ V) + Uoo

and via (3.5) this implies (3.8). O

Based on Theorem 3.3 known results (see [3, 25]) on injectivity and dense
range of the derivative F’ can be carried over to the system (3.6) and (3.7) by
the following corollary.

Corollary 3.4 At the exact solution, the system (3.6) and (3.7) is injective and
has dense range provided k* is neither a Dirichlet nor a Neumann eigenvalue of
the negative Laplacian in D.

Remark 3.5 Theorem 3.3 also illustrates the difference between the iteration
method based on (3.6) and (3.7) and the Newton iterations for (3.3). In general,
when performing (3.6) and (3.7) in the sequence of updates the relation
A(p,¥) = —(u' o p) between the current approximations p and ¥ for the
parameterization and the density will not be satisfied. This observation also
indicates a possibility to use (3.6) and (3.7) for implementing a Newton scheme
for (3.3). We only need to change the update ¥ + yx for the density by

—[Ap+4,9] " (o p+q),

that is, at the expense of throwing away x and solving a boundary integral
equation for a new density.

In the literature, the implementation of Newton iterations for (3.3), in
general, is based on the characterization of the Fréchet derivative of F which is
given by the far field F'(p; q) = v, of the radiating solution v to the Helmholtz
equation in the exterior of D satisfying the Dirichlet condition

vog = —(gradu)ogq (3.9)
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in terms of the total field u (see Theorem 5.14 in [3]). For numerical implemen-
tations in three dimensions we refer to [8, 11].

The iteration scheme given through (3.6) and (3.7) has been numerically
tested in two dimensions (see [21]). The performance of the method based
on the linearization of the data equation from the previous subsection and
the simultaneous linearization of this subsection, respectively, have been com-
pared in [18]. In general, both methods work equally well with the following
slight difference in strategy as observed from a large number of examples. The
first method usually performs such that within the first iterations the initial
guess is moved towards the center of the obstacle without much change in the
shape and then first the illuminated part and then the shadow region of the
obstacle is found. On the other hand, the second method searches right away
for location and shape simultaneously. In some sense, this is to be expected
since the far field pattern describes the asymptotic behavior of the scattered
field and therefore is more sensible to the location of the scatterer than to its
shape. Consequently, as the field equation is solved first and then (for a fixed
flux density) the data equation is linearized, the first method first reconstructs
the location and only later the shape. Since in the second method both the data
and the field equation are linearized simultaneously, the search for location
and shape also starts simultaneously. However, so far no deeper theoretical
explanation for this behavior could be given.

Although there are a few results available on the convergence of regularized
Newton iterations (see [13, 14, 34]) for inverse obstacle scattering problems,
i.e., for the solution of (3.3) via (3.8), this issue is not satisfactorily resolved.
Despite the progress made by Hohage [13, 14] with this respect, so far it
has not been clarified whether the general results on the solution of ill-posed
nonlinear equations in a Hilbert space setting (among others see [0, 7]) are
applicable to inverse obstacle scattering or, in general, to inverse boundary
value problems in the frame work of solving the operator equation (3.3). The
more problem oriented approach of Potthast [34] for a convergence analysis
suffers from the restrictive assumption of a non-vanishing normal derivative of
the total field on the boundary 9 D in the case of exact data. Furthermore, in
the analysis for noisy data, convergence for the noise level tending to zero,
as usual, requires a stopping rule and with this particular rule the method
has not yet been numerically implemented. These difficulties with establishing
convergence results are also present in the iterations of this section, that is,
currently the convergence issue remains an open problem.

The above method of simultaneous linearization has been extended to the
case of sound-soft [22] and sound-hard [31] cracks in two dimensions. Here
we note that as opposed to the hybrid method of the following section for
crack reconstructions no additional penalty term on the length of the crack
is required. In addition, it has been also applied to reconstructions of sound-
soft or sound-hard scatterers from the modulus of the far field pattern [15]. In
order to avoid the exceptional values occurring, for example, in Theorem 3.1
and 3.3 modifications using combined single- and double-layer potentials are
suggested in [19].
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424 O. Ivanyshyn et al.

4 Decomposition methods revisited

To evenly distribute the burden of the ill-posedness and the nonlinearity of the
inverse obstacle scattering problem, instead of solving the field equation (2.5)
for the density and then linearizing the data equation one can also think of
solving the severely ill-posed data equation (2.4) for the density and linearize
the only mildly ill-posed field equation to update the boundary. In this case,
given an approximation for the boundary parameterization p we first solve the
data equation (2.4) for the density 1. Then, keeping ¢ fixed, we linearize the
field equation (2.5), that is, we obtain the linear equation

A(p,v; @+ ((gradu’) o p) - q=—A(p,¥) —u'op (4.1)

for g to update the parameterization p via p + ¢g. Again, this procedure of
alternatingly solving (2.4) and (4.1) must be repeated until some stopping
criterium is satisfied. To some extent this procedure mimics a decomposition
method in the sense that it decomposes the inverse problem into a severely
ill-posed linear problem and an at most mildly ill-posed nonlinear problem.

To our knowledge, this approach has not been implemented numerically.
However, the method that has been suggested and investigated by Kress and
Serranho can be considered as a slight modification of the above procedure.
In this method, given an approximation p for the parameterization of the
boundary, the data equation, that is,

Aoo(p’ l[’) = Uxo (42)

is solved for the density ¢ via regularization. Injectivity and dense range of the
operator Ay (p, ) : L>(S" ') — L?(S"~!) are guaranteed by Theorem 5.17
in [3] provided k? is not a Dirichlet eigenvalue for the negative Laplacian in
D. Then we define the single-layer potential

ww=[ o pe)viise)

and evaluate the boundary values of u := ' + u* and its derivatives on the
surface represented by p via the jump relations. Finally we find an update p +
q for the boundary by linearizing the boundary condition u o (p 4+ g) = 0, that
is, by solving the linear equation

uop+ ((graduyop)-g=0 (4.3)

for ¢g. In an obvious way, the two steps (4.2) and (4.3) are iterated. Again for
uniqueness of the update representation we allow only perturbations of the
form (3.2). Then, by Holmgren’s theorem, injectivity for the linear equation
(4.3) can be established at the exact boundary.

Since this approach combines ideas of the decomposition method due to
Kirsch and Kress [24] with aspects of Newton iterations, it was termed a hybrid
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Huygens’ principle 425

method. Convergence for exact data in the spirit of Potthast [34] and a stopping
rule for noisy data were investigated in [38].
After introducing the operator

Ap, ¥; @) =f | grad, ® (p(®), p(3)) - q(X) ¥ () ds(P)

Sm
1L y@ [v(p®) - q@)]
2 J(®)

and observing the jump relations for the single-layer potential and (2.6) we can
rewrite (4.3) into the form

A(p. ;@) + ((gradu’) o p) - q = —A(p, ¥) — ' o p. (4.4)

Comparing this with (4.1) we discover a new relation between solving the data
and field equation iteratively via (2.4) and (4.1) and the hybrid method of Kress
and Serranho.

Remark 4.1 In the hybrid method, the Fréchet derivative of A with respect to
pis replaced by the operator A in the sense that we linearize only with respect
to the evaluation surface for the single-layer potential but not with respect to
the integration surface.

In Figs. 1, 2, 3, and 4 we present some examples for reconstructions by the
above hybrid method. The ill-posed equation (2.4) is stabilized by Tikhonov

Solutien Approximagion

Fig. 1 Reconstruction of an acorn shaped domain
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Adpproximation «(£% noise)

Fig. 2 Reconstruction of a pinched acorn shaped domain

regularization. The resulting integral equation of the second kind over the
sphere S? is discretized via Nystrom’s method using the Gauss-trapezoidal rule
with N = 164 quadrature points. For the solution of (4.4), the radial distance

Approx inad :i.ga}

-1

-z

Fig. 3 Reconstruction of a star shaped domain
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Solut ign

Approximation-gEZ% mno :i.ose)
1

Fig. 4 Reconstruction of a cushion shaped domain

functions in the sense of (2.1) were approximated by linear combinations
of real parts of spherical harmonics up to order eight which corresponds to
45 unknown coefficients. The linear system for these coefficients obtained
by collocating (4.4) at M = 128 points on S$?> was solved by a penalized
least squares approach mimicking Tikhonov regularization. The numerical
quadratures were based on Wienert’s method [40] as described in Section 3.6
of [3] (see also [9]). This method can be viewed as a modification of the
Gauss-trapezoidal rule for weakly singular integrals based on projections
onto subspaces of spherical harmonics. In each example the figure on the
left hand side gives the exact boundary shape and the figure on the right
the reconstruction with one incident wave in direction of the arrow. The
reconstructions are obtained with 2% random noise added to the synthetic
far field pattern. The wave number is k = 1.

This approach has been successfully extended to the case of sound-hard [30]
and impedance obstacles [37]. For the impedance boundary condition both
the shape and the impedance function can be reconstructed. In addition, the
method has also been used for the reconstruction of sound-soft cracks in two
dimensions [29]. In this case, it was necessary to impose a penalty term on the
length of the crack. Otherwise, the algorithm would reconstruct cracks with
length shrinking to zero.

Although the linearization of the homogeneous boundary Neumann condi-
tion (see [30]) is slightly more technical than the linearization of the homoge-
neous Dirichlet condition as described above, it is considerably less involved
than the derivation of the boundary condition for the corresponding boundary
to far field map F for the sound hard case (see [12]).
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5 Conclusion

We have investigated and established new results on the interactions between
three closely related methods for solving the inverse obstacle scattering prob-
lem via an iterative solution of nonlinear integral equations and illuminated
their connections to Newton iterations for the boundary to far field map. These
methods have been shown to be applicable for a range of boundary conditions
and highly competitive with the Newton iterations. Their practical feasibility
has been established in the literature through a variety of numerical examples.
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