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Abstract On March 11, 1944, the famous Eremitani Church in Padua (Italy)
was destroyed in an Allied bombing along with the inestimable frescoes by
Andrea Mantegna et al. contained in the Ovetari Chapel. In the last 60 years,
several attempts have been made to restore the fresco fragments by traditional
methods, but without much success. One of the authors contributed to the
development of an efficient pattern recognition algorithm to map the original
position and orientation of the fragments, based on comparisons with an old
gray level image of the fresco prior to the damage. This innovative technique
allowed for the partial reconstruction of the frescoes. Unfortunately, the
surface covered by the colored fragments is only 77 m2, while the original area
was of several hundreds. This means that we can reconstruct only a fraction
(less than 8%) of this inestimable artwork. In particular the original color of
the blanks is not known. This begs the question of whether it is possible to
estimate mathematically the original colors of the frescoes by making use of
the potential information given by the available fragments and the gray level
of the pictures taken before the damage. Moreover, is it possible to estimate
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how faithful such a restoration is? In this paper we retrace the development of
the recovery of the frescoes as an inspiring and challenging real-life problem
for the development of new mathematical methods. Then we shortly review
two models recently studied independently by the authors for the recovery of
vector valued functions from incomplete data, with applications to the recol-
orization problem. The models are based on the minimization of a functional
which is formed by the discrepancy with respect to the data and additional
regularization constraints. The latter refer to joint sparsity measures with
respect to frame expansions, in particular wavelet or curvelet expansions, for
the first functional and functional total variation for the second. We establish
relations between these two models. As a major contribution of this work we
perform specific numerical test on the real-life problem of the A. Mantegna’s
frescoes and we compare the results due to the two methods.

Keywords Recolorization · Inpainting · Wavelet regularization ·
TV regularization · Multi-channel data · Joint sparsity

Mathematics Subject Classifications (2000) 15A29 · 47A52 · 68U10 ·
94A08 · 94A40

1 Introduction

1.1 Mathematical imaging in art restoration

We address the problem of the faithful reconstruction of vector valued func-
tions from incomplete data, with special emphasis in color image recovery. We
are inspired by a real-life problem, i.e. the rebirth of one of the most important
masterpieces of the Italian Renaissance, by making use of mathematical
imaging techniques. We refer to the decorative cycle in the Ovetari Chapel
in the Eremitani Church in Padua. The chapel was seriously damaged by an
air strike in 1944 and a large section of the contained frescoes were sparsely
fragmented. A digital cataloging of pictures of the remaining fragments made it
possible to count the number (78.561) of those with an area larger than 1 cm2.
The distribution of the areas shows that most of them are relatively small
(5–6 cm2). There is no information on the possible location of the pieces
on the huge original surface and also unknown is the angle of rotation with
respect to the original orientation. These a priori data demonstrated the lack
of contiguous fragments for any given fragment. These difficulties explain
the unsuccessful attempts of recomposition by traditional methods. In simple
words, it is an incomplete puzzle which is too big to be solved by human eyes
only. There exist some fairly good quality black and white photographs of the
frescoes dated from between 1900 and 1920. This heritage gave rise to the hope
that a computer-based comparison between the fresco digital images and those
of the fragments could help to recognize their original location. The request
of a fast algorithm excludes the implementation of comparisons pixel-by-
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pixel and suggests that methods based on compressed/sparse representations,
i.e., basis or frame expansions, can be more efficient. In [32, 33] a specific
pattern recognition algorithm based on sparse circular harmonic expansions
was proposed. This method was implemented for the solution of the fragment
recollocation problem and we illustrate some of the final results in Fig. 1. On
the basis of the map produced by this computer assisted anastylosis, parts of the
frescoes have already been physically restored. We refer to the book chapter
[9] for more details. Even though the collocation of one single fragment is of
historical and cultural importance, the success of the computer assisted anasty-
losis was partially spoiled by the limited surface that the fragments can cover.
This begs the question of whether it is possible to estimate mathematically
the original colors of the missing parts of the frescoes by making use of the
potential information given by the available fragments and the gray level of
the pictures taken before the damage. Can one estimate how faithful such
restoration is?

1.2 Mathematical inpainting and recolorization

Mathematical inpainting, an artistic synonym for image interpolation, was
introduced by Sapiro et al. [3] with the specific purpose of imitating the
basic approaches used by professional restorers when filling blanks in paint-
ings. Their algorithm amounts to the solution of an evolutionary differential
equation whose steady-state is the prolongation of the incomplete image
in the inpainting region to make constant the information along isophotes,
for further recent developments see also [2]. Closely related to inpainting is
the contribution by Masnou and Morel [38, 39] who addressed the so-called
disocclusion problem. Essentially it amounts to an application of the principle
of good continuation, i.e., without forming undesired T-junctions and abrupt

Fig. 1 Fragmented A.
Mantegna’s frescoes (1452)
by a bombing in the Second
World War. Computer based
reconstruction by using
efficient pattern matching
techniques [33]
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direction changes, of the image level curves into the region where an occlusion
occurred in order to restore the essential morphology. This work can be seen
as a development of the theory of Euler’s elastica curves by Mumford [40].
Chan and Shen contributed to inpainting with other models similar or related
to the ones previously cited, see [11–14] and also [25, 27, 37]. In simple words,
mathematical inpainting is the attempt to guess the morphology of the image
in a relatively small missing part from the level curves of the relevant known
part.

The recolorization problem, like that of the frescoes, can be viewed as
a particular case of inpainting. Nevertheless, in this case two significant
differences occur with respect to the classical problem: (1) The region of
missing color is usually much larger than the one with known colors (2)
the morphology of the image in the missing part can be determined by the
known gray level, see also [7]. Several approaches to the recovery of colors in
gray level images have been recently proposed based on different intuitions.
Assuming that neighboring pixels with similar intensities should have similar
color, an algorithm involving a non-local fitting term has been proposed in
[35] to match the colors. Similarly, a fast algorithm using a weighted distance
image blending technique is studied in [49]. From the assumption that the color
morphology is essentially determined by the gradient of the gray level, Sapiro
proposed in [44] a recolorization method based on minimizing the difference
between the gradient of gray level and the gradient of color. The problem
reduces to the solution of a (nonlinear) boundary value problem. Based on
similar assumptions two variational approaches are proposed in [34] where the
authors minimize the discrepancy with respect to the color datum and impose
a smoothness constraint on the solution out of the gray level discontinuity set.
All the proposed solutions show that a very limited amount of color is sufficient
information to recover a pleasant result in ad hoc cases.

1.3 Scope of the paper

In this paper we shortly review two different approaches to recolorization
previously proposed by the authors in [28, 29, 45]. Both the methods were
tested on images where we knew the original color. In these cases, also
our methods produced rather successful results which could be confirmed by
comparison with the original images. Differently from previous contributions,
in this paper we present the results of applications of these recolorization
models to a real-life problem, the one of the A. Mantegna’s frescoes. In this
case, we face significant difficulties due to

(i) the unknown color-gray conversion,
(ii) the presence of a very strong noise with unknown statistical distribution,

(iii) and the fact that we have no way to compare the obtained results with
an original color version of the frescoes.

Hence, a positive reconstruction result is indeed far beyond from being obvi-
ous. Beside the cultural and historical importance of the specific application,
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we want to emphasize that real-life experiments are usually rarely shown and
the difficulties related to these experiments are usually underestimated in
the mathematics community. Therefore we think it is an important task to
step beyond academic examples and consider now real-life applications. In
particular, point (iii) of the previous list of significant difficulties motivates us
to the comparison of our proposed methods as a mutual benchmark of the
results. Since the methods differ in certain aspects we hope that they can offer
a complementary test of faithfulness.

1.4 The general setting

Since color images are modeled as multichannel signals, the problem is re-
formulated as the recovery of vector valued functions from incomplete data.
The incomplete information is assumed as the result of a distortion, with
values in a lower dimensional manifold. The vector components are assumed
to be coupled. The difference between the proposed methods is the way we
couple the information. For both the approaches, the recovery is realized as the
minimization of a functional which is formed by the discrepancy with respect
to the data and additional regularization constraints. The latter refer to joint
sparsity measures with respect to frame expansions for the first functional and
functional total variation for the second.

For a clearer understanding of the general setting, we now introduce some
notations. Let � be an open, bounded, and connected subset of R

N , and D ⊂
�. The fresco problem is modeled as the reconstruction/restoration of a vector
valued function u : � → R

M from a given observed couple of functions yδ :=
(ū, v̄). The observed function ū is assumed to represent correct information on
�\D, and v̄ the result of a nonlinear distortion L : R

M → R on D.
In particular, a digital image can be modeled as a function u : � ⊂ R

2 →
R

3+, so that, to each “point” x of the image, one associates the vector u(x) =
(r(x), g(x), b(x)) ∈ R

3+ of the color represented by the different channels red,
green, and blue. In particular, a digitalization of the image u corresponds to
its sampling on a regular lattice τZ

2, τ > 0. Let us again write u : N → R
3+,

u(x) = (r(x), g(x), b(x)), for x ∈ N := � ∩ τZ
2.

Usually the gray level of an image can be described as a submanifold M ⊂
R

3 by

M := Mσ = {σ(x) : x = L(r, g, b) := L(ξ1r + ξ2g + ξ3b), (r, g, b) ∈ R
3
+
}
,

where ξ1, ξ2, ξ3 > 0, ξ1 + ξ2 + ξ3 = 1, L : R → R is a non-negative increas-
ing function, and σ : R+ → R

3+ is a suitable section such that L ◦ σ = idR+ .
The function L is assumed smooth, nonlinear, and normally nonconvex and
nonconcave. In practice, the function L and thus L is unknown. Thus, the
reconstruction of an incomplete color image has to be done in two steps:
Firstly, the operator L has to be estimated from the given (incomplete) color
data and the available noisy gray scale image v̄, and secondly, the full color
image has to be reconstructed as a solution of the equation L(u) = v̄. For
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Fig. 2 Estimate of the nonlinear curve L from a distribution of points with coordinates given
by the linear combination ξ1r + ξ2g + ξ3b of the (r, g, b) color fragments (abscissa) and by the
corresponding underlying gray level of the original photographs dated to 1920 (ordinate). The
sensitivity parameters ξ1, ξ2, ξ3 to the different frequencies of red, green, and blue are chosen in
order to minimize the total variance of the ordinates

example, Fig. 2 describes the typical shape of an L function, which is estimated
by fitting a distribution of data from the real color fragments, e.g., as in Fig. 1.

As first proposed in [28] we would like to minimize the discrepancy with
respect to the data

�
(
u,L, yδ

) :=
∫

D
|L(u(x)) − v̄(x)|2dx

︸ ︷︷ ︸
=:G1(u)

+ μ

∫

�\D
|u(x) − ū(x)|2dx

︸ ︷︷ ︸
=:G2(u)

, (1)

where μ > 0 is a positive constant which rules the mutual importance of the
two terms. For example, Fig. 1 illustrates a typical situation where this model
applies. In fact, in this case, there is an area �\D of the domain � ⊂ R

2 of the
image, where some fragments with colors are placed and complete information
is available, and an other area D (which we call the inpainting region) where
only the gray level information is known, modeled as the image of L. The hope
is that by minimizing (1) we can produce a new color image that extends the
colors of the fragments in the gray region. Once the extended color image is
transformed by means of L, it is constrained to match the known gray level.

Unfortunately the problem (1) is not well-posed. Of course, there exist
infinite possible color solutions which match the same gray level, and thus the
map L cannot be inverted uniquely. Moreover, we have to assume, as clearly
shown in Fig. 2, that the datum yδ is affected by a significant and ineliminable
noise. As the inversion process is also usually unstable, it is fundamental to
enforce a regularization mechanism [26]. Regularization is imposed by adding
prior knowledge of realistic solutions which are not furnished by the sole data.
This complementary information, together with the datum, might be suffi-
ciently characterizing the solution to make it indeed unique. The regularization
methods we proposed are based on the same intuition, although they differ
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in terms of the specific realization: Digital images can be characterized by
a very limited amount of information with respect to the dimension of the
pixel space. This information is especially encoded in the morphology of the
image given by its significant edges. Indeed, by assuming a simplified model
of an image as a piecewise constant (color) function, it is sufficient to know
where the discontinuities are and the color information of one sole pixel for
each connected component in order to characterize uniquely the image. In
this context we say that an image is sparse. We want to incorporate the prior
information as an additional term to the discrepancy with respect to data,
reducing the problem to the minimization of the following general functional:

Jα,μ(u) = �
(
u,L, yδ

)+ 2α	(u) , (2)

where � stands for the data misfit term involving the nonlinear relation L
between the given partial and noisy gray/color information yδ , with noise level
bounded by ‖y − yδ‖ ≤ δ, and the complete color image u and 	 is a suitable
convex function. The positive parameter α weights the influence of the data
misfit term and the penalty functional 	. In regularization theory one aims
at parameter choice rules α = α(δ) that ensure a convergence (for δ → 0) of
minimizers of the functional (2) to the true solution of the problem.

The two approaches we want to present here differ mainly in the chosen
penalty functional 	 and in the proposed minimization strategies for the
functionals:

• In the model proposed by Teschke and Ramlau [45], the function 	

measures the sparsity of the image u with respect to a frame expansion,
in particular wavelet or curvelet expansions. This means that we would
like to promote solutions whose expansions have only few nonzero coeffi-
cients. Typically 	 is a suitable weighted 
p norm of the sequence of the
wavelet/curvelet coefficients;

• In the model proposed by Fornasier in [28], later analyzed with March
in [29], the function 	 measures the total variation of the image u. It is
well-known that this choice tends to promote solutions which are piecewise
smooth, hence with sparse gradients.

Let us notice that unified approaches to both these models for sparse solution
of inverse problems appear, e.g., in [15, 18, 21, 22]. Moreover, the near-
equivalence of constraints promoting sparse wavelet coefficients and BV norm
was established in [16, 17]. However, the significant perceptual differences of
restored images by means of these two constraints are also well-known.

Another difference of the applications of the two methods which appear in
this paper is the fact that in the first approach we analyse the minimization
of the fully nonlinear problem, while in the second case, based on total
variation minimization, we linearize the function L by means of a suitable re-
equalization of the gray level. This choice is made in order to facilitate the
numerical solution of the system of nonlinear PDEs which arises in the second
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case. For both the approaches we describe the models, the algorithms for the
numerical minimization, and their convergence.

The content of the paper is as follows. In Section 2 the wavelet-based
joint sparsity model is reviewed together with the formulation of an efficient
iterative thresholding algorithm for its solution. In Section 3 we report the
mathematical results associated to the total variation minimization model and
its numerical solution. In Section 4 we show the novel numerical experiments
in the real-life case and the comparison of the two methods.

2 Wavelet based recolorization by �p-joint sparsity

A sparse representation of an element in a Hilbert space is a series expansion
with respect to an orthonormal basis or a frame that has only a small number of
large/nonzero coefficients. Several types of signals appearing in nature admit
sparse frame expansions and thus, sparsity is a realistic assumption for a
very large class of problems [36]. The recent observation that it is possible
to reconstruct sparse signals from vastly incomplete information [5, 6, 23]
stimulated a new fruitful line of research which is called sparse recovery or
compressed sensing. This section is devoted to the outline of the relations
between sparse reconstructions, vector valued functions and their application
to color images. Multi-channel signals (i.e., vector valued functions) may
not only possess sparse frame expansions for each channel individually, but
additionally the different channels can also exhibit common sparsity patterns.
Color images are multi-channel signals, exhibiting a very rich morphology. In
particular, discontinuities may appear in all the channels at the same locations.
This will be reflected, e.g., in sparse wavelet/curvelet expansions [4, 24] with
relevant coefficients appearing at the same labels, or in turn in sparse gradients
with supports at the same locations. Hence, an adequate sparsity constraint is
a so-called common or joint sparsity measure that promotes patterns of multi-
channel data that do not belong only to one individual channel but to all of
them simultaneously.

This aspect of common sparsity patterns was quite recently under consid-
eration, e.g. in [46, 47]. In the framework of inverse problems this issue was
discussed in [30, 31]. In the latter paper the authors proposed an algorithm
for solving vector valued linear inverse problems with common sparsity con-
straints. However, as recalled in the introduction, the conversion function L
from colors to gray levels, which should be inverted for recoloring the images,
is strongly nonlinear. Although we could linearize the problem, as we do in
the following section, here we want to address also the fully nonlinear case.
The theory developed in [30, 31] is not sufficient for this purpose and needed
to be extended as proposed in [45]. In the following we revise an iterative
thresholding scheme for solving the recolorization ill-posed problem with joint
sparsity constraints.
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2.1 Wavelet frames, joint sparsity and recolorization model

Since we aim to represent the image to be reconstructed by means of a wavelet
frame, we first briefly review some basics on frames followed by the detailed
formulation of the recolorization problem.

Frames Let � be a countable set of indices and X a separable Hilbert space.
Assume we are given a preassigned set of functions 	 := {φλ : λ ∈ �} ⊂ X
The set 	 is called a frame if there exist constants A, B with 0 < A ≤ B < ∞
such that for all u ∈ X,

A‖u‖2
X ≤

∑

λ∈�

|〈u, φλ〉|2 ≤ B‖u‖2
X . (3)

Associated with a frame 	, we can consider the bounded operators

F : X → 
2(�) : u �→ (〈u, φλ〉)λ∈�,

called the analysis operator, and its adjoint

F∗ : 
2(�) → X : u �→
∑

λ∈�

uλφλ,

called the synthesis operator.
Frames are typically ‘overcomplete’, i.e., for a given u ∈ X, one may find

many different sequences u ∈ 
2 such that u =∑λ∈� uλφλ . A few of them
have special properties for which they are preferred, e.g., a sequence with
minimal 
p(�) norm. Choosing 1 ≤ p < 2 ensures the reconstruction of a
sparser sequence u than the classical choice of p = 2 which corresponds to
the canonical dual coefficients defined by (〈u, (F∗F)−1φλ〉)λ∈�.

Joint sparsity and recolorization model In order to cast the recolorization
problem as an inverse problem leading to some variational functional of the
form (2) with a sparsity constraint, we firstly have to modify the functional
in order to act on frame coefficient sequences. As in the introduction we
assume that u : � ⊂ R

2 → R
3+ is a color (red, green, blue) channel image.

We model u as a square integrable vector valued function, i.e., u ∈ L2(�)3.
We also assume that 	 := {φλ : λ ∈ �} is frame for L2(�), e.g., a wavelet
or curvelet frame. For each channel component of u = (u1, u2, u3) we can
associate the corresponding sequence of vector frame coefficients u = (uλ :=
(u1

λ, u2
λ, u3

λ))λ∈�. We also denote u
 = (u

λ)λ∈�, 
 = 1, 2, 3. With a slight abuse

of notation we can write

u = F∗u := (F∗u1, F∗u2, F∗u3
) =

∑

λ∈�

uλφλ.



166 M. Fornasier et al.

Following the arguments in [30, 31, 46] on joint sparsity, a reasonable
measure that forces a coupling of non-vanishing color components is of the
form

	(u) =
∑

λ∈�

ωλ‖uλ‖p
q (4)

with q ∈ [1, 2], p ∈ {1, q} and ωλ ≥ c > 0. This penalty term 	 is a joint sparsity
measure.

The choice of this regularization measure was encouraged by the fact that
several inpainting approaches deal with total variation penalties [12, 14].
Since in two dimensions, 
1 sparse wavelet expansions are known to give
‘near’ minimal total variation solutions, see, e.g., [17, 20], this kind of sparsity
constraint seems to be well suited for our purpose. Forcing, moreover, for
common sparsity patterns (e.g., edges in color images), a coupling of the
different color channels is advantageous and can be achieved when setting
p = 1.

Thus the full functional for the color inpainting problem reads as follows

Jα,μ(u) := Jα,μ,q(u) := ‖ (L (F∗u
)− v̄

) ‖2
L2(�)︸ ︷︷ ︸

=G1(u)

+μ ‖ (F∗u − ū
)
χD‖2

(L2(�))3

︸ ︷︷ ︸
=G2(u)

+2α
∑

λ∈�

ωλ‖uλ‖p
q . (5)

An approximation u = F∗u to the original color image is now computed by
means of the minimizer u of (5). Unfortunately, a direct approach towards
its minimization leads to a nonlinear optimality system where the frame
coefficients are coupled. Instead, we propose to replace (5) by a sequence of
functionals that are much easier to minimize and for which the sequence of the
corresponding minimizers converges at least to a critical point of (5). To be
explicit, for u ∈ 
2(�)3 and some auxiliary a ∈ 
2(�)3, we define a surrogate
functional

Js
α,μ,q(u, a) := Jα,μ,q(u) + C‖u − a‖2


2(�)3 − ∥∥L (F∗u
)− L

(
F∗a

)∥∥2
L2(�)

(6)

and create an iteration process by:

1. Pick u0 ∈ 
2(�)3 and some proper constant C > 0
2. Derive a sequence (uk)k=0,1,... by the iteration:

uk+1 = arg min
u∈
2(�)3

Js
α,μ,q(u, uk) k = 0, 1, 2, . . . (7)

It will turn out that the minimizers of the surrogate functionals are easily
computed. In particular, the problem decouple, and every frame coefficient
can be treated separately. For linear operators L this algorithm has been
analyzed in [19]. In the nonlinear case, some weak assumptions (exhibiting
no significant restriction) have to be made, e.g., on the function L, in order
to ensure existence of global minimizers, norm convergence of the iterates uk,
and regularization properties.
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2.2 Minimization, convergence and regularization

In this section we review the basic steps that are required for the minimization
of the surrogate functional (6) and for showing norm convergence and regula-
rization properties. For all details, including proofs, we refer to [45].

Minimization Since the Tikhonov functional is nonconvex (because of the
nonlinearity of the operator L) and nondifferentiable due to the 
p sparsity
constraint, the proposed algorithm is based on subdifferential calculus leading
to the involvement of nonlinear projections and delivering (in general) not a
global but rather a local optimum of (5). To initialize the algorithm, we assume
that we are given some α > 0 and some initial u0 ∈ 
2(�)3. An important
ingredient for the convergence of the surrogate functional approach is the
choice of the constant C in (6). If it is chosen too small, then the iteration blows
up; chosen too big, however, the convergence of the algorithm is rather slow.
A value for C that ensures the convergence of the algorithm can be derived
directly out of the initial iterate u0, see [42]. However, we wish to remark that
numerical experiments suggest that C is usually estimated too large, even much
smaller values usually ensure a much faster convergence. In the following, we
will always assume that C was chosen appropriately.

The necessary condition for a minimum of Js
α,μ,q(u, a) can be derived via

subdifferential calculus as

0 ∈ L′ (F∗u
)∗ (

v̄ − L
(
F∗a

))− μF
(
F∗u − ū

)
χD)/C + a) .

For the case p = 1, q ≥ 1 in 	, it can be rewritten as a fixed point equation

u = α

C
(I − PC)

⎛

⎜
⎝

C
α

(
L′ (F∗u

)∗ (
v̄ − L

(
F∗a

)− μF
(
F∗u − ū

)
χD
)
/C + a

)

︸ ︷︷ ︸
=:M(u,a)

)
⎞

⎟
⎠,

(8)

where PC is the orthogonal projection onto a convex set C satisfying 	∗ = χC
(and 	∗ denoting the Fenchel transform of 	), see [42], Lemma 6. By our
choice of C it turns out that the associated fixed point map

�(u, a) = α

C
(I − PC)

(
M(u, a)

α
C

)

is, for any generic anchor a = uk, k = 0, 1, . . . , a contractive operator, and thus
we obtain the new iterate uk+1 from uk by a fixed point iteration. To see this,
we have to keep in mind that I − PC is a nonexpansive operator, which reduces
the task of estimating ‖�(u, a) − �(ũ, a)‖ to the estimation of ‖M(u, a)−
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M(ũ, a)‖, which can be done by standard methods. The computation of the
fixed point iterates requires the evaluation of the operator I − PC :

Lemma 1 Let p = 1, 1 ≤ q ≤ ∞ and let l denote the index of the fixed point
iteration. Then, the coefficients of the fixed point iterates in (8) are given by

(ul+1)λ = ((u1
l+1

)
λ
, . . . ,

(
uM

l+1

)
λ

) =
(

I − PBq′ (C−1αωλ)

)
(Mλ(ul, a)) ,

where PBq′ (C−1αωλ) denotes the orthogonal projection onto the ball

Bq′
(
C−1αωλ

) = {v ∈ R
M : ‖v‖q′ ≤ C−1αωλ

}

with 1 = 1/q + 1/q′.

The proof of this result can be easily retraced in [45]. In general, the eval-
uation of PBq′ (C−1αωλ) is rather difficult and only for individual cases explicitly
given , e.g. for q ∈ {1, 2, ∞} the expression can be found in [30, 31] (see also
Section 4.1 for our specific choice). Since for p = q the variational equations
decouple, the necessary conditions can be evaluated directly without operating
with duality arguments. The unique fixed point of �(u, uk) is the unique
minimizer of the surrogate functional Js

α,μ,q(u, uk). Thus, by employing a fixed
point iteration, we are able to reconstruct the new iterate uk+1.

Convergence First it can be shown that there exists at least a convergent
subsequence ukl with weak limit u�, which turns out to be a critical point for
the functional Jα,μ. Using the properties of the functional 	 it can also be
shown that the subsequence converges also in the 
2(�)3–norm. However, the
limits of different convergent subsequences (ukl ) ⊂ (uk) may differ, but they
will all have the same value of the functional Jα,μ. In the next theorem (where
the first assertion can be directly taken from [41] and the second assertion is
just repeating [42, Lemma 16]) we give a simple criterion that ensures strong
convergence of the whole sequence (uk) towards a critical point of Jα,μ,q.

Theorem 2 Assume that there exists at least one isolated limit u� of a sub-
sequence (ukl ) ⊂ (uk). Then uk → u� in norm as k → ∞. The accumulation
point u� fulfills a necessary condition (i.e., the Euler–Lagrange condition) for
a minimizer of Jα,μ,q.

Regularization properties We also briefly discuss the regularization proper-
ties of the proposed iterative approach. We consider minimizers uδk

μkαk
of the

functional

Jαk,μk,q(u) := ∥∥L(F∗u) − v̄δk
∥∥2

L2(�)
+ μkG2(u) + 2αk	(u) . (9)

For some a-priori parameter choice rule for μ and α it is shown in [45] that the
sequence of minimizers of (9) (for δ → 0) contains a convergent subsequence
for which the limit is a solution for L(F∗u) = v̄ with minimal value of G2 + 	.
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Theorem 3 Let v̄δk ∈ L2(�) be given with ‖v̄δk − v̄‖ ≤ δk and δk → 0 for k →
∞, and

	(u) =
∑

λ∈�

ωλ‖uλ‖p
q .

If the regularization parameters are chosen such that μk → 0, αk → 0,
δ2

k/ min{μk, αk} → 0 and max{μk, αk}/ min{μk, αk} → 1 as k → ∞, then every
sequence of minimizers uδk

αk
of (9) has a convergent subsequence in 
2(�)3.

Every limit is a solution of the equation L(F∗u) = v̄ with minimal value of
G2 + 	. If the solution of the equation is unique, then the whole sequence
converges.

This results answers the question of a faithful reconstruction at least par-
tially. If we have reasonable data available, and the color to gray converter
is known, then the reconstruction will be close to a solution of the equation
L(F∗u) = v̄, which means that only these colors will be exactly reconstructed
where L is invertible.

Algorithm Wavelet-joint-sparse

Input: nonlinear operator L (estimated on the basis of the given
color fragments); data yδ = (ū, v̄); initial guess u0 ∈ (
2)

n (can
be chosen arbitrarily, a good choice the given by the gray
image); precision accuracy ε f ixed > 0 for the inner fixed point
iteration; maximal number nmax of outer iterations; proper
constant C (in dependence on u0 ∈ (
2)

n); weight sequence
{wλ} (a simple choice is wλ = 1 for all λ)

Parameters: parameter μ > 0, regularization parameter α > 0, p and q
(a good choice to ensure a reasonable coupling of the three
color components is p = 1, q = 2); wavelet (e.g. Daubechies’
wavelet of order 3)

Output: numerical approximation ũ� of an accumulation point u�

of (5)

Initialize u0

for n = 0 to nmax − 1
%Initialize the fixed point iteration:
(un+1)0 := un

while dist{(un+1)l, (un+1)l+1}< ε f ixed

%Evaluation of the fixed point map:
(un+1)l+1 = �((un+1)l, un))

end while
un+1 := (un+1)l∗

end for
ũ� = unmax
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2.3 Numerical implementation

Summarizing the theoretical results in the wavelet–based approach, an approx-
imation of the original color image is computed as a numerical approximation
of a minimizer of (5), which is realized by the suggested iterative approach (7).
As we have seen in formula (8), each iterate uk has to be derived via a fixed
point equation finally leading to the following

3 Total variation minimization model and nonlinear PDEs

Total variation minimization was first introduced in image processing for
the denoising problem by the well-known Rudin–Osher–Fatemi model [43].
In several successive contributions, see, e.g., [1, 10, 48], total variation was
considered also as a regularization tool for inverse problems. Following the
tracks of these fundamental contributions, we reformulated the recolorization
model by choosing the function 	 as follows:

	(u) :=
∫

�

M∑


=1

|∇u
(x)|dx.

Note that this function measures the total variation of the vector components
of the function u = (u1, . . . , uM). One might think that the given definition of
the total variation will favor the apparition of pixels with only one pure color.

The use of
(∑M


=1 |∇u
(x)|2
)1/2

might avoid this problem. However, the use of
a coupled TV will impose a coupling of higher order derivatives in the Euler–
Lagrange equations. This is going to make the numerical implementation
rather difficult. The non-coupling is however compensated by the one provided
at the 0-order terms by L. This weaker coupling is in practice sufficient for a
correct extension of the colors.

The recolorization is modeled as the minimum solution of the functional

Jα,μ(u) = �
(
u,L, yδ

)+ 2α	(u)

=
∫

D
|L(u(x)) − v̄(x)|2dx

︸ ︷︷ ︸
=G1(u)

+μ

∫

�\D
|u(x) − ū(x)|2dx

︸ ︷︷ ︸
=G2(u)

+2α

∫

�

M∑


=1

∣∣∇u
(x)
∣∣ dx,

where we want to reconstruct the vector valued function u := (u1, . . . , uM) :
� ⊂ R

2 → R
M (M = 3 for RGB images) from a given observed couple of

color/gray level functions (ū, v̄). Again, α acts as regularization parameter,
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whereas μ weights the influence of the two fitting terms. For the model to
make sense, in the following we assume that

(L1) L : R
M → R+ is a non-decreasing continuous function in the sense

that L(x) ≤ L(y) for any x, y ∈ R
M such that |xi| ≤ |yi| for any i ∈

{1, . . . , M};
(L2) L(x) ≤ a + b |x|s, for all x ∈ R

M and for fixed s ≥ 1/2, b > 0, and
a ≥ 0.

Moreover, one of the two following conditions holds

(L3-a) limx→∞ L(x) = +∞;
(L3-b) L(x) = L(x1, ..., xM) = L((
1 ∧ x1 ∨ −
1), ..., (
M ∧ xM ∨ −
M)), for a

suitable fixed vector 
 = (
1, ..., 
M) ∈ R
M+ .

Observe that condition (L3-a) is equivalent to say that for every C > 0 the
set {L ≤ C} is bounded. Therefore there exists A ∈ R

M, with Ai ≥ 0 for any
i ∈ {1, . . . , M}, such that {L ≤ C} ⊆∏M

i=1[−Ai, Ai].
Under these conditions, the functional Jα,μ is well defined in L∞(�; R

M) ∩
W1,1(�; R

M). Since this space is not reflexive, and sequences that are bounded
in W1,1 are also bounded in BV (bounded variation function space), we
extend Jα,μ to the space BV(�; R

M) of vector-valued functions in such a
way that the extended functional is lower semicontinuous. By using the
relaxation method of the Calculus of Variations, the natural candidate for
the extended functional is the relaxed functional J̄α,μ of Jα,μ with respect to the
componentwise BV weak-∗-topology. We set X = {u ∈ BV(�; R

M) : ‖ui‖∞ ≤
Ki, i = 1, . . . , M}, where, for any i ∈ {1, . . . , M}, the constant Ki > 0 is defined
by Ki = max{Ai, ‖ūi|� \ D‖∞}, if the condition (L3-a) holds, and by Ki =
max{
i, ‖ūi|� \ D‖∞}, if the condition (L3-b) holds. The relaxed functional of
Jα,μ in X with respect to the componentwise BV weak-∗-topology is given by

J̄α,μ(u) =
∫

D
|L(u(x)) − v̄(x)|2dx + μ

∫

�\D
|u(x) − ū(x)|2dx + α

M∑

i=1

|D(ui)|(�),

where |D(v)|(�) is the total variation of the BV function v. We have the
following result.

Theorem 4 There exists a solution of the following variational problem:

min
u∈X

J̄α,μ(u)

In particular we have

min
u∈X

J̄α,μ(u) = inf
u∈X

Jα,μ(u).

Moreover, if D � � and G2 is a strictly convex functional then the solution is
unique.
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For the computation of minimizers, we use a similar approach as in [10]. Let
us introduce a new functional given by

Eh(u, w) := 1

α
(G1(u) + μG2(u)) +

∫

�

M∑


=1

(
w

∣∣∇u
(x)

∣∣2 + 1

w


)
dx, (10)

where u ∈ W1,2(�; R
M), and w ∈ L2(�; R

M) is such that εh ≤ w
 ≤ 1
εh

, 
 =
1, . . . , M, εh → 0 for h → ∞. While the variable u is again the function to
be reconstructed, we call the variable w the gradient weight. For any given
w(0) ∈ L2(�; R

M) (for example w(0) := 1), we define the following iterative
double-minimization algorithm:

⎧
⎨

⎩

u(n+1) = arg min
u∈W1,2(�;RM)

Eh(u, w(n))

w(n+1) = arg minεh≤w≤ 1
εh
Eh(u(n+1), w).

(11)

We have the following convergence result [29].

Theorem 5 The sequence (u(n))n∈N has subsequences that converge strongly in
L2(�; R

M) and weakly in W1,2(�; R
M) to a function u(∞)

h . We have that (u(∞)

h )h

converges for h → ∞ in BV(�; R
M) to a minimizer of J̄α,μ.

Since Eh(·, w) admits minimizers, their uniqueness is equivalent to the
uniqueness of the solutions of the corresponding Euler–Lagrange equations.
If uniqueness of the solution is satisfied, then the algorithm (11) can be
equivalently reformulated as the following two-step iterative procedure:

• Find u(n+1) which solves
∫

�

(
w

(n)
i (x)∇u(n+1)

i (x) · ∇ϕi(x) + μ

α
(u(n+1)

i (x) − ūi(x))1�\D(x)

+ 1

α
(L(u(n+1)(x)) − v̄(x))

∂L
∂ui

(u(n+1)(x))1D(x)

)
ϕi(x)dx = 0

for i = 1, ..., M, for all ϕ ∈ W1,2(�; R
M).

• Compute directly w(n+1) by

w
(n+1)

i = εh ∨ 1
∣∣∣∇u(n+1)

i

∣∣∣
∧ 1

εh
, i = 1, . . . , M.

There are cases for which one can ensure uniqueness of solutions:
1. If G2 is strictly convex then the minimizers are unique as well as the

solutions of the equations.
2. In the following section we illustrate the finite element approximation

of the Euler–Lagrange equations. Since we are interested in color image
applications, we restrict the numerical experiments to the simplified case
L(u1, u2, u3) = 1

3 (u1 + u2 + u3), i.e. we set ξi = 1/3 for all i and L(x) = x. This
choice of L is the result of a re-equalization of the gray-level, and the numerical
results confirm that again it provides a reasonable model to the problem. The
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main advantage of this choice of linear L is that it requires to solve a linear
system for each iteration step in Algorithm 6, whereas a nonlinear L leads to a
nonlinear system. Defining L as above, the linear systems arising from the finite
element discretization are uniquely solvable for a rather large set of possible
parameters α, μ.

3.1 Numerical implementation

In this section we want to present the numerical implementation of the
iterative double-minimization algorithm (11) for color image restoration. As
the second step of the scheme (which amounts in the up-date of the gradient
weight) can be explicitly done once u(n+1) is computed, we are left essentially
to provide a numerical implementation of the first step, i.e., the solution of the
Euler–Lagrange equations.

For the solution we use a finite element approximation. We illustrate the
implementation with the concrete aim of the reconstruction of a digital color
image supported in � = [0, 1]2 from few color fragments supported in � \ D
and the gray level information where colors are missing. By the nature of this
problem, we can choose a regular triangulation T of the domain � with nodes
distributed on a regular grid N := τZ

2 ∩ �, corresponding to the pixels of the
image. Associated to T we fix the following finite element spaces:

U = {
u ∈ C0(�) : u|T ∈ P

1, T ∈ T
}
,

V = {
w ∈ L2(�) : w|T ∈ P

0, T ∈ T
}
,

where P
k denotes the space polynomials of degree k. The space U induces the

finite element space of color images given by

U := {u ∈ W1,2(�, R
3) : ui ∈ U, i = 1, 2, 3

}
.

The space V induces the finite element space of gradient weights given by

V := {w ∈ L2(�, R
3) : wi ∈ V, i = 1, 2, 3

}
.

In order to simplify the solution of the equation and avoid the nonlinearity
in the coupled terms of order 0, we can restrict our functional to the case
L(u1, u2, u3) = 1

3 (u1 + u2 + u3). Indeed, usually in practice the functions L
which define L are increasing functions which can be inverted. Therefore we
can always re-equalize the gray level in order to have the linear dependence.

For a given w(n) ∈ V, the first step of our approximation of the double-
minimization scheme amounts in the computation of u(n+1) ∈ U which solves

∫

�

w
(n)

i (x)∇u(n+1)

i (x) · ∇ϕi(x) +
(
μ

α

(
u(n+1)

i (x) − ūi(x)
)

1�\D(x)

+ 1

3α

(
1

3

(
u(n+1)

1 (x)+u(n+1)
2 (x)+u(n+1)

3 (x)
)
− v̄(x)

)
1D(x)

)
ϕi(x)dx = 0

(12)
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for i = 1, 2, 3, for all ϕ ∈ U . To the spaces U and V are attached the corre-
sponding nodal bases {ϕk}k∈N and {χk}k∈N respectively. Therefore, we have
also that

U =
⎧
⎨

⎩
u : u =

(
∑

k∈N
ui,kϕk

)

i=1,2,3

⎫
⎬

⎭
, V =

⎧
⎨

⎩
w : w =

(
∑

k∈N
wi,kχk

)

i=1,2,3

⎫
⎬

⎭
.

With these bases we can construct the following matrices:

K(n+1)

i :=
(∫

�

w
(n)

i (x)∇ϕk(x) · ∇ϕh(x)dx
)

k,h∈N
, (13)

M�\D :=
(

μ

α

∫

�

1�\D(x)ϕk(x)ϕh(x)dx
)

k,h∈N
, (14)

MD :=
(

1

9α

∫

�

1D(x)ϕk(x)ϕh(x)dx
)

k,h∈N
. (15)

By these building blocks, we can assemble

K(n+1) :=
⎛

⎝
K(n+1)

1 + M�\D + MD MD MD

MD K(n+1)
2 + M�\D + MD MD

MD MD K(n+1)
3 + M�\D + MD

⎞

⎠,

and

M :=
⎛

⎝
M�\D + MD MD MD

MD M�\D + MD MD

MD MD M�\D + MD

⎞

⎠ . (16)

Furthermore, let us denote the vector of the nodal values of the solution by

u(n+1) =
(

u(n+1)

1,k1
, ..., u(n+1)

1,k#N
, u(n+1)

2,k1
, ..., u(n+1)

2,k#N
, u(n+1)

3,k1
, ..., u(n+1)

3,k#N

)T
(17)

assembled as a column vector containing the nodal values of each channel in
order, where ki ∈ N are nodes which are suitably ordered. In a similar way the
nodal values of the data ū, v̄ are assembled in the vector

ū = (
ū1,k1 , ..., ū1,k j, v̄1,k j+1 , ..., v̄1,k#N , ū2,k1 , ..., ū2,k j, v̄2,k j+1 , ..., v̄2,k#N , ū3,k1 , ...,

ū3,k j, v̄3,k j+1 , ..., v̄3,k#N

)T
. (18)

For the right-hand side we have the additional requirement that v̄i,k = v̄
,k for
i �= 
, representing the gray level values. Moreover, the order of the nodes
{kl : l = 1, . . . , #N } is such that

(
M�\D + MD

) (
ūi,k1 , ..., ūi,k j, v̄i,k j+1 , ..., v̄i,k#N

)T = M�\D

(
ūi

0

)
+ MD

(
0
v̄i

)
.
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With these notations and conventions, the solution of the system of equations
(12) is equivalent to the solution of the following algebraic linear system

K(n+1)u(n+1) = Mū. (19)

3.2 Numerical implementation of the double-minimization algorithm

We have now all the ingredients to assemble our numerical scheme into the
following algorithm.

Algorithm 6 Double-minimization

Input: Data vector ū, εh > 0, initial gradient weight w(0) with
εh ≤ w

(0)

i,k ≤ 1/εh,
number nmax of outer iterations.

Parameters: positive weights α, μ > 0.
Output: Approximation u∗

h of the minimizer of J̄α,μ

u(0) := 0;
f := Mū;
for n := 0 to nmax do

Assemble the matrix K(n+1) as in (13);
Compute u(n+1) such that K(n+1)u(n+1) := f;

Assemble the solution u(n+1) =
(∑

k∈N u(n+1)

i,k ϕk

)

i=1,2,3
;

Compute the gradient ∇u(n+1) =
(∑

k∈N u(n+1)

i,k ∇ϕk

)

i=1,2,3
;

w
(n+1)

i := εh ∨ 1
|∇u(n+1)

i | ∧ 1
εh

, i = 1, . . . , M;

endfor
u∗

h := u(n+1).

4 Comparison of the methods in the real-life problem

In this section, we show the numerical results that we obtained with the two
methods. We assume as in Fig. 1 to have available few color fragments of
the image and the gray levels of the missing parts. In order to guarantee
a reasonable comparison of methods, not only the data basis is required to
be the same, but also the estimated color-to-gray conversion map L (which
is nonlinear). In the wavelet approach, this map with its full nonlinearity is
implemented whereas in the total variation approach a “linearization” of this
map is used, by inverting the function L. In Figs. 3 and 4 we show the estimated
curves L computed by suitable averaging of the color information provided by
the localized fragments and from the corresponding underlying gray levels. By
inverting these increasing maps we can re-equalize the gray level (as shown in
the bottom-right of Figs. 3 and 4) in order to obtain the desired linearization.
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Fig. 3 On the top-left we show the estimated curve L on the basis of the information provided
by the true colors of the localized fragments and the corresponding gray levels of the image of
the fresco prior to the damage. The fragment relocated in their original position are show on the
top-right figure, while the original gray level is shown on the bottom-left. The re-equalized gray
level in shown on the bottom-right

4.1 Numerical experiments for the wavelet based recolorization

In order to derive recolored images, we first have to define the setup of the
WAVELET-JOINT-SPARSE algorithm. After generating our wavelet frame
by Daubechies’ wavelet of order 3, the initial wavelet frame coefficient vector
u0 is derived just by applying the frame operator F to each of the channels
of the given gray value image. The precision accuracy εfixed for the fixed
point iteration is chosen to be 0.00001 (since for a contraction factor less or
equal than 0.5, the fixed point iteration converges rather quickly—typically
five to ten iterations are enough to reach the preassigned accuracy). As a
reasonable value for the number of maximal outer iterations we have chosen
nmax = 200. For our estimated map L and the chosen initial guess u0, our
theory allows to pick C = 0.8. For a quickly converging fixed point iteration
a large value of C would be preferable, but this on the contrary reduces the
speed of convergence of the outer iteration. Therefore, we made in advance a
few experiments with different values of C. The penalization parameter μ and
the regularization parameter α were experimentally chosen—we end up with
μ = 0.1 and α = 0.0099. The coupling was ensured by picking p = 1 and q = 2.
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Fig. 4 On the top-left we show the estimated curve L on the basis of the information provided
by the true colors of the localized fragments and the corresponding gray levels of the image of
the fresco prior to the damage. The fragment relocated in their original position are show on the
top-right figure, while the original gray level is shown on the bottom-left. The re-equalized gray
level in shown on the bottom-right

In this situation the projection PB2(C−1αω) (acting on the three channels) on the

2-ball is explicitly given by

PB2(C−1αω)(uλ) =
⎧
⎨

⎩
uλ if ‖uλ‖2 =

√∑3
i=1 | (ui

)
λ
|2 ≤ C−1αωλ

C−1αωλ

‖uλ‖2
uλ otherwise

.

The results can be seen in on the bottom-left of Figs. 5 and 6.

4.2 Numerical experiments for the total variation minimization
based recolorization

The support of the image is � = [0, 1]2 where we construct a grid of dimensions
h × w, w and h are the width and hight of the image in pixels respectively.
On this grid a regular triangulation is defined. The values of the images are
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Fig. 5 On the top of the figure we show the data, i.e., the gray level and the colored fragments. On
the bottom-left we show the result of the recolorization via the sparsity promoting method based
on wavelet discretization, and on the bottom-right the result due to the method based on total
variation minimization

in [0, 255] channelwise. The algorithm converges to a stationary situation in a
limited number of external iterations. In our numerical tests three to four iter-
ations are sufficient. However the linear system K(n+1)u(n+1) := f to be solved
at each iteration is usually non-symmetric and hence we needed to implement
BiCGStab. The choice of εh has a twofold function. It serves as a regularization
parameter, i.e., the visual smoothness of the reconstruction depends on εh. The
larger values of εh give smoother reconstructed images. This effect is due to the
fact that if εh gets large, then the corresponding differential operator becomes
more and more isotropic. Moreover, since in discrete images the gradients are
always bounded, if εh is smaller than a threshold T > 0 depending on the mesh
size τ—in our experiments T = (255 max{height, width})−1—then the lower
bound on the gradient weight becomes irrelevant in the algorithm. However,
the second purpose of this parameter is also for the sake of numerical stability.
Depending on the size of the image, this parameter cannot be too small
(i.e., minimal), otherwise the corresponding stiffness matrices K(n) might be
significantly ill-conditioned and suitable pre-conditioners should be invoked
in this case. Indeed, it can be observed a significant increase of number of
iterations in BiCGStab in order to get to an acceptable accuracy. The results
in the real-life cases are shown on the bottom-right of Figs. 5 and 6.
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Fig. 6 On the top of the figure we show the data, i.e., the gray level and the colored fragments. On
the bottom-left we show the result of the recolorization via the sparsity promoting method based
on wavelet discretization, and on the bottom-right the result due to the method based on total
variation minimization

4.3 Comparison and conclusion

The recolorized images due to the two methods may differ in certain aspects.
The numerical results suggest that the total variation minimization method
tends to preserve the edges better. At the same time it does not annihilate the
information provided by the real fragments which are not completely merged
with the final color restoration. On contrary, the wavelet based recolorization
tends to blur more the image (which can be partly explained by the smoothness
of the chosen wavelet), edges are less preserved, but the fragments are
nicely merged in the context of the resulting image. These differences can be
simply attributed just due a stronger regularization due to the choice of the
regularization in the experiments with the wavelet based method. However, it
is very difficult to tune the regularization parameters in such a way to obtain
the same results, being the methods significantly different in nature.
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Fig. 7 Mutual differences of the first example (see Fig. 5) in red, green, and blue channels of the
recolorized images by the means two methods ( first row) and in the L, a, b channels (second row)

In order to identify reconstruction differences of the two schemes, several
measures seem to be appropriate. The first natural measures is the classical
Euclidean distance of the individual color channels. However, the RGB chan-
nel representation of color images is not best suited in human perception of
color images. A more adequate color space to represent images and to identify
differences that meet human perception is the (L, a, b) representation. The
coordinates L, a, b are based on psychological characteristics of the human
perception and rely only on physical color metrics. The L axis describes the
luminance, the a axis the green red contingent, and the b axis the blue yellow
contingent. The conversion from RGB to (L, a, b) can be realized in two steps.
The first step is the mapping from RGB to XYZ (which is the former CIE color
model):

⎛

⎝
X
Y
Z

⎞

⎠ =
⎛

⎝
2.364 −0.515 0.005

−0.896 1.426 −0.014
−0.468 0.088 1.009

⎞

⎠

⎛

⎝
R
G
B

⎞

⎠ .

Fig. 8 Squared mean of
mutual differences of the first
example (see Fig. 5) in red,
green, and blue
representation (left) and
Squared mean of mutual
differences with respect to
a and b channels (right)
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Fig. 9 Mutual differences of the first example (see Fig. 6) in red, green, and blue channels of the
recolorized images by the means two methods ( first row) and in the L, a, b channels (second row)

The luminance, the green-red axis, and the yellow-blue axis are then given by

L = 116(Y/Yn)
1/3 − 16 , a = 500

(
(X/Xn)

1/3 − (Y/Yn)
1/3
)
,

b = 200
(
(Y/Yn)

1/3 − (Z/Zn)
1/3
)

,

where (Xn, Yn, Zn) is the location of the white point. For small values of
X/Xn, Y/Yn, Z/Zn the third roots are replaced.

The differences in terms of edge reproduction are particularly visible in the
RGB difference images, as the top rows in Figs. 7 and 9 show. Interestingly,
those differences are not that visible in the (L, a, b) perceptual representation,

Fig. 10 Squared mean of
mutual differences of the first
example (see Fig. 6) in red,
green, and blue
representation (left) and
Squared mean of mutual
differences with respect to
a and b channels (right)
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Fig. 11 We illustrate a recolorization (three iterates of the WAVELET-JOINT-SPARSE algo-
rithm) of a part of Fig. 1. In this case the color-to-gray conversion map cannot be very well
estimated due to a limited color palette furnished by the few localized fragments. The result is
less satisfactory, but still very important in terms of giving a seeming impression of the original
frescoes

see the bottom rows in Figs. 7, 8, 9, and 10. The essential differences can only
be seen at the location of the fragments. This suggests that from the point of
view of human perception, the reconstruction are qualitatively very close each
other, at least in off-color-fragment regions. In Fig. 11 the recolorization of
the example image in Fig. 1 is presented. In this case the color-to-gray conver-
sion map could not be sufficiently estimated. Therefore, the result is less satis-
factory, but still important for getting an impression of the original frescoes.

We finally report the mutual Peak Signal-to-Noise Ratio (PSNR).1 In the
first case (compare Fig. 5) the PSNR between the resulting images is 30.166 dB
and for the second case (compare Fig. 6) is 29.4167 dB.

These latter observations suggest that, if we ignore the differences due to
possible edge blurring, the reconstructed color is essentially the same. Due to
the significant differences of the proposed methods in terms of extension of
the colors (the first is based on wavelet sparsity, the second on non-isotropic
diffusion), we believe that this near equivalence is an indirect indicator of the
fact that any possible recolorization method will give in practice very similar
results to the one presented in this paper. The results depend on the quantity
of color information and, in a very significant way, on its distribution. Previous
results in [29, 45] showed that even a minimal color information randomly
distributed is sufficient in order to achieve reconstructions with PSNR over
35 dB.
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1PSNR(u1, u2) := 10 log10

(
2552

1
3hw

∑3
i=1 ‖u1

i −u2
i ‖2

2

)
, where h, w are the height and width of the images

respectively.
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