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Abstract The noise contained in data measured by imaging instruments is
often primarily of Poisson type. This motivates, in many cases, the use of
the Poisson negative-log likelihood function in place of the ubiquitous least
squares data fidelity when solving image deblurring problems. We assume
that the underlying blurring operator is compact, so that, as in the least
squares case, the resulting minimization problem is ill-posed and must be
regularized. In this paper, we focus on total variation regularization and show
that the problem of computing the minimizer of the resulting total variation-
penalized Poisson likelihood functional is well-posed. We then prove that, as
the errors in the data and in the blurring operator tend to zero, the resulting
minimizers converge to the minimizer of the exact likelihood function. Finally,
the practical effectiveness of the approach is demonstrated on synthetically
generated data, and a nonnegatively constrained, projected quasi-Newton
method is introduced.
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1 Introduction

We consider the problem of solving

z = Au def=
∫

�

a(x, y; ξ, η)u(ξ, η) dξ dη, (1)

for u on a bounded domain �. We assume a ∈ L2(�) so that A : Lp(�) →
L2(�) is a compact operator for all p ≥ 1. We also assume that the null space
of A is trivial and that the exact data z is in the range of A, is nonnegative, and
is in L∞(�), in which case solving (1) is an ill-posed problem [23, 25]. Finally,
we denote the true solution by uexact and assume that it is the unique solution
of (1).

1.1 Discretization error

In practical applications, e.g. astronomy and medical imaging, the continuous
image z in (1) is sampled via a charge coupled device (CCD) camera on a
uniform grid. Without loss of generality, we assume that this grid is defined by
the N × N array of points

{
(xi, y j) | xi = (2i − 1)/2N, y j = (2 j − 1)/2N, 1 ≤ i, j ≤ N

}
,

which are the centers of the pixels

�ij = {(x, y) | (i − 1)/N ≤ x ≤ i/N, ( j − 1)/N ≤ y ≤ j/N}, 1 ≤ i, j ≤ N,

of the CCD array. The CCD camera estimates the value of z within �ij by
counting the number of photons emitted from the object incident upon �ij. If
the number of photons is counted exactly, this will yield the total intensity of
the image within �ij, which is given, using (1) and Fubini’s theorem, by

∫
�ij

z(x, y) dx dy =
∫

�

(∫
�ij

a(x, y; ξ, η) dx dy

)
u(ξ, η) dξ dη. (2)

Using midpoint quadrature in the x, y variables on both the left and right-
hand sides of (2) and ignoring quadrature error yields

z
(
xi, y j

) =
∫

�

a
(
xi, y j; ξ, η

)
u(ξ, η) dξ dη.

Applying midpoint quadrature once again in the ξ, η variables yields, finally,
the system of equations

z
(
xi, y j

) = 1

N2

N∑
r=1

N∑
s=1

a
(
xi, y j; ξr, ηs

)
u (ξr, ηs) + ε

quad
ij , 1 ≤ i, j ≤ N, (3)

where ε
quad
ij is quadrature error at the ijth grid point. Note that we have

assumed co-location of grid points in the x, y and ξ, η planes.



Total variation-penalized Poisson likelihood estimation 37

In practical applications, estimates of the array values {u(ξr, ηs)}N
r,s=1

are sought from noisy measurements {zij}N
i, j=1 of {z(xi, y j)}N

i, j=1. Defining
aij(ξr, ηs) := a(xi, y j; ξr, ηs), we can then write (3) as

zij = 1

N2

N∑
r=1

N∑
s=1

aij (ξr, ηs) u (ξr, ηs) + ε
quad
ij + εstoch

ij , 1 ≤ i, j ≤ N, (4)

where εstoch
ij is the stochastic error at the ijth grid point that arises due to the

measurement noise. In this paper, we present and analyze an approach for
estimating {u(ξr, ηs)}N

r,s=1 that incorporates a noise model for εstoch
ij .

1.2 Poisson likelihood estimation

In order to better model the errors contained in the data measurements
{zij}N

i, j=1, we use the statistical model for CCD camera measurement error given
in [21, 22]:

zij ∼ Poiss

(∫
�ij

z(x, y) dx dy

)
+ Poiss(γ ) + N

(
0, σ 2

)
. (5)

By (5), we mean that

zij ∼ nobj(i, j) + n0(i, j) + g(i, j), i, j = 1, . . . , N, (6)

where

• nobj(i, j) is the number of object dependent photoelectrons measured by
the ijth detector in the CCD array. It is a Poisson random variable with
Poisson parameter

∫
�ij

z(x, y) dx dy.
• n0(i, j) is the number of background photoelectrons, which arise from

both natural and artificial sources, measured by the ijth detector in the
CCD array. It is a Poisson random variable with a fixed positive Poisson
parameter γ .

• g(i, j) is the so-called readout noise, which is due to random errors caused
by the CCD electronics and errors in the analog-to-digital conversion of
measured voltages. It is a Gaussian random variable with mean 0 and fixed
variance σ 2.

The random variables nobj(i, j), n0(i, j), and g(i, j) are assumed to be indepen-
dent of one another and of nobj(r, s), n0(r, s), and g(r, s) for r �= i or s �= j.

Now, if we ignore quadrature error in (4), and assume that our error model
is given by (5), we obtain the statistical model

zij ∼ Poiss

(
1

N2

N∑
r=1

N∑
s=1

aij (ξr, ηs) u (ξr, ηs)

)
+ Poiss(γ ) + N

(
0, σ 2) , (7)
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for data collection. As in [21], we use the approximation N(σ 2, σ 2) ≈ Poiss(σ 2)

to obtain, from (7),

zij + σ 2 ∼ Poiss

((
1

N2

N∑
r=1

N∑
s=1

aij (ξr, ηs) u (ξr, ηs)

)
+ γ + σ 2

)
, (8)

The maximum likelihood estimate of uexact on the computational grid is then
given by minimizing

N∑
i=1

N∑
j=1

{[(
1

N2

N∑
r=1

N∑
s=1

aij (ξr, ηs) u (ξr, ηs)

)
+ γ + σ 2

]

− (
zij + σ 2

)
log

[(
1

N2

N∑
r=1

N∑
s=1

aij (ξr, ηs) u (ξr, ηs)

)
+ γ + σ 2

]}
(9)

with respect to the array {u(ξr, ηs)}N
r,s=1. Before continuing, we note that in

practice, using the negative-log of the Poisson likelihood (9) instead of the
least squares likelihood can yield much improved results, particularly if the
object is composed of sub-objects with a wide range of intensities (see e.g.,
the results in [5]).

Our solution method proposes the use of (9) as the data-fidelity function. In
order to handle the difficulties that arise due to the ill-posedness of problem
(1), we will use total variation regularization. The resulting computational
problem is of interest, and we will devote a significant portion our work to
the development of an efficient method for this problem. It is also essential,
however, that we perform a rigorous theoretical analysis (i.e. in a function
space setting) of the method. Such a theoretical analysis is important because
it will allow us to trust the results obtained in practice. Furthermore, in the
functional analytic setting, the effect of the regularization functional is easier
to quantify; in particular, the regularization functional determines the function
space within which the regularized solutions will lie.

1.3 The functional analogue of the poisson negative-log likelihood

The functional analogue of (9) can be obtained by removing both stochastic
and quadrature errors from the discrete model. In theory, stochastic errors can
be removed by computing the mean of samples from (5) as the sample size
tends to infinity. The result, by the Central Limit Theorem, is∫

�ij

z(x, y) dx dy + γ.

Quadrature errors, on the other hand, are removed by letting the number of
grid points tend to infinity. A simultaneous removal of these two types of error
yield, via standard integral convergence arguments, the convergence of (9) to

T0(Au; z + γ ) =
∫

�

((
Au + γ + σ 2

) − (
z + γ + σ 2

)
log

(
Au + γ + σ 2

))
dx dy,

(10)



Total variation-penalized Poisson likelihood estimation 39

where z and A are as defined in equation (1); that is, they are the exact data
function and integral operator respectively.

Before continuing, we emphasize that z is defined over all of �, while zij is
a noisy measurements of the total intensity of z over �ij.

The unique minimizer of T0 is uexact. To see this, we compute the gradient
and Hessian of T0 with respect to u, which are given, respectively, by

∇T0(Au; z + γ ) = A∗
(

Au − z
Au + γ + σ 2

)
, (11)

∇2T0(Au; z + γ ) = A∗
(

diag

(
z + γ + σ 2

(
Au + γ + σ 2

)2

))
A, (12)

where “ ∗ ” denotes operator adjoint, and diag(v) is the linear operator defined

by diag(v)w
def= vw. Since z ≥ 0 and the null space of A is trivial (see comments

following (1)), ∇2T0 is a positive definite operator. Thus T0 is strictly convex
[25, Theorem 2.42], with unique minimizer uexact as desired.

1.4 Total variation regularization

Due to the fact that A is compact, the problem of computing the minimizer
of T0 is an ill-posed problem and must be regularized [23, 25]. This involves
replacing T0(Au; z + γ ) by the parameter dependent functional

Tα(Au; z + γ )
def= T0(Au; z + γ ) + αJ(u), (13)

where α > 0 is the regularization parameter and J the regularization func-
tional, which provides stability and incorporates prior knowledge about the
exact solution. If the exact solution is known to have jump discontinuities, as
we will assume in this paper, one can use total variation regularization [1, 8, 18].
In theory, this is accomplished by taking

J(u) = Jβ(u)
def= sup

v∈V

∫
�

(
−u∇ · v +

√
β
(
1 − |v(x)|2)

)
dx, (14)

where β ≥ 0 and

V = {
v ∈ C1

0

(
�; R

d) : |v(x)| ≤ 1 x ∈ �
}
.

We note that if u is continuously differentiable on �, (14) takes the recogniz-
able form [1, Theorem 2.1]

Jβ(u)
def=

∫
�

√
|∇u|2 + β dx. (15)

J0(u) is known as the total variation of u.



40 J.M. Bardsley, A. Luttman

When (14) is used, minimizers of Tα will lie (as we will show later) in the
space of functions of bounded variation on �, which is defined by

BV(�) = {
u ∈ L1(�) : J0(u) < +∞}

. (16)

We will assume that uexact ∈ BV(�). Furthermore, since uexact ≥ 0, a non-
negativity constraint is natural. This gives, finally, the exact regularized mini-
mization problem

arg min
u∈C

Tα(Au; z + γ ), (17)

where

C = {u ∈ BV(�) | u ≥ 0 almost everywhere}. (18)

At first, the appearance of the exact data z and operator A in (17) may
seem confusing. However, our analysis will show that solutions of (17), (18)
are stable with respect to small perturbations in z and A. With this result in
hand, we can conclude that even if noisy measurements of both z and a are
used in practice, one can expect our method to yield a regularized solution
that well-approximates uexact given the noise level and an appropriately chosen
regularization parameter.

1.5 Paper objectives

We will present our theoretical analysis in Section 2. In particular, we will
provide justification for using (17), (18). This will involve first proving that
(17), (18) is a well-posed problem, i.e. that (17) has a unique solution uα ∈ C
for each α > 0, and that given a sequence of perturbed problems

zn(x, y) = Anu(x, y)
def=

∫
�

an(x, y; ξ, η)u(ξ, η) dξ dη, (19)

with solutions uα,n of the corresponding minimization problems

arg min
u∈C

Tα(Anu; zn), (20)

uα,n → uα provided An → A and zn → z + γ . We also must show that a
sequence of positive regularization parameters {αn} can be chosen such that
αn → 0 and uαn,n → uexact, where uαn,n is the minimizer of Tαn over C.

In Section 3, we focus on the computational problem that must be solved
when the above method is used in practice. The problem is non-trivial due
to the presence of the nonnegativity constraint and the total-variation regu-
larization, so a highly robust method is required. To this end, we present a
nonnegatively constrained, projected quasi-Newton minimization algorithm.
The method is similar to the projected Newton method [7], but with the
projected Hessian replaced by a projected quasi-Newton approximation mo-
tivated by the approximation used in the quasi-Newton formulation of the
lagged-diffusivity fixed point iteration [26].

We end the paper with conclusions in Section 4.
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2 Theoretical analysis

We begin with definitions and results that will be needed in our later analysis.
Let � and C be as defined in the introduction. Then |�| = ∫

�
dx < +∞. We

will assume that uexact ∈ C and that Au ≥ 0 for every u ∈ C, so z= Auexact ≥0.
We make the further assumption that z ∈ L∞(�). Note that these are reason-
able assumptions on A and z for imaging applications.

Let | · | denote the Euclidean norm in R
d and ‖ · ‖p the Banach space norm

on Lp(�) for 1 ≤ p ≤ +∞. Since � is bounded, Lp(�) ⊂ L1(�), p > 1.
We now give a number of results and definitions regarding BV(�); further

background and details on BV spaces can be found in [10, 11]. First of all,
BV(�) is a Banach space with respect to the norm

‖u‖BV = ‖u‖1 + J0(u).

Since
√

x ≤ √
x + β ≤ √

x + √
β for β, x ≥ 0, we have

J0(u) ≤ Jβ(u) ≤ J0(u) + √
β|�|. (21)

Inequality (21) will allow us to assume, without loss of generality, that β = 0 in
several of our arguments.

A set S ⊂ BV(�) is said to be BV-bounded if there exists M > 0 such that
‖u‖BV ≤ M for all u ∈ S.

A functional T : Lp(�) → R is said to be BV-coercive if

T(u) → +∞ whenever ‖u‖BV → +∞. (22)

Note that BV(�) ⊂ L1(�), by definition. Also, as a consequence of the
following theorem, whose proof is found in [1], BV(�) ⊂ Lp(�) for 1 ≤ p ≤
d/(d − 1), where d/(d − 1)

def= +∞ for d = 1.

Theorem 1 Let S be a BV-bounded set of functions. Then S is relatively
compact, i.e. its closure is compact, in Lp(�) for 1 ≤ p < d/(d − 1). S is
bounded and thus relatively weakly compact for dimensions d ≥ 2 in Lp(�)

for p = d/(d − 1).

2.1 Well-posedness

We now prove that problem (17), (18) is well-posed for α > 0. In order to sim-
plify the notation in our arguments, we will use Tα(u) to denote Tα(Au; z + γ )

and Tα,n(u) to denote Tα(Anu; zn) throughout the remainder of the paper.

2.1.1 Existence and uniqueness of solutions

In order to prove the existence and uniqueness of solutions of (17), (18), we
will use the following theorem, which is similar to [1, Theorem 3.1].

Theorem 2 If T : Lp(�) → R is strictly convex and BV-coercive, and 1 ≤ p ≤
d/(d − 1), then T has a unique minimizer on C.
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Proof Let {un} ⊂ C be such that T(un) → infu∈C T(u). Then T(un) is bounded,
and hence, by (22), {un} is BV-bounded. Theorem 1 implies that there exists
a subsequence {un j} that converges to some û ∈ Lp(�). Convergence is weak
if p = d/(d − 1). Since T is strictly convex, it is weakly lower semi-continuous
[27], and hence,

T(û) ≤ lim inf T
(
un j

) = lim T (un) = T∗,

where T∗ is the infimum of T on C. Thus û minimizes T on C and is unique
since T is a strictly convex functional and C is a convex set. ��

In order to use Theorem 2, we must show that Tα (as defined in (13)) is both
strictly convex and BV-coercive.

Lemma 1 Tα is strictly convex.

Proof In the introduction it was shown that T0 is strictly convex. The strict
convexity of Tα then follows immediately from the fact that Jβ is convex, which
is proved in [1]. ��

Lemma 2 Tα is BV-coercive on C.

Proof By (22), we must show that if ‖u‖BV → +∞, then Tα(u) → +∞. A
straightforward computation yields the following decomposition of a function
u ∈ BV(�):

u = v + w, (23)

where

w =
(∫

�

u dx
/

|�|
)

χ�, and
∫

�

v dx = 0. (24)

Here χ� is the indicator function on �. It is shown in [1] that there exists C1 ∈
R

+ such that, for any u = v + w in BV(�),

‖v‖p ≤ C1 J0(v), (25)

for 1 ≤ p ≤ d/(d − 1). Equation (25), the triangle inequality, and the fact that
J0(w) = 0 yield

‖u‖BV ≤ ‖w‖1 + (C1 + 1) J0(v). (26)

Let {un} ⊂ BV(�) be a sequence with un = vn + wn as above, and sup-
pose that lim inf Tα(un) = K < +∞. Let {unk} ⊂ {un} be a subsequence such
that Tα(unk) → lim inf Tα(un) = K. Then, since Tα(unk) is uniformly bounded,
αJ0(vnk) ≤ Tα(unk) − T0(uexact) implies that J0(vnk) also is uniformly bounded.
Noting that

‖Awnk‖1 = (‖Aχ�‖1
/|�|) ‖wnk‖1 = C2‖wnk‖1 (27)
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and Au ≥ 0 for all u ∈ C, Jensen’s inequality together with (25) and (27) yields

Tα(unk) ≥ ‖Aunk + γ + σ 2‖1 − ‖z + γ + σ 2‖∞ log ‖Aunk + γ + σ 2‖1, (28)

≥ ‖Awnk‖1 − ‖Avnk‖1 − (
γ + σ 2

) |�|
−‖z + γ + σ 2‖∞ log

(‖Awnk‖1 + ‖Avnk‖1 + (
γ + σ 2

) |�|) ,

≥ C2‖wnk‖1 − ‖A‖1C1 J0(vnk) − (γ + σ 2)|�|
−‖z + γ + σ 2‖∞ log

(
C2‖wnk‖1 + ‖A‖1C1 J0(vnk) + (

γ + σ 2
) |�|) ,

≥ C2‖wnk‖1 − M − ‖z + γ + σ 2‖∞ log(C2‖wnk‖1 + M), (29)

where M is an upper bound for ‖A‖1C1 J0(vnk) + (
γ + σ 2

) |�|, and ‖A‖1 is the
operator norm induced by the norm on L1(�). Thus

lim inf
(
C2‖wnk‖1−M−‖z+γ +σ 2‖∞ log(C2‖wnk‖1+M)

)≤ lim inf Tα(unk)= K.

If ‖wnk‖1 → +∞, then the limit inferior on the left would equal +∞, so
lim inf ‖wnk‖1 < +∞. Let {unk j

} ⊂ {unk} be a subsequence such that ‖wnk j
‖1 →

lim inf ‖wnk‖1. Then ‖wnk j
‖1 is uniformly bounded.

Since ‖unk j
‖BV ≤ ‖wnk j

‖1 + (C1 + 1)J0(vnk j
), ‖unk j

‖BV is uniformly bounded,
which implies that lim inf ‖un‖BV is finite.

Thus we have shown that if lim inf Tα(un) < +∞, then lim inf ‖un‖BV is finite.
Therefore ‖un‖BV → +∞ implies Tα(un) → +∞. ��

Existence and uniqueness of solutions of (17), (18) now follows
immediately.

Theorem 3 (Existence and Uniqueness of Minimizers) Tα has a unique mini-
mizer over C.

Before continuing, we note that in the denoising case, i.e. when A is the
identity operator, the existence and uniqueness of minimizers of Tα(u) was
proved in [2].

2.1.2 Stability of solutions

Let uα be the unique minimizer of Tα over C given by Theorem 3. A similar
analysis yields the existence of solutions uα,n of (20) for α ≥ 0 provided that
for each n ∈ N, Anu ≥ 0 for all u ∈ C and zn ≥ 0. Problem (17), (18) is then
said to be stable provided An → A and zn → z + γ implies uα,n → uα .

The following theorem (from [1]) gives conditions that guarantee this result.
For completeness, we present the proof.
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Theorem 4 For each n ∈ N, let uα,n be a minimizer of Tα,n over C, and suppose
that

(i) for any sequence {un} ⊂ Lp(�),

lim
n→+∞ Tα,n(un) = +∞ whenever lim

n→+∞ ‖un‖BV = +∞; (30)

(ii) given M > 0 and ε > 0, there exists N such that

|Tα,n(u) − Tα(u)| < ε whenever n ≥ N, ‖u‖BV ≤ M. (31)

Then

lim
n→+∞ ‖uα,n − uα‖p = 0 (32)

for 1 ≤ p < d/(d − 1). If d ≥ 2 and p = d/(d − 1) convergence is weak, i.e.

uα,n ⇀ uα. (33)

Proof Note that Tα,n(uα,n) ≤ Tα,n(uα). From this and (31), we have

lim sup Tα,n(uα,n) ≤ Tα(uα) < +∞. (34)

Thus by (30), {uα,n} is BV-bounded. By Theorem 1, there exists a subsequence
{uα,n j} that converges (weakly) to some û ∈ Lp(�). Furthermore, by the weak
lower semicontinuity of Tα , (31), and (34) we have

Tα(û) ≤ lim inf Tα

(
uα,n j

)
,

= lim inf
(
Tα

(
uα,n j

) − Tα,n j

(
uα,n j

)) + lim inf Tα,n j(uα,n j),

≤ Tα(uα).

Since uα is the unique minimizer of Tα , û = uα . Since every convergent
subsequence of {uα,n} converges to uα , we have that uα,n → uα (weakly if
p = d/(d − 1)). ��

The following corollary of Theorem 4 is the stability result for (17), (18) that
we seek.

Corollary 1 (Stability of Minimizers) Assume 1 ≤ p < d/(d − 1), ‖zn − (z +
γ )‖∞ → 0, and that An → A in the L1(�) operator norm. Then

lim
n→+∞ ‖uα,n − uα‖p = 0.

If p = d/(d − 1), then uα,n ⇀ uα .

Proof Without loss of generality, due to (21), we assume β = 0 and show that
conditions (i) and (ii) from Theorem 4 hold. Also, all limits are assumed to be
taken as n → +∞.

For condition (i), we repeat the proof of Lemma 2. Taking uα,n = vα,n +
wα,n, suppose that lim inf Tα,n(uα,n) = K < +∞, and let {uα,nk} ⊂ {uα,n} be a
subsequence such that Tα,nk(uα,nk) → K.
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Note that T0,nk(u0,nk) is uniformly bounded below, since using the ana-
logue of inequality (28) together with the properties of x − c log x for
c > 0 yields T0,nk(u0,nk) ≥ ‖znk + σ 2‖∞ − ‖znk + σ 2‖∞ log ‖znk + σ 2‖∞, which
is uniformly bounded below since ‖znk − (z + γ )‖∞ → 0 and z ∈ L∞(�).
Thus Tα,nk(uα,nk) ≥ T0,nk(u0,nk) + αJ0(vα,nk) implies that J0(vα,nk) is uniformly
bounded.

Since J0(vα,nk) is bounded, from (29) we have

Tα,nk(uα,nk) ≥ C2‖wα,nk‖1 − M − ‖znk + σ 2‖∞ log
(
C2‖wα,nk‖1 + M

)
, (35)

where M is the upper bound on ‖An‖1C1 J0(vα,n) + (γ + σ 2)|�| obtained
using the uniform boundedness of both ‖An‖ (Banach-Steinhaus) and
J0(vα,nk). Since ‖zn+σ 2‖∞ is uniformly bounded and lim inf Tα,nk(uα,nk)= K,
there exists a subsequence {uα,nk j

} ⊂ {uα,nk} such that ‖wα,nk j
‖1 is uni-

formly bounded. Thus ‖uα,nk j
‖BV ≤ ‖wα,nk j

‖1 + (C1 + 1)J0(vα,nk j
) implies that

‖uα,nk j
‖BV is uniformly bounded, so lim inf ‖uα,n‖BV is finite. It has been shown

that lim inf Tα,n(uα,n) < +∞ implies lim inf ‖uα,n‖BV is finite, so ‖uα,n‖BV →
+∞ implies Tα,n(uα,n) → +∞.

For condition (ii), note that, using Jensen’s inequality and the properties of
the logarithm,

|Tα,n(u)−Tα(u)|=
∣∣∣∣
∫

�

(
(An − A)u − (

zn + σ 2
)

log
(

Anu + γ + σ 2
))

dx

+
∫

�

((
z + γ + σ 2

)
log

(
Au + γ + σ 2

))
dx

∣∣∣∣ ,
≤‖An− A‖1‖u‖1+‖zn−(z+γ)‖∞log

(‖An‖1‖u‖1+
(
γ +σ 2

)|�|)

+‖z + γ + σ 2‖∞ log
∥∥(Au+γ +σ 2

)
/
(

Anu+γ +σ 2
)∥∥

1 . (36)

By assumption, ‖An − A‖1, ‖zn − (z + γ )‖∞ → 0. Furthermore, by the
Banach-Steinhaus Theorem, ‖An‖1 is uniformly bounded, and since we are
assuming that ‖u‖BV is bounded, by Theorem 1 we have that ‖u‖1 is bounded
as well. Thus the first two terms on the right-hand side in (36) tend to zero as
n → +∞. For the third term note that∥∥∥∥ Au + γ + σ 2

Anu + γ + σ 2
− 1

∥∥∥∥
1

≤
∥∥∥∥ 1

Anu + γ + σ 2

∥∥∥∥
1

‖An − A‖1 ‖u‖1,

which converges to zero since ‖1/(Anu + γ + σ 2)‖1 is bounded and ‖An −
A‖1 → 0. Thus log(‖(Au + γ + σ 2)/(Aun + γ + σ 2)‖1) → log(1) = 0, and
hence

|Tα,n(u) − Tα(u)| → 0. (37)

The desired result now follows from Theorem 4. ��

Finally, the main result of this subsection now follows directly from
Theorem 3 and Corollary 1
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Theorem 5 (Well-Posedness) Problem (17), (18) is well-posed.

2.2 Convergence of minimizers

It remains to show that a sequence of positive regularization parameters {αn}
can be chosen so that uαn,n → uexact as αn → 0.

Theorem 6 (Convergence of Minimizers) Let 1 ≤ p ≤ d/(d − 1). Suppose
‖zn − (z + γ )‖∞ → 0, An → A in the L1(�) operator norm, and αn → 0 at a
rate such that

(
T0,n(uexact) − T0,n(u0,n))

)/
αn (38)

is bounded, where uexact and u0,n are the minimizers of T0 and T0,n, respectively,
in C. Then uαn,n → uexact strongly in Lp(�) for 1 ≤ p < d/(d − 1) and weakly
for p = d/(d − 1).

Proof Again, due to (21), it suffices to consider the β = 0 case. Since uαn,n

minimizes Tαn,n, we have

Tαn,n(uαn,n) ≤ Tαn,n(uexact). (39)

Since {zn} and {An} are uniformly bounded and An → A in the L1(�)

operator norm,
{
Tαn,n(uexact)

}
is a bounded sequence, and (39) implies that{

Tαn,n(uαn,n)
}

is therefore also a bounded sequence.
Subtracting T0,n(u0,n) from each term in (39), dividing by αn, and using the

decomposition uαn,n = vαn,n + wαn,n yields
(
T0,n(uαn,n) − T0,n(u0,n)

)
/αn + J0(vαn,n)

≤ (
T0,n(uexact) − T0,n(u0,n)

)
/αn + J0(uexact). (40)

By (38), the right-hand side of (40) is bounded, implying the left hand side
is bounded. Since T0,n(uαn,n) − T0,n(u0,n) is nonnegative, J0(vαn,n) is therefore
also bounded. The boundedness of Tαn,n(uαn,n) together with (35) imply that
‖wαn,n‖1 is bounded. The BV-boundedness of {uαn,n} then follows from (26).

We show that ‖uαn,n − uexact‖p → 0 (uαn,n ⇀ uexact for p = d/(d − 1)) by
showing that every subsequence of {uαn,n} contains a subsequence that con-
verges to uexact. Every subsequence {uαn j ,n j} of {uαn,n} is BV-bounded since
{uαn,n} is, and by Theorem 1 has a convergent subsequence. Therefore, without
loss of generality, we can assume that {uαn j ,n j} converges strongly (weakly for
p = d/(d − 1)) to some û ∈ Lp(�). Then

T0(û)=
∫

�

(
A
(
û−uαn j ,n j

)+(
A− An j

)
uαn j ,n j +(zn j −(z+γ )) log

(
Aû+γ +σ 2

))
dx

−
∫

�

(
zn j +σ 2

)
log

((
An juαn j ,n j +γ +σ 2

)
/
(

Aû+γ +σ 2
))

dx+T0,n j

(
uαn j ,n j

)
,
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which, as in previous arguments, yields

|T0,n j(uαn j ,n j)−T0(û)|≤
∫

�

A
(

û − uαn j ,n j

)
dx

+‖zn j − (z + γ )‖∞ log(‖A‖1‖û‖1 + γ |�|)
+‖zn j +σ 2‖∞ log ‖(An juαn j ,n j +γ +σ 2

)
/
(

Aû+γ +σ 2
)‖1

+‖A − An j‖1‖uαn j ,n j‖1.

Then for 1 ≤ p ≤ d/d − 1,

‖zn j − (z + γ )‖∞ log
(‖A‖1‖û‖1 + (

γ + σ 2
)|�|) → 0,

since ‖zn j − (z + γ )‖∞ → 0 and log(‖A‖1‖û‖1 + (γ + σ 2)|�|) is constant, and

‖A − An j‖1‖uαn j ,n j‖1 → 0

since ‖A − An j‖1 → 0 and ‖uαn j ,n j‖1 is uniformly bounded.
Since A is a bounded linear operator and � is a set of finite measure, F(u) =∫

�
Au dx is a bounded linear functional on Lp(�). The weak convergence

of {uαn j ,n j} (recall that strong convergence implies weak convergence) then

implies
∫
�

Auαn j ,n j dx → ∫
�

Aû dx, which yields
∫
�

A
(

û − uαn j ,n j

)
dx → 0.

Since A is compact, it is completely continuous, i.e. the weak convergence
of uαn j ,n j to û implies that ‖Auαn j ,n j − Aû‖1 → 0 (cf. [9, Proposition 3.3]). Thus,

since
∥∥∥ 1

Aû+γ+σ 2

∥∥∥
1

is bounded, and

∥∥∥∥∥
An juαn j ,n j + γ + σ 2

Aû + γ + σ 2
− 1

∥∥∥∥∥
1

≤
∥∥∥∥ 1

Aû + γ + σ 2

∥∥∥∥
1

‖An juαn j ,n j − Aû‖1,

≤
∥∥∥∥ 1

Aû + γ + σ 2

∥∥∥∥
1

×
(∥∥An j − A

∥∥
1
‖uαn j ,n j‖1 + ‖Auαn j ,n j − Aû‖1

)
,

we have that ‖zn j + σ 2‖∞ log ‖(An juαn j ,n j + γ + σ 2)/(Aû + γ + σ 2)‖1 → 0.
Therefore

T0(û) = lim
n j→+∞ T0,n j

(
uαn j ,n j

)
.

Invoking (40), (38), and (37), respectively, yields

lim
n j→+∞ T0,n j(uαn j ,n j) = lim

n j→+∞ T0,n j

(
u0,n j

) = lim
n j→+∞ T0,n j

(
uexact

) = T0
(
uexact

)
.

Thus T0(û) = T0(uexact), and, since uexact is the unique minimizer of T0, û =
uexact. Therefore {uαn j ,n j} converges strongly (weakly for p = d/(d − 1)) to
uexact in Lp(�). ��
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Remarks

• We note that σ 2 can be taken to be zero in the likelihood functional (10)
and the above results will still hold.

• In the denoising case, i.e. A identity, one need only prove existence and
uniqueness of solutions. The analysis in Section 2.1.1 suffices for this result,
however this was proved previously in [14].

• The above arguments can be modified to obtain the analogous results when
standard Tikhonov regularization is used instead of total variation. This is
the topic of [4], and the resulting computational problem is the topic of the
work in [3, 5].

3 A numerical method

In this section, we present a numerical method and an experiment to demon-
strate that total variation-penalized Poisson likelihood estimation can be
effective in practice. For simplicity in presentation, we will use matrix-
vector notation. In particular, by lexicographically ordering the N × N arrays

{zij}N
i, j=1, {u(ξr, ηs)}N

r,s=1, and
{

1
N2

∑N
r=1

∑N
s=1 aij(ξr, ηs)u(ξr, ηs)

}
, we obtain the

vectors z, u, and Au respectively, where z and u are N2 × 1 and A is N2 × N2.
Using this notation, the total variation regularized Poisson likelihood estimate
will be the solution of the problem

arg min
u≥0

Tα(u)
def= T0(u) + αJβ(u), (41)

where

T0(u)
def=

N2∑
i=1

([
Au

]
i + γ + σ 2) −

N2∑
i=1

(
zi + σ 2) log

([
Au

]
i + γ + σ 2) . (42)

Here zi is the ith component of z, and Jβ(u) is the numerical approximation of
(15) discussed below. In our experiments, β was taken to be 1.

The gradient and Hessian of Tα(u), as defined in (41), are given by

∇Tα(u) = ∇T0(u) + α∇ Jβ(u),

∇2Tα(u) = ∇2T0(u) + α∇2 Jβ(u).

The gradient and Hessian of the Poisson likelihood functional T0(u) have
expressions

∇T0(u) = AT
(

Au − (z − γ )

Au + γ + σ 2

)
, (43)

∇2T0(u) = AT
(

diag
(

z + σ 2

(Au + γ + σ 2)2

))
A, (44)

where diag(v) is the diagonal matrix with v as its main diagonal. Note the
similarities with (11) and (12). Here, and in what follows, we will use x/y, where
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x, y ∈ R
N2

, to denote Hadamard, or component-wise, division, and x2 def= x � x,
where “ � ” denotes the Hadamard product.

Note that for moderate to large values of σ 2, say σ 2 ≥ 32, it is extremely un-
likely for the Gaussian g(i) + σ 2 from statistical model (6) to be negative. Then,
since Poisson random variables take on only nonnegative integer values, the
random variable zi + σ 2 is also highly unlikely to be nonpositive. Furthermore,
γ and σ 2 are both positive parameters and by assumption Au ≥ 0 whenever
u ≥ 0, where v ≥ 0 denotes component-wise nonnegativity for v. Thus it can
be reasonably assumed that ∇2Tα(u) is positive semi-definite for all u ≥ 0.

The gradient and Hessian of Jβ(u) require a bit more work. First, recall from
(15) that in two-dimensions

Jβ(u) =
∫

�

√(
∂u
∂x

)2

+
(

∂u
∂y

)2

+ β dxdy, (45)

which has discrete analogue

Jβ(u) = xy
n∑

i=1

n∑
i=1

√
(Dxu)2 + (Dyu)2 + β, (46)

where Dx and Dy are N2 × N2 matrices corresponding to the grid approxi-
mations of the first derivative with respect to x and y respectively. For our
implementation, the average of the two regularization terms resulting from the
use of first-order upwind differencing and first-order downwind differencing
for Dx and Dy was used. Thus the resulting approximation will also be first-
order accurate. Midpoint quadrature is used to discretize the integral in (45).

We now provide the formulas for the gradient and Hessian of Jβ , and, in
order to simplify notation, we drop the xy term in (46). The gradient and
Hessian of Jβ are given by

∇ Jβ(u) = L1(u)u,

∇2 Jβ(u) = L1(u) + 2L2(u), (47)

where, if ψ(t) def= √
t + β, Du2 def= (Dxu)2 + (Dyu)2, and DxuDyu def= Dxu �

Dyu,

L1(u)= [
DT

x DT
y

][diag
(
ψ ′(Du2

))
0

0 diag
(
ψ ′(Du2

))
][

Dx

Dy

]
,

L2(u)= [
DT

x DT
y

][ diag
((

Dxu
)2 � ψ ′′(Du2

))
diag

(
DxuDyu � ψ ′′(Du2

))
diag

(
DxuDyu � ψ ′′(Du2

))
diag

((
Dyu

)2 � ψ ′′(Du2
))
][

Dx

Dy

]
.

(48)

For a more detailed treatment of these computations see [25, Chapter 8].
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3.1 The projected lagged-diffusivity method

The active set for u ≥ 0 is defined

A(u) = {i | ui = 0}.
The complementary set of indices is called the inactive set and is denoted by
I(u). The orthogonal projection of a vector u ∈ R

N2
onto {x ∈ R

N2 | x ≥ 0} is
given by

P(u) = max{u, 0},
where the maximum is computed component-wise. Finally, let DI(u) denote
the diagonal matrix with components

[DI(u)]ii =
{

1, i ∈ I(u)

0, i ∈ A(u).
(49)

Then DA(u)
def= I − DI(u), where I is the N2 × N2 identity matrix.

We now present our computational method for solving (41). The most
straightforward computational method for use on nonnegatively constrained
problems is the projected gradient algorithm [13]. However, for this problem,
projected gradient is slow to converge. We therefore advocate using projected
lagged-diffusivity. A general formulation of the method is as follows: given uk,
compute

Hk = Dk
I∇2T0(uk)Dk

I + αDk
IL1(uk)Dk

I + Dk
A, (50)

vk = −H−1
k ∇Tα(uk) = −H−1

k (Dk
I∇Tα(uk)) − Dk

A∇Tα(uk); (51)

λk = arg min
λ>0

Tα(P(uk + λvk)); (52)

uk+1 = P(uk + λkvk). (53)

Here Dk
A

def= DA(uk) and Dk
I

def= DI(uk).
The method is called projected lagged-diffusivity because, if

T0(u) = 1

2
‖Au − z‖2

2, (54)

the nonnegativity constraints are dropped so that Dk
I = I and Dk

A = 0 for
all k, and λk = 1 for all k, the lagged-diffusivity fixed-point iteration results
(c.f. [25]).

For large-scale problems, such as the one that we consider, the projected
quasi-Newton step (50), (51) can only be computed approximately. Since
∇2Tα(uk) is symmetric, positive-definite, so is Hk. Thus, conjugate gradient
(CG) iterations can be used for solving Hkv = −Dk

I∇Tα(uk). It can be shown
that CG will compute the exact solution in a finite number of iterations,
but this is not practical for large-scale problems. The remedy is to truncate
CG iterations using a stopping criterion that will not effect the theoretical
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convergence properties of the method. In our implementation of CG, we use
initial guess v0

k = 0 with stopping criterion

‖Hkv j
k + Dk

I∇Tα(uk)‖ ≤ min

{
1

2
, ‖Dk

I∇Tα(uk)‖
}

· ‖Dk
I∇Tα(uk)‖, (55)

where v j
k is the jth CG iterate at outer iteration k. CG stopping criteria of this

type are standard [16]. In addition, we use the stopping criteria

j = CGmax. (56)

That is, if either (55) or (56) hold, CG iterations are stopped and vk in
(51) is taken to be the most recent CG iterate. Then vk can be guaranteed
to be a descent direction, making it appropriate for use in the line search
subproblem (52).

We note that in the numerical example below, the use of (56) is necessary
in order to prevent an excessive number of CG iterations per outer iteration.
This suggests the use of a CG stopping criterion that is more robust than (55) to
increase computational efficiency, a possibility to be explored in future work.

Because Tα is not a quadratic function, the line search subproblem (52) must
also be approximately solved. A standard approach is to do this iteratively
using a backtracking line search algorithm. In our implementation, we use
the quadratic backtracking line search scheme of [15], which generates a finite
decreasing sequence of approximate solutions {λr

k}m
r=1, where m is the smallest

integer such that the sufficient decrease condition

Tα(P(uk + λr
kvk)) ≤ Tα(uk) + μ〈∇Tα(uk),P(uk + λr

kvk) − uk〉
holds. In our implementation, μ = 0.1, which is what is used in [15].

Finally, we stop projected Newton iterations based on the value of the norm
of the projected gradient, which is defined by

∇projTα(uk)
def= Dk

I∇Tα(uk) + min{0, Dk
A∇Tα(uk)},

noting that since Tα is convex, u∗ solves (41) if and only if ∇projTα(u∗) = 0. This
motivates the following stopping criteria for the outer iterations:

‖∇projTα(uk)‖/‖∇projTα(u0)‖ < GradTol, (57)

where GradTol is a small positive number.

Remarks

• The projected Newton method [7, 13] results if (50) is replaced by the
reduced Hessian

Hk = Dk
I∇2Tα(uk)Dk

I + Dk
A, (58)

but the resulting method is less computationally efficient.
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• One possibility for improving the performance of our method is to pre-
condition the CG iterations. Preconditioning is made difficult in this case
because the form of Hk changes nontrivially as the active set changes.
Nonetheless, effective techniques have been introduced within similar
contexts (c.f. [3, 5]).

Other methods have been introduced for edge preserving, Poisson likeli-
hood estimation. For example, in [24], a regularization functional is introduced
that incorporates information about the location of the edges within the image.
The scheme has two stages: (i) solve a PDE-based edge detection problem
for the current iterate uk; then (ii) compute a new iterate uk+1 by solving a
regularized Poisson likelihood estimation problem, where the regularization
term uses the edge map computed in stage (i). These steps are alternated
until a stable reconstruction is obtained. This method has the benefit that the
penalty term used in stage (ii) for regularization is quadratic, which is not the
case for total variation regularization. Also, for images with smooth edges,
the above scheme may be superior, since it is often the case that total variation
regularization will give piecewise constant reconstructions even when they are
not desirable. However interspersing a large-scale optimization problem with
a large-scale PDE-based edge detection problem is computationally intensive.
One clear benefit of using the approach presented here is that no alternating
scheme is needed, which is likely to make computations more efficient.

Regularized Poisson likelihood estimation has also been approached from
the Bayesian point of view. In particular, in [2, 19, 20] maximum a posteriori
(MAP) denoising of images with Poisson noise statistics is studied. In [12],
the MAP formulation of standard least squares total variation denoising is
given. These ideas are then extended to the Poisson denoising problem in
[2], where a simple gradient descent algorithm is given for computing the
MAP estimate. The key concept for the MAP formulation of total variation
denoising is the connection between total-variation regularization and the
Laplace distribution [12], which, incidentally, can be used to formulate (41)
as a MAP estimation problem as well. This connection is also exploited in [20].
In [19], a wavelet basis is used, and the Poisson likelihood with an �1 penalty on
the wavelet coefficients is minimized. We note that our computational method
is applicable to the Poisson denoising problem (set A = I in (41)), which is
the problem of focus for the above methods. This method, however, has been
introduced in the more general context of image deblurring. Since deblurring
optimization problems tend to be more challenging than the corresponding
denoising problems, the effectiveness of the above methods for deblurring
is not immediately apparent. In [17], however, a medical imaging deblurring
problem is considered. Here a MAP estimate is computed using the EM
algorithm. A conjugate prior approach is taken in order to make the approach
computationally feasible. The resulting prior consists of a combination of
gamma and beta densities.

In [5], an efficient computational method is introduced for solving (41) with
Jβ(u) replaced by ‖u‖2

2, i.e. standard Tikhonov regularization. Perhaps the
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most commonly used method for Poisson likelihood estimation is Richardson-
Lucy (RL) iteration [6, 25]. When RL is used, regularization is implemented
via the early truncation of iterations. In the next subsection, we compare
the results obtain from these two approaches with those obtained using the
approach presented here.

3.2 Numerical experiments

In this subsection we present numerical experiments to show that total
variation-regularized Poisson likelihood estimation can be effective in practice
and that results obtained with this approach compare well with those obtained
using other methods.

In our experiment, the 64 × 64 true object uexact is given on the left-hand
side in Fig. 1. Note that while the satellite is piecewise constant, the object
also contains three two-dimensional Gaussians and one half-sphere; these
sub-objects will be more visable when we present the comparisons below.
A spatially invariant PSF is used to define the 642 × 642 blurring matrix A.
We follow the Fourier optics PSF model [25, Section 5.1.1], and hence, A
is a block Toeplitz with Toeplitz blocks matrix. For efficient computations,
A is embedded in a 1282 × 1282 block circulant with circulant block matrix,
which can be diagonalized by the two-dimensional discrete Fourier and inverse
discrete Fourier transform matrices [25]. Thus though results are shown on
a 64 × 64 computational grid, computations are done on a 128 × 128 com-
putational grid. Data z with a signal-to-noise ratio of 30 is then generated
using statistical model (7) with σ 2 = 25 and γ = 10 – physically realistic values
for these parameters. To generate Poisson noise, the poissrnd function in
MATLAB’s Statistics Toolbox is used. The corresponding blurred, noisy data
z is given on the right hand side in Fig. 1.
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Fig. 1 Object and blurred, noisy image. On the left is the true object utrue. On the right, is the
blurred, noisy image z
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With the blurred, noisy data in hand, we estimate uexact by solving (41)
using the projected lagged-diffusivity method with CGmax = 50 and GradTol =
10−5. We chose these values for CGmax and GradTol in order to balance
computational efficiency with good convergence properties of the method.
Our initial guess was u0 = 1, and the regularization parameter was taken to be
α = 5 × 10−5. This choice of parameter approximately minimizes ‖uα − uexact‖.
The reconstruction is given in Fig. 2.

In order to compare this result with those obtained using other methods,
we will compare plots of cross sections of reconstructions corresponding to the
32nd row and 32nd column; note that the sub-objects are all centered on one
of these two cross-sections. In our first comparison, we plot reconstructions
obtained using our approach, RL, and the projected Newton method applied to
the problem of minimizing the Tikhonov regularized Poisson likelihood func-
tion over {u | u ≥ 0}. For the latter method, we use CGmax = 50, GradTol =
10−8, and initial guess u0 =1. The regularization parameter – chosen as above –
was α = 2 × 10−6. The RL reconstruction was taken to be the iterate that
minimizes ‖uk − uexact‖. The results are given in Fig. 3. The total variation
reconstruction is visually superior to the others, with the exception of the
Gaussian with the high peak in the left-hand plot. This is not surprising
given the fact that it has been observed that standard Poisson estimation is
particularly effective at reconstructing objects with high intensity, but small
support, such as a star.

The dominant cost in implementing each of the above algorithms is the
computation of fast Fourier and inverse fast Fourier transforms (FFTs). For
RL the total number of FFTs was 722. When projected Newton iteration
was used on the Tikhonov regularized Poisson likelihood, 668 FFTs were
needed before the stopping criteria were met. Finally, 25876 FFTs were needed
in order to meet the stopping criteria for the total variation reconstruction.
However, given the fact that (56) was met at 125 out of 135 outer iterations,

Fig. 2 Reconstruction of the
object obtained using the
projected lagged-diffusivity
method
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Fig. 3 Comparison of cross-sections of reconstructions obtained with a variety of poisson likeli-
hood methods. The left-hand plot corresponds to column 32 and the right-hand plot corresponds
to row 32 of the respective reconstructions. The true image is the solid line; the projected lagged-
diffusivity reconstruction is the line with circles; the Tikhonov solution is the line with stars; and
the RL solution is the line with diamonds

it is our belief that with a more robust stopping criterion, the computational
cost could be reduced substantially. Also, excellent results are obtained by
projected lagged-diffusivity with a stopping criteria of GradTol = 10−4 (see
the comparisons below), and the total number of FFTs needed in this case is
less by more than a factor of 4. Nonetheless, total variation estimation is clearly
the most expensive of these three methods.

We now compare the results obtained using our approach with those
obtained using total variation regularization with a least squares likelihood. As
was mentioned above, the projected lagged-diffusivity method can just as eas-
ily be used with T0 given by (54). Thus we compare the results with these two
different likelihood functions. We also implement standard lagged-diffusivity
fixed point iteration. As one might expect, better results are obtained when the
Poisson likelihood is used. This can be seen by the cross-section plots in Fig. 4,
although a comparison between the reconstruction given in Figs. 2 and 5 shows
that large scale features are reconstructed similarly whether the Poisson likeli-
hood with nonnegativity constraint or the least squares likelihood without con-
straints is used. Note in particular the reconstructions of the sub-objects with
narrow support. However, somewhat surprisingly, using the Poisson likelihood
also greatly improves the computational efficiency of the method. In particular,
with GradTol = 10−4 and CGmax = 50, lagged-diffusivity with α = 5 × 10−2

required 45404 FFTs to meet GradTol, projected lagged-diffusivity with (54)
and α = 5 × 10−2 required 25074 FFTs and projected lagged-diffusivity with
(42) and α = 5 × 10−5 required 3628 FFTs. A possible explanation of this is
that when projected lagged-diffusivity with (54) is used, the size of the active
set at the resulting solution is only 19. Thus the nonnegativity constraints have
little, if any, effect. Whereas for projected lagged-diffusivity with (42), the size
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Fig. 4 Comparison of cross-sections of reconstructions obtained with a variety of total
variation methods. The left-hand plot corresponds to column 32 and the right-hand plot corre-
sponds to row 32 of the respective reconstructions. The true image is the solid line; the projected
lagged-diffusivity reconstruction with Poisson likelihood is the line with circles; the projected
lagged-diffusivity reconstruction with least squares likelihood is the line with diamonds; the lagged-
diffusivity reconstruction is the line with stars

of the active set at the resulting solution is 1511, or greater than 1/3 of the
total number of pixels. This has the effect of reducing the size of the linear
system that CG has to approximately solve by the same amount. The reason
for why the active set is larger when (42) is used is unknown to us. In any
event, our results suggest that one should consider using the Poisson likelihood
together with a nonnegativity constraint when using total variation on large-
scale problems.

Fig. 5 Reconstruction of the
object obtained using the
projected lagged-diffusivity
method
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Fig. 6 Object and blurred, noisy image. On the left is the true object utrue. On the right, is the
blurred, noisy image z

Finally, in order to demonstrate that our approach works on data sets
generated using a different true object, we reconstruct the blurred, noisy image
seen on the right in Fig. 6, which was generated from the true image seen
on the left in Fig. 6. This image was developed at the US Air Force Phillips
Laboratory, Lasers and Imaging Directorate, Kirtland Air Force Base, New
Mexico. It is a computer simulation of a field experiment showing a satellite as
taken from a ground based telescope. The blurred, noisy data was generated
using the same parameter values as in the previous example, resulting in data
with an SNR of approximately 30. The reconstructed image, which we plot in
Fig. 7, was obtained by solving (41) with α = 5 × 10−5.

Fig. 7 Reconstruction of the
object obtained using the
projected lagged-diffusivity
method
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4 Conclusions

In image deblurring problems, the collected data is a realization of a random
vector whose components are, in many cases, accurately modeled by a Poisson
distribution. The least squares approach is commonly used nonetheless, due
in large part to the facts that the resulting methods are straightforward to
implement and that regularization in conjunction with least squares data fitting
has been extensively studied and stands on firm theoretical footings. It is our
belief that similar theoretical foundations should be developed for regulariza-
tion approaches in which the fit-to-data functional is not of least squares type.
In this paper, we have considered the Poisson likelihood fit-to-data functional
in conjunction with total variation regularization. The a priori knowledge of
the nonnegativity of the true image is incorporated into the corresponding
variational (constrained minimization) problem (17), (18). In our theoretical
arguments, we first proved that (17), (18) is a well-posed problem for all
α > 0. We then showed that given a sequence of perturbed problems zn = Anu
such that zn → z and An → A, a sequence of nonnegative regularization
parameters {αn} can be chosen so that the corresponding minimizers uαn,n of
(20) converge to the exact solution uexact of (1) as αn → 0.

We also verified the practical validity of total variation-penalized Poisson
likelihood estimation by implementing the approach numerically. This re-
quired that we numerically solve the nonnegatively constrained minimization
problem (41). For this, we introduced the projected lagged-diffusivity method.
Our numerical results suggest that this method is quite effective in practice,
as it compared favorably with Tikhonov regularized Poisson likelihood es-
timation, RL, and least squares total variation. Perhaps most surprisingly,
we found that using the Poisson likelihood together with nonnegativity con-
straints yields a more computationally efficient method than does the use of
the least squares likelihood, with or without nonnegativity constraints, for
total variation deblurring. This suggests that for large-scale total variation
deblurring problems, one ought to consider using the Poisson likelihood with
nonnegativity constraints in place of the least squares likelihood.
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