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Abstract Identification of the Volterra system is an ill-posed problem. We propose a
regularization method for solving this ill-posed problem via a multiscale collocation
method with multiple regularization parameters corresponding to the multiple scales.
Many highly nonlinear problems such as flight data analysis demand identifying the
system of a high order. This task requires huge computational costs due to processing
a dense matrix of a large order. To overcome this difficulty a compression strategy
is introduced to approximate the full matrix resulted in collocation of the Volterra
kernel by an appropriate sparse matrix. A numerical quadrature strategy is designed
to efficiently compute the entries of the compressed matrix. Finally, numerical results
of three simulation experiments are presented to demonstrate the accuracy and
efficiency of the proposed method.
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1 Introduction

Volterra kernels have been widely employed in identification of nonlinear systems in
understanding the nonlinearity of the systems [1, 4, 16, 18, 20, 28, 29, 35, 41, 48].
Specifically, the Volterra model of order two was used in [18] for control design
in the chemical/petrochemical industries, and in [28] for predictive control of a
simulated multivariable polymerization reactor. In a studying of nerve networks,
Volterra kernels were used to simulate the nonlinearity of the somatosensory
evoked potentials and to predicate the responses of mechanoreceptor neurons to
physiological inputs [20, 29, 35]. In clinical medicine, the Volterra model was utilized
to study lung tissue viscoelasticity and to present relationship between renal blood
pressure and blood flow (cf., [16, 48]). Volterra models were also frequently used
in artificial intelligence and signal processing. For instance, a nonlinear system in
pattern recognition was modeled by a Volterra model [1]. Since many signals of
interest are generated by nonlinear sources or are processed by nonlinear systems,
Volterra modeling was introduced in signal processing for estimating and controlling
an active noise arising from dynamical systems [41]. In applications of the Volterra
system, an important and difficult issue is identification of Volterra kernels of a given
system. Many methods such as the sampled methods, finite element methods, and
wavelet methods have been employed to obtain discrete representations of Volterra
systems, see [8, 23, 34, 37, 45].

In identifying a Volterra kernel, we face two major computational challenges.
The first challenge comes from huge computational costs in identifying the kernel.
Discretization of a Volterra system leads to a full matrix. Computation with a full
matrix is a very costly task. Many highly nonlinear problems require the use of the
Volterra system of a high order to characterize their high order nonlinearity. In
other words, we need to use high order Volterra kernels to simulate the nonlinear
component of the system. Increase in order of kernels results in huge increase in
the computational cost. To overcome this difficulty, we propose to employ the fast
multiscale collocation method developed in [11, 13, 14, 46] to compress the matrix
obtained from identifying the Volterra kernels and use the augmentation method
developed in [12] to solve the resulting linear system.

Identification of nonlinear systems requires detecting their underlying structure
by estimating certain unknown parameters. This process is ill-posed in the sense that
a small perturbation in the given data will result in a large perturbation in solutions.
That is, the solutions do not continuously depend on the given data. This presents
us the second computational challenge. Regularization is an approach to treat this
challenging issue. The classical regularization method for solving ill-posed problems
was proposed independently by Phillips [36] and Tikhonov [42]. Although it has been
proved to be an efficient method to tackle the ill-posedness, (cf., [19, 22, 36, 43]), it
has also serious limitation. The hypothesis for the single parameter regularization
is that noise effect to an ill-posed problem is uniformly distributed in all frequency
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bands of the solution. A uniform penalty is introduced to every frequency band of the
solution or only the high-frequency band of the solution. The first case may result in
solutions that are too smooth to preserve certain useful features of the original data
and in the second case, the regularization solutions may be affected by low-frequency
noise. In practical applications, we often observe different circumstances where noise
distributes differently in different frequency bands. These lead to consideration of
multiparameter regularization [9]. In particular, in regularization of the ill-possed
problem related to identification of the Volterra kernel, we need to distinguish the
noise effect to its linear component and to its nonlinear components, and as well as
to distinguish the noise effect to different frequency bands of these components.

Multiparameter regularization has been used to treat linear systems in a few
different contexts (cf., [3, 5, 9, 17, 26, 27]). A choice of multiple parameters was
proposed in [3] by using the generalized L-curve method. A multiparameter regular-
ization algorithm for the solution of over-determined, ill-conditioned linear systems
was proposed in [5], where numerical examples were presented to demonstrate that
the proposed algorithm is stable and robust. A multiparameter regularization for
solving ill-posed operator equations was proposed in [9] and convergence theorems
and error estimates were established there. In [17], the authors used a multi-
parameter regularization method for atmospheric remote sensing. Multiparameter
regularization for certain issues of sinal and image processing was studied in [26, 27].

Because the focus of this paper is on developing an efficient identification method
for the Volterra system by multiparameter regularization via multiscale collocation
methods, we will not emphasize on the choice of the parameters or convergence of
the regularization method. Those who are interested in these important issues are
referred to [3] for choices of the parameters and [9] for convergence results of the
regularization. The emphasis of this paper is on the fast solution of the well-posed
integral equations of high dimensions resulting from the regularization of the ill-
posed identification problem.

This paper is organized in eight sections. In Section 2, we formulate regularization
methods with different parameters for different orders of the Volterra kernels and
for different frequency scales. We introduce in Section 3 a multiscale collocation
method for solving the Euler equation resulting from the regularization described
in Section 2. Section 4 is devoted to a description of block matrix compression
strategy for the collocation method and Sections 5 and 6 are for the complexity and
convergence analysis of the compression algorithm, respectively. Since the entries
of the coefficient matrix resulting from the compression strategy are integrals, we
develop in Section 7 a numerical quadrature rule for computing these entries and a
strategy for controlling the error contribution from the quadrature method. Finally in
Section 8, we present three numerical experiments that demonstrate the performance
of the proposed method.

2 Regularization methods

In this section, we briefly introduce the Volterra system and formulate the Volterra
kernel identification problem as an operator equation of the first kind. Since the
related integral operator is compact, the Volterra kernel identification problem is
ill-posed. We then describe a multiparameter regularization method for solving the
ill-posed problem and derive its corresponding Euler equation.
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For a positive integer n and t ∈ R
+, we let

�n(t) := {(ξ1, ξ2, . . . , ξn) : 0 ≤ ξn ≤ ξn−1 ≤ · · · ≤ ξ1 ≤ t},
and for a given fixed T ∈ R

+, we use �n for �n(T). Let Hn := L2(�n). For a given
real-valued function u and for n∈N, we define operator Un : Hn → H1 for h ∈ Hn by

(Unh) (t) :=
∫ t

0

∫ ξ1

0
. . .

∫ ξn−1

0
h(ξ1, . . . , ξn)

n∏
i=1

u(t − ξi)dξ1 · · · dξn, t ∈ [0, T]. (1)

Note that operator Un maps a multivariate function into a univariate function. Asso-
ciated with the fixed positive integer ν, we set H := H1 × H2 × · · · × Hν . Clearly, H is
a Hilbert space with the inter product

(
h, g
) :=∑n∈Zν

∫
�n

hn(ξ)gn(ξ)dξ, for h, g ∈ H,
where Zν := {1, 2, . . . , ν}. We define operator U : H → H1 by Uh :=∑n∈Zν

Unhn, for
h := (h1, h2, . . . , hν)

T ∈ H. The operator U is completely determined by the function
u. For a given v ∈ H1, the Volterra kernel identification problem is to find h ∈ H
such that

v = Uh. (2)

We will call U the Volterra operator with the input signal u, h the Volterra kernel
vector, hn the Volterra kernel of the nth order, and v the output signal.

If u ∈ L2(0, T), then the operator Un can be written as an integral operator with a
Hilbert-Schmidt kernel, and the operator Un is compact (see Sections 7.1 and 7.5 of
[39]). Specifically, we have the following lemma.

Lemma 1 If u ∈ L2(0, T), then U is compact as an operator from H to H1.

Hence, Eq. 2 is ill-posed. It means that the solution h of (2) does not depend
continuously on v. To overcome this challenge, single parameter regularization meth-
ods were employed in the literature, such as the Tikhonov regularization method.
The single parameter regularization methods impose the same penalty parameter to
the Volterra kernels of all orders. However, it is observed that the noise effects to
Volterra kernels of different orders might be different, and as well as the noise effect
to different frequency bands of these components might be different. These motivate
us to introduce different parameters for Volterra kernels of different orders and for
different frequency bands. To this end, we present a multi-parameter regularization
method via a multiscale decomposition of space Hn.

For a fixed n ∈ N, we introduce an orthogonal decomposition of the Hilbert space
Hn and the related orthogonal projections. Let N0 := {0, 1, . . .}. We assume that
{Hn,i : i ∈ N0} is a sequence of multiscale finite dimensional spaces of Hn satisfying
Hn,i ⊂ Hn,i+1, for i ∈ N0 and

⋃
i∈N0

Hn,i = Hn. Thus, for each i ∈ N, there is a sub-
space Wn,i ⊂ Hn,i which is the orthogonal complement of Hn,i−1 in Hn,i. By letting
Wn,0 := Hn,0, we obtain that

Hn =
⊕
i∈N0

⊥Wn,i.

This decomposition was studied in [31, 32], where an orthogonal wavelet decom-
position was constructed on invariant sets. In this paper, we assume that our finite
dimensional subspaces Hn,i are spaces of piecewise polynomials of certain orders
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on domains �n with a scale corresponding to i. For specific constructions of such
decompositions, see [11, 14, 31, 33, 46]. For each i ∈ N0, we let Pn,i be the orthogonal
projection from Hn onto Hn,i. It follows that Qn,i := Pn,i − Pn,i−1 is the orthogonal
projection from Hn onto Wn,i for i ≥ 1. By letting Qn,0 := Pn,0, we have that
Pn,i =∑i

j=0 Qn, j.

Given a set of parameters � := {λn,i : λn,i > 0, n ∈ Zν, i ∈ N0}, we find h� ∈ H
such that

h� ∈ arg min
h∈H

⎧⎨
⎩‖Uh − v‖2

H1
+
∑
n∈Zν

∑
i∈N0

λn,i‖Qn,ihn‖2
Hn

⎫⎬
⎭ . (3)

We next show the Euler equation of (3) in Theorem 1. To this end, we define an
operator � : H → H for a given � by �h := [∑i∈N0

λn,i Qn,ihn : n ∈ Zν

]
. We let λ′ :=

inf{λn,i : n ∈ Zν, i ∈ N0} and λ∗ := sup{λn,i : n ∈ Zν, i ∈ N0}. Clearly, when λ′ > 0 and
λ∗ < +∞, � is bounded, positive definite and invertible. We also let U∗

n : H1 → Hn

be the conjugate operator of Un. The operator U∗
n has the form

(U∗
n f )(ξ1, . . . , ξn) =

∫ T

ξ1

n∏
i=1

u(t − ξi) f (t)dt, f ∈ H1.

Thus, the conjugate operator U∗ : H1 → H of U has the form U∗ f = (U∗
1 f,

U∗
2 f, . . . ,U∗

ν f
)T , for f ∈ H1.

Theorem 1 Suppose that a set�of parameters is given and satisfy λ′ >0. If U :H→ H1

is the bounded linear operator defined through (1), then h� ∈ H is the solution of (3)
if and only if h� is the solution of the equation

U∗Uh� + �h� = U∗v. (4)

Moreover, h� depends continuously on v.

The proof of this theorem follows from a standard argument (cf., [7]). Note
that if λn,i = λn for all i ∈ N0, (3) or (4) reduces to the multiparameter Tikhonov
regularization method, with one parameter per kernel.

To close this section, we estimate
∥∥U(U∗U + ��)−1

∥∥
H→H1

that will be used in

analysis of the multiscale collocation method to be developed in Section 4.

Lemma 2 If λ′ > 0, then

∥∥U(U∗U + ��)−1
∥∥

H→H1
≤ 1√

λ′ . (5)

Proof We first recall a basic inequality. Let X and Y be two Hilbert spaces with
norms ‖ · ‖X and ‖ · ‖Y, respectively. For a compact operator A : X → Y, by using
the singular value system of A, we find that

∥∥∥A (A∗A + I
)−1
∥∥∥

X→Y

≤ 1. (6)
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Letting A := U�
−1/2
� , we have that

U
(
U∗U + ��

)−1 = A
(
A∗A + I

)−1
�

−1/2
� . (7)

We define �
1/2
� for all h := [h1, h2, . . . , hν] ∈ H by

�
1/2
� h :=

⎡
⎣∑

i∈N0

√
λn,i Qn,ihn : n ∈ Zν

⎤
⎦ .

It follows for all h := [h1, h2, . . . , hν] ∈ H that

�
−1/2
� h :=

⎡
⎣∑

i∈N0

1√
λn,i

Qn,ihn : n ∈ Zν

⎤
⎦ .

Thus, we have that

∥∥∥�−1/2
� h

∥∥∥2

H
=
∑
n∈Zν

∥∥∥∥∥∥
∑
i∈N0

1√
λn,i

Qn,ihn

∥∥∥∥∥∥
2

Hn

. (8)

Since Qn,i, i ∈ N0 are orthogonal projections, form (8), we observe that
∥∥∥�−1/2

� h
∥∥∥2

H
=
∑
n∈Zν

∑
i∈N0

1

λn,i
‖Qn,ihn‖2

Hn
. (9)

Note that for all n ∈ Zν, i ∈ N0, λ′ ≤ λn,i. From (9), we conclude that
∥∥∥�−1/2

� h
∥∥∥2

H
≤ 1

λ′
∑
n∈Zν

∑
i∈N0

‖Qn,ihn‖2
Hn

≤ 1

λ′ ‖h‖2
H.

In other words,
∥∥∥�−1/2

�

∥∥∥
H

≤ 1√
λ′ . (10)

Substituting (6) and (10) into (7), we obtain inequality (5). �

3 The multiscale collocation method

The multiscale regularization method converts the Volterra kernel identification
problem to the second kind integral Eq. 4. A natural way to discretize this equation
would be the Galerkin method since it naturally fits into the Hilbert space setting
for regularization. However, the Galerkin method will double the dimension of the
integrals involved in Eq. 4. In particular, for Eq. 4, it will result in huge computational
costs in generating the coefficient matrix of the discrete system, since Eq. 4 involves
integrals of high dimensions. For this reason, we propose to use the multiscale
collocation method introduced in [11] to discretize the equation.

There are two difficulties in using the multiscale collocation method for solving
Eq. 4. For analysis of the collocation method, a natural norm to use is the L∞-norm,
while Eq. 4 was derived by regularization in L2 spaces. The change from the L2-norm
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to the L∞-norm requires a careful treatment. Note that the solution of Eq. 4 is the
minimum norm solution, in the L2 sense, of the original Volterra kernel identification
problem. While the collocation solution of Eq. 4 will approximate its exact solution
in the L∞ sense. By the fact that the L2 error is bounded by a constant time of
the L∞ error, the collocation solution approximates the exact solution of Eq. 4 in
the L2 sense as well. The second difficulty comes from the fact that the solution
of Eq. 4 is a vector-value function with different components being functions of
different dimensions. This presents challenges to incorporate the basis functions and
collocation functionals having different dimensions.

Let Hn,i be the space of piecewise polynomials of total degree kn − 1 on �n

with the partition �n,i := {�n,i, j : j ∈ ZNn(i)} described in [14], where Nn(i) is a
positive integer. The partition �n,i satisfies that for each j ∈ ZNn(i), there exists an
affine mapping φn,i, j from �′ := �n(1) to �n,i, j. We will use this sequence of finite
dimensional subspaces Hn,i, i ∈ N0 to develop the multiscale collocation method.
Although, the subspaces Hn,i are dense in Hn for a fixed n ∈ Zν , they are spaces of
piecewise polynomials in different scales. We use H∞

n to denote L∞(�n). For each
n ∈ Zν , we let W

∞
n :=⊕i∈N0

Wn,i, where the closure is in the L∞ sense. Hence, we
conclude that C(�n) ⊂ W

∞
n ⊂ H∞

n . The bases for the multiscale spaces Wn,i will be
used to generate the collocation solution.

To apply the collocation method to Eq. 4, we need to consider another important
issue if for all n ∈ Zν the component hn,� of the solution h� of (4) belongs to W

∞
n .

As a preparation for answering the question, we next show that ‖Pn,i‖∞ is uniformly
bounded by a constant independent of i. The case n = 1 of this result was established
in [38].

Lemma 3 For a fixed n ∈ Zν , there exists a constant c > 0 such that
∥∥Pn,i

∥∥∞ ≤ c, for
all i ∈ N0.

Proof Let S be a family of subsets of R
n for which there exists a fixed �̃ ∈ S such

that for each element � ∈ S, there is an affine mapping from �̃ to �. For each � ∈ S,
we define the orthogonal projection Q� from L2(�) onto the space of polynomials
of total degree k − 1 on �. To prove this lemma, we first show that there exists a
positive constant c such that for all � ∈ S, ‖Q�‖∞ ≤ c.

We let � be an arbitrary element in S, and φ be the affine mapping from �̃

to �. Let w j, j ∈ Zrk denote the orthogonal polynomials of total degree ≤ k − 1
on �̃, where rk := (k+n−1

n

)
. We assume that these polynomials are normalized so

that ‖w j‖∞ = 1 and set a j := ‖w j‖2. It can be verified that w j ◦ φ−1, j ∈ Zrk , are the
orthogonal polynomials of total degree ≤ k − 1 on � and ‖w j ◦ φ−1‖∞ = 1. Since φ is
an affine mapping, the Jacobian J(φ) is a constant. We use Jφ to denote the constant√|J(φ)|. In this notation, we have that ‖w j ◦ φ−1‖2 = a j Jφ .

Let α :=
(∑

j∈Zrk
a−2

j

)1/2
. For f ∈ L∞(�), we write

Q� f :=
∑
j∈Zrk

c jw j ◦ φ−1
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and obtain

‖Q� f‖∞ ≤
∑
j∈Zrk

|c j| ≤ α

Jφ

⎛
⎝∑

j∈Zrk

|c j|2α2
j J2

φ

⎞
⎠

1/2

= α

Jφ

‖Q� f‖2

≤ α

Jφ

‖ f‖2 = α‖ f ◦ φ‖2 ≤ αmeas(�̃)‖ f ◦ φ‖∞ = αmeas(�̃)‖ f‖∞.

(11)

Since for all i ∈ N0 and j ∈ ZNn(i),

Pn,i f |�n,i, j = Q�n,i, j

(
f |�n,i, j

)
.

and �n,i, j can be affinely mapped from the unit simplex �′, the result of this lemma
is a straightforward consequence of inequality (11). �

Now, we review a multiscale property of Hn,i (cf., [14]). We use d(A) to denote the
diameter of a set A, let ρn,i := max{d(�n,i, j) : j ∈ ZNn(i)} and observe that ρn,i have the
property:

(I) For each n ∈ Zν , there exist positive constants c1, c2 and an integer μn > 1 such
that for all i ∈ N0

c1μ
−i/n
n ≤ ρn,i ≤ c2μ

−i/n
n .

As usual, for a positive integer k, we use Wk,∞(�n) to denote the space of
all functions h on �n such that Dαh ∈ H∞

n , for |α| ≤ k, with the norm ‖h‖k,∞ :=
max{‖Dαh‖ : |α| ≤ k}. We define �n for h ∈ W

∞
n by

�nh =
∑
i∈N0

λn,i Qn,ih.

Thus, �−1
n has the form

�−1
n y =

∑
i∈N0

1

λn,i
Qn,i y

for y ∈ Wk,∞(�n). We next show that the inverse �−1
n is bounded as a map from

Wk,∞(�n) to W
∞
n .

Lemma 4 If � is given and λ′ > 0, then there exists a positive constant c such that for
all y ∈ W1,∞(�n), ∑

i∈N0

‖Qn,i y‖∞ ≤ c‖y‖1,∞. (12)

Therefore, �−1
n : W1,∞(�n) → W

∞
n is bounded.

Proof Let y ∈ W1,∞(�n). We first prove inequality (12). Noting that Qn,i+1 :=
Pn,i+1 − Pn,i for i ∈ N0, by the triangle inequality, we get that

‖Qn,i+1 y‖∞ ≤ ‖Pn,i+1(y − yi)‖∞ + ‖Pn,i(y − yi)‖∞, for any yi ∈ Hn,i.
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Now that for each i ∈ N0, Hn,i is a piecewise polynomial space, from Lemma 3, there
is a positive constant c such that for all i ∈ N0, ‖Pn,i‖∞ ≤ c. Thus, there exists a
positive constant c such that for i ∈ N0,

‖Qn,i+1 y‖∞ ≤ c‖y − yi‖∞. (13)

On the other hand, since y ∈ W1,∞(�n), from Property (I), we know that for each
i ∈ N0, there exists yi ∈ Hn,i such that

‖y − yi‖∞ ≤ cμ−i/n
n ‖y‖1,∞. (14)

Note that μn > 1. Substituting (14) into (13) and using the summability of the
geometric series, we obtain (12).

From the definition of �−1
n , we have that

∥∥�−1
n y
∥∥∞ ≤ 1

λ′
∑
i∈N0

‖Qn,i y‖∞. (15)

Substituting (12) into (15), we conclude that �−1
n y ∈W

∞
n and �−1

n :W1,∞(�n) → W
∞
n

is bounded. �

In the next lemma, we show that the component hn,� of the solution h� of equation
(4) belongs to W

∞
n . To this end, we remark that the operator U∗

n′Un is an integral
operator with the kernel

Kn′,n(η, ξ) :=
∫ 1

max{ηn−1,ξ1}

(
n∏

i=1

u(t − ξi)

)(
n′∏

i=1

u(t − ηi)

)
dt, (16)

for η := (η1, . . . , ηn)
T ∈ R

n and ξ := (ξ1, . . . , ξn′)T ∈ R
n′
. When the input signal

u ∈ C1[0, T], the kernel Kn′,n has continuous partial derivatives Dα
η Dβ

ξ Kn′,n(η, ξ)

for all (η, ξ) ∈ �n′ × �n and for |α| ≤ 1 and |β| ≤ 1. Specifically, there exists a
positive constant c such that for |α| ≤ 1 and |β| ≤ 1 and for all (η, ξ) ∈ �n′ × �n,∣∣Dα

η Dβ

ξ Kn′,n(η, ξ)
∣∣ ≤ c. Thus, the range of U∗

n′Un is a subspace of W1,∞(�n).

Lemma 5 If � is given, u ∈ C1[0, T] and λ′ > 0, then the component hn,� of the
solution h� of Eq. 4 belongs to W

∞
n .

Proof We let y := U∗
n v − U∗

nUh�. From Eq. 4, we have that �nhn,� = y. Since �n

is invertible on Hn, we obtain that hn,� = �−1
n y. Since u ∈ C1[0, T], we get that

y ∈ W1,∞(�n). By Lemma 4 with n = 1, we conclude that hn,� ∈ W
∞
n . �

In practice, we use only finite number of regularization parameters. In the rest of
this section, we consider the case where finite regularization parameters are used. We
set for n ∈ N, Z

0
n := {0, 1, 2, . . . , n − 1}, and � := {λn,i : λn,i > 0, n ∈ Zν, i ∈ Z

0
ςn+1

}
,

where ςn is a positive integer. In this situation, � takes the form

��h :=
⎡
⎣∑

i∈Z0
ςn

λn,i Qn,ihn + λn,ςn

(
I − Pn,ςn−1

)
hn : n ∈ Zν

⎤
⎦ ,

for all h := [h1, h2, . . . , hν] ∈ H.
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To close this section, we describe the discrete equation of the collocation method
for solving (4). The collocation method requires the availability of multiscale colloca-
tion functionals. We let Ln be the dual space of C(�n). For � ∈ Ln and h ∈ C(�n), we
use 〈�, h〉 to denote the value of the continuous linear functional � at h and use ‖�‖ to
denote the norm of �. By using the Hahn-Banach Theorem (see [44], Theorem 3.1),
we can obtain a norm preserving extension of � to H∞

n . We use the same notation
for the extensions. A specific extension of the point evaluation functional from the
continuous function space to the piecewise continuous function space is found in
[2]. Let F be a finite dimensional subspace of Ln and W be a finite dimensional
subspace of H∞

n . We call F a W-unisolvent if for w, v ∈ W, 〈�,w〉 = 〈�, v〉, for all
� ∈ F implies that w = v. Following [11] (see also [10, 30]), we construct for each n a
sequence of finite dimensional spaces Fn,i ⊂ Ln such that Fn,i is Wn,i-unisolvent and
Ln,i := Fn,0 ⊕ Fn,1 ⊕ · · · ⊕ Fn,i is Hn,i-unisolvent.

To describe the collocation method in the abstract sense, we define the interpola-
tory projection Pn,i from H∞

n onto Hn,i, n ∈ Zν , for h ∈ H∞
n by

〈
�,Pn,ih

〉 = 〈�, h〉, for
all � ∈ Ln,i. We set

H∞ := H∞
1 × H∞

2 × · · · × H∞
ν .

For a ν dimensional vector L := (l1, l2, . . . , lν)T , ln ∈ N0, n ∈ Zν , we define a subspace
HL of H∞ by

HL := H1,l1 × H2,l2 × · · · × Hν,lν .

The projection PL from H∞ onto HL is defined by PLh := [Pi,li hi : i ∈ Zν]T , for
h ∈ H∞. With this projection, we let �L be the projection PL applied to U∗U with
restriction on HL, that is �L := PLU∗U |HL , and we also let �L := �|HL . For a given
vector L and a parameter set �, the collocation method is to find an hL,� ∈ HL such
that

(�L + �L)hL,� = PLU∗v. (17)

The multiscale collocation method is the collocation method (17) using the multiscale
bases for Wn,i and Fn,i. We call the multiscale basis for Fn,i the multiscale collo-
cation functionals. The multiscale basis functions and the corresponding multiscale
collocation functionals on an n dimensional simplex were constructed in [14]. We
will not describe their construction here. Instead, we only define necessary notations
sufficient for us to formulate the discrete form of the multiscale collocation method.

We let wn(i) := dim(Wn,i). Then there exists a positive integer mn such that
wn(i + 1) = mnwn(i). In fact, in the construction presented in [14] the integer mn is
the number of affine contractive mappings which define the simplex �n. Suppose that
Wn,i := span

{
wn,i, j : j ∈ Z

0
wn(i)

}
, i ∈ N0. We let �n,i, j ⊂ �n be the support of wn,i, j.

We remark that the set
{
�n,i, j : j ∈ Z

0
wn(i)

}
is not a partition of �n when kn > 1.

However, a fixed number of its elements correspond to the same element in the
partition �n,i. Hence, their diameters satisfy Property (I). Moreover, for all j, j ′ ∈
Z

0
wn(i), meas(�n,i, j ∩ �n,i, j ′) = 0 or �n,i, j = �n,i, j ′ . Let Ln,i := span

{
�n,i, j : j ∈ Z

0
wn(i)

}
,

i ∈ N0. We use δn,s to denote the linear functional in Ln defined for v ∈ C(�n)

by
〈
δn,s, v

〉 = v(s). The linear functional �n,i, j is a finite sum of point evaluations,
that is, �n,i, j :=∑s∈�̂n,i, j

csδs, where cs are constants and �̂n,i, j is a finite subset of
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distinct points in �n,i, j with the cardinality bounded independent of n ∈ Zν and
(i, j ) ∈ Un := {(i, j ) : i ∈ N0, j ∈ Z

0
wn(i)

}
. It is notable that the supports of the basis

functions wn,i, j, (i, j ) ∈ Un, are shrinking as the level increases and so are the supports
of the collocation functionals �n,i, j.

Set Un,ln := {(i, j ) : i ∈ Z
0
ln+1, j ∈ Z

0
wn(i)

}
. Let �n′,n := U∗

n′Un. We define the matrix
block

(
Un′,n

)
by

(
Un′,n

) := [〈�n′,i′, j ′ , �n′nwn,i, j
〉 : (i′, j ′ ) ∈ Un′,l′n , (i, j ) ∈ Un,ln

]
.

Then the matrix representation of �L is given by

UL := [Un′,n : n′, n ∈ Zν

]
. (18)

We set En,L,� := [λn,i
〈
�n,i′, j ′ , wn,i, j

〉 : (i′, j′ ), (i, j ) ∈ Un,ln

]
and obtain the matrix form

EL,� of �L, EL,� := diag
[
En,L,� : n ∈ Zν

]
. Let vL := [ 〈�n,i, j,U∗v

〉 : (i, j ) ∈ Un,ln ,

n ∈ Zν

]
. We then obtain the discrete form of (17) given by

(UL + EL,�)hL,� = vL. (19)

For notational convenience, we will drop the subscript � from Eq. 19 because in
the next two sections we will focus on developing fast solutions for this equation
after a set of parameters are chosen. Specifically, we let EL := EL,�. Hence, Eq. 19 is
written as

(UL + EL)hL = vL. (20)

This is a Volterra integral equation of the second kind. For traditional collocation
methods for solving a Volterra integral equation of the second kind, the readers are
referred to [6].

4 Compression strategy

We propose in this section a matrix compression strategy which approximates the
coefficient matrix of linear system (20) by a sparse matrix. The compression strategy
is based on multiscale properties of the basis and collocation functionals used in the
collocation method.

We begin with a review of the multiscale properties of the basis functions and
collocation functionals.

(II) For each n ∈ Zν , there exist positive constants c1, c2 such that for all i ∈ N0

c1μ
i
n ≤ dim Wn,i ≤ c2μ

i
n,

where μn is the constant defined in Property (I).
(III) For any n ∈ N,

〈
�n,i′, j ′ , wn,i, j

〉 = δi′iδ j ′ j, i ≤ i′, j ′ ∈ Z
0
wn(i′), j ∈ Z

0
wn(i), and

there exists a positive constant γn such that for all (i′, j ′ ), (i, j) ∈ Un, i > i′,∑
j∈Z

0
wn(i)

∣∣〈�n,i′, j ′ , wn,i, j
〉∣∣ ≤ γn.
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(IV) For any polynomial p of total degree kn − 1 on �n,
〈
�n,i, j, p

〉 = 0 and(
wn,i, j, p

)
n = 0, for (i, j ) ∈ Un, where (·, ·)n denotes the inner product in

L2(�n), n ∈ Zν .
Property (IV) is called the vanishing moment property of the collocation
functionals and the basis functions. It is crucial for establishing the matrix
compression scheme.

(V) There exists a positive constant c3 such that for all n ∈ Zν, (i, j ) ∈ Un, ‖�n,i, j‖ +
‖wn,i, j‖∞ ≤ c3.

Property (V) means that �n,i, j and wn,i, j are uniformly bounded.
As a preparation for compression of the matrix Un′,n, we estimate the norm of the

matrix block

(Un′,n)i′,i := [〈�n′,i′, j ′ , �n′,nwn,i, j
〉 : j ′ ∈ Z

0
wn(i′), j ∈ Z

0
wn(i)

]
of matrix Un′,n. Let k′ := max{kn : n ∈ Zν}.

Lemma 6 If u ∈ Ck′ [0, T], then there exists a positive constant c such that for all
i′ ∈ Z

0
ln′ +1, i ∈ Z

0
ln+1,

∥∥∥(Un′,n
)

i′,i

∥∥∥∞
≤ cμ

−kni/n−(logμn μn′ )kn′ i′/n′
n . (21)

Proof Note that the support of wn,i, j is �n,i, j. As proceeded in [11] by using the Taylor
expansion and by Property (IV), and the fact that the kernels are smooth, we have
that ∣∣∣(Un′,n

)
i′, j ′;i, j

∣∣∣ ≤ c‖�n′,i′, j ′ ‖‖wn,i, j‖∞ρ
kn′
n′,i′ρ

kn+n
n,i . (22)

By the definition of the infinity norm of a matrix, we obtain that∥∥∥(Un′,n
)

i′,i

∥∥∥∞
= max

j ′∈Z
0
wn′ (i′)

∑
j∈Z

0
wn(i)

∣∣∣(Un′,n
)

i′, j ′;i, j

∣∣∣ . (23)

By Property (V) and substituting (22) into (23), we conclude that there exits a
positive constant c such that∥∥∥(Un′,n

)
i′,i

∥∥∥∞
≤ cρkn′

n′,i′ρ
kn+n
n,i wn(i). (24)

From Properties (I), (II) and inequality (24), we obtain that∥∥∥(Un′,n
)

i′,i

∥∥∥∞
≤ cμ−kn′ i′/n′

n′ μ−kni/n
n = cμ

−kni/n−(logμn μn′ )kn′ i′/n′
n ,

proving the lemma. �

Lemma 6 leads to a block compression strategy for the matrix Un′,n. Specifically,
we wish to form a new matrix Vn′,n by assigning most of blocks in Un′,n to be zero
without ruining the convergence order of the corresponding approximate solution.
Hence, we require the matrix Vn′,n to have the estimate that there exists a positive
constant c such that ∑

i∈Z
0
ln+1

∥∥(Un′,n)i′,i − (Vn′,n)i′,i
∥∥μkn(ln−i)/n ≤ c.
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This yields the following block truncation strategy. For n, n′ ∈ Zν , we let κn′,n :=
knn′

kn′ n(logμn μn′)
and for a given L, we set

(
Vn′,n

)
i′i :=

{ (
Un′,n

)
i′i , 2i + i′/κn′,n ≤ ln,

0, otherwise.
(25)

Thus, for a given L, we have the compression matrix

VL := [Vn′,n : n′, n ∈ Zν

]
, (26)

which is an approximation of UL. In Eq. 20 we replace UL by VL and have the
compression method

(VL + EL) hL = vL. (27)

The coefficient matrix of this equation is now sparse, which leads to a fast solution.

5 Computational complexity

In this section, we consider the computational complexity of the compression method
by showing that the number of nonzero entries of the compression matrix VL is
bounded by a constant multiple of the size of the matrix. For a matrix A, we use
N (A) to denote the number of the nonzero entries of A. By NL we denote the
size of matrix VL and we will prove that N (VL) = O (NL) . To this end, we recall
the definition of κn′,n and assume that there is a positive constant ρ such that the
components ln, n ∈ Zν , of the vector L satisfy

|κn′,nln − ln′ | ≤ ρ. (28)

We remark that condition (28) limits the choice of {ln : n ∈ Zν}. This condition
balances the levels of approximation for different kernels.

Theorem 2 If VL is chosen by compression strategy (25) for L satisfying (28), then
there exists a positive constant c such that

N (VL) ≤ cNL. (29)

Proof By the definition of VL, it suffices to estimate N (Vn′,n). For fixed n, n′ ∈ Zν ,
we let γi := ⌈κn′,n(ln − 2i)

⌉+ 1, i ∈ Zν . From the compression strategy, if i′ ≥ γi or

i ≥
⌈

ln
2

⌉
+ 1, then block (Vn′,n)i′,i is equal to zero. Hence, we get that

N
(
Vn′,n

) ≤
∑

i∈Z
0� ln

2 �+1

∑
i′∈Z0

γi

N
(
(Vn′,n)i′,i

)
. (30)
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Noting that, from Property (II), there is a positive constant c such that for all n′, n∈Zν

and i′ ∈ Z
0
ln′ +1, i ∈ Z

0
ln+1, the number of entries of (Vn′,n)i′,i is less than or equal to

cμi′
n′μi

n. Substituting it into (30) and using the summability of the geometric series,
we get that

N
(
Vn′,n

) ≤ c
∑

i∈Z
0� ln

2 �+1

μi
nμ

�κn′ ,n(ln−2i)�+1
n′ ≤ cμ

κn′ ,nln

n′
∑

i∈Z
0� ln

2 �+1

(
μn

μ
2κn′ ,n
n′

)i

. (31)

We next consider three different cases.

Case 1: μn = μ
2κn′ ,n
n′ . In this case,

N
(
Vn′,n

) ≤ c
(⌈

ln

2

⌉
+ 1

)
μ

κn′ ,nln

n′ ≤ c
(⌈

ln

2

⌉
+ 1

)
μln/2

n .

Case 2: μn >μ
2κn′ ,n
n′ . Substituting this condition into (31), we see thatN

(
Vn′,n

)≤cμln
n .

Case 3: μn < μ
2κn′ ,n
n′ . In this case, it follows from (31) that N

(
Vn′,n

) ≤ cμ
κn′ ,nln

n′ . Form

(28), we know that κn′,nln ≤ l′n + c. Hence, we obtain that N
(
Vn′,n

) ≤ cμln′
n′ .

Summing all N
(
Vn′,n

)
, for n, n′ ∈ Zν , we conclude that

N (VL) ≤ c
∑
n∈Zν

μln
n ≤ cNL,

where the second inequality follows from Property (II), and obtain the desired
estimate (29). �

Theorem 2 reveals that the compression method (27) reduces the number of
nonzero entries of the coefficient matrix from O

(
N2

L

)
to O(NL). This significant

reduction in the computational cost serves as a base for a fast algorithm for solving
the Volterra identification problem and it makes it possible to use the Volterra
system of high order (with order greater than two). In the next section, we will show
that this compression strategy will not ruin the order of convergence of the original
collocation method.

6 Convergence analysis

In this section, we analyze the convergence order of the compression algorithm. We
will show that the compression method converges in a nearly optimal order.

To establish the convergence result, we first discuss a somewhat more gen-
eral problem described below. Let Kn′,n be an approximation of Un′,n and KL :=[
Kn′,n : n′, n ∈ Zν

]
. We assume that the matrices Kn′,n, n′, n ∈ Zν satisfy the condition

that there exists a positive constant c such that for all h ∈ Wkn,∞,

∥∥∥(Un′,n − Kn′,n
)

h̄
∥∥∥∞

≤ cμ−knln/n
n ‖h‖kn,∞ (32)
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and for all h ∈ H∞
n ,

∥∥∥(Un′,n − Kn′,n
)

h̄
∥∥∥∞

≤ cμ
− 1

2 knln/n
n ‖h‖∞ , (33)

where h̄ := [hi, j : (i, j ) ∈ Un,ln

]
with

Pn,ln h =
∑

(i, j )∈Un,ln

hi, jwn,i, j. (34)

In Eq. 20, we replace UL by KL and obtain an approximate equation of (20)

(KL + EL) hL = vL. (35)

We write the solution hL of (35) as hL =
[(

hL

)
n,i, j

: n ∈ Zν, (i, j) ∈ Un,ln

]
, and let

hn,ln :=
ln∑

i=0

wn(i)−1∑
j=0

[
hL

]
n,i, j

wn,i, j, n ∈ Zν and hL := [hn,ln , n ∈ Zν

]T
.

We also write the solution of Eq. 4 as h� = [hn : n ∈ Zν]T . Our convergence result
concerns the bound for ‖hn − hn,ln‖∞.

To estimate the bound, we let Bn′,n : Hn,ln → Hn′,ln′ be the operator whose discrete
form is Kn′,n in the same basis and collocation functionals, and define the operator
BL : HL → HL by BL := [Bn′,n : n′, n ∈ Zν

]
. From the definitions of BL, hL and vL,

we observe that Eq. 35 has the operator equation formulation

(
BL + �L

)
hL = PLU∗v. (36)

We next present two technical lemmas. For n, n′ ∈ Zν we let Bn′,n := Pn′,ln′ �n′n|Hn,ln
.

It can be verified that matrix Un′,n is the discrete form of Bn′,n in the basis and colloca-
tion functionals used in the multiscale collocation method. We define two operators

Bn :=
[
Bn,m : m ∈ Zν

]
and �n := PlnU∗

nU |HL which map from HL → Hn,ln . In the

next lemma, we estimate the error �n − Bn. To this end, for k := [kn : n ∈ Zν] we
define the space

Wk,∞ := Wk1,∞(�1) × Wk2,∞(�2) × · · · × Wkν ,∞(�ν).

To prepare for the development of this result, we present another property of the
basis functions and the collocation functionals:

(VI) There exist positive constants c1 and c2 such that for all n ∈ Zν , ln ∈ N0 and
for all h ∈ Hn,ln with h :=∑(i, j )∈Un,ln

hi, jwn,i, j there holds

c1‖h̄‖∞ ≤ ‖h‖∞ ≤ c2(ln + 1)‖En,ln h̄‖∞,

where h̄ := [hi, j, (i, j ) ∈ Un,ln

]
, and En,ln :=

[ 〈
�n,i′,j ′ , wn,i, j

〉 : (i′, j ′), (i, j )∈Un,ln

]
.
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Lemma 7 Let u ∈ Ck′ [0, T]. If (32) and (33) hold, then there exists a positive constant
c such that for all h ∈ Wk,∞,

∥∥∥(�n − Bn)PLh
∥∥∥∞

≤ c(ln + 1)
∑

m∈Zν

μ−kmlm/m
m ‖hm‖km,∞ (37)

and for all h ∈ H∞,

∥∥∥
(
�n − Bn

)
PLh

∥∥∥∞
≤ c(ln + 1)

∑
m∈Zν

μ
− 1

2 kmlm/m
m ‖hm‖∞ . (38)

Proof The proof of this lemma demands the following two estimates: There exists a
positive constant c such that for all h ∈ Wkn,∞(�n)

∥∥∥
(
Bn′,n − Bn′,n

)
Pn,ln h

∥∥∥∞
≤ c(ln′ + 1)μ−knln/n

n ‖h‖kn,∞ , (39)

and for all h ∈ H∞,
∥∥∥
(
Bn′,n − Bn′,n

)
Pn,ln h

∥∥∥∞
≤ c(ln′ + 1)μ

− 1
2 knln/n

n ‖h‖∞ . (40)

We now present a proof for (39) and (40). For h ∈ Wkn,∞, we write

(
Bn′,n − Bn′,n

)
Pn,ln h =

∑
(i, j )∈Un′ ,ln′

ei, jwn′,i, j, (41)

where ei, j ∈ R. Let h̄ := [hi, j : (i, j ) ∈ Un,ln

]
and e := [ei, j : (i, j ) ∈ Un′,ln′

]
. Using

Property (VI) in (41), we see that there exists a positive constant c such that
∥∥∥
(
Bn′,n − Bn′,n

)
Pn,ln h

∥∥∥∞
≤ c(ln′ + 1)

∥∥En′,ln′ e
∥∥∞ .

Applying functionals �n,i, j, (i, j ) ∈ Un′,ln′ , to both sides of (41), we obtain the equation

(
Un′,n − Kn′,n

)
h̄ = En′,ln′ e.

Hence, we get that
∥∥∥
(
Bn′,n − Bn′,n

)
Pn,ln h

∥∥∥∞
≤ c(ln′ + 1)

∥∥∥(Un′,n − Kn′,n
)

h̄
∥∥∥∞

. (42)

Substituting (32) into (42), we get estimate (39). By substituting (33) into (42) proves
the desired estimate (40).

Estimates (37) and (38) are obtained by using (39) and (40), respectively, in
conjunction with the inequality

∥∥∥
(
�n − Bn

)
PLh

∥∥∥∞
≤
∑

m∈Zν

∥∥∥
(
Bn,m − Bn,m

)
Pm,lm hm

∥∥∥∞
,

completing the proof. �
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Next, we estimate the error
∥∥Bn − U∗

nU
∥∥∞.

Lemma 8 Let u ∈ Ck′ [0, T]. If (32) and (33) hold, then there exists a positive constant
c such that for all h ∈ H∞,

∥∥∥
(
Bn − U∗

nU
)
PLh

∥∥∥∞
≤ c

⎡
⎣(ln + 1)

∑
m∈Zν

μ
− 1

2 kmlm/m
m ‖hm‖km,∞ + μn

−knln/n‖h‖∞

⎤
⎦ .

(43)

Proof Since for all h ∈ HL, we have that U∗
nUh ∈ Wkn,∞(�n), there exists a positive

constant c such that
∥∥(�n − U∗

nU)h
∥∥∞ ≤ ‖(I − Pn,ln)U∗

nUh‖∞ ≤ cμn
−knln/n‖h‖∞. (44)

Therefore, estimate (43) follows directly from the second estimate of Lemma 7,
inequality (44) and the triangle inequality. �

To give a bound for ‖hn − hn,ln‖∞, we estimate ‖(U∗U + ��)−1‖∞. According to
the definition of U∗, we know that for all f ∈ L2([0, T]),

‖U∗ f‖∞ ≤ W‖ f‖2, (45)

where

W := max
n∈Zν

sup
(ξ1,ξ2,...,ξn)∈�n

(∫ T

ξ1

∣∣∣∣∣
n∏

i=1

u(t − ξi)

∣∣∣∣∣dt

) 1
2

.

Lemma 9 For a given �, there exists a positive constant c such that
∥∥∥(�� + U∗U

)−1
∥∥∥∞

≤ c. (46)

Proof For w ∈ H∞ we set

v := (�� + U∗U
)−1

w and z := U
(
�� + U∗U

)−1
w.

It follows that v = �−1
� (w − U∗z). From Lemma 3, we know that for each n ∈ Zν ,

‖Qn,i‖∞, i ∈ N0 are uniform bounded. Recalling that for all h := [h1, h2, . . . , hν] ∈ H,

�−1
� h :=

[
ςn−1∑
i=0

λ−1
n,i Qn,ihn + λ−1

n,ςn

(
I − Pn,ςn−1

)
hn : n ∈ Zν

]
,

we have that there exists a positive constant c1 > 0 such that
∥∥�−1

�

∥∥∞ ≤ c1
1
λ′ . From

(5) and (45), there exists a positive constant c2 > 0 such that

‖U∗z‖∞ ≤ c2
W√
λ′ ‖w‖∞.
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Hence, we know that there exist a positive constant c such that

∥∥∥(�� + U∗U
)−1

w

∥∥∥∞
= ‖v‖∞ = ‖�−1

�

(
w − U∗z

) ‖∞

≤ c
1

λ′
(‖w‖∞ + ‖U∗z‖∞

)

≤ c
1

λ′

(
1 + W√

λ′

)
‖w‖∞.

This leads to estimate (46). �

Now, we estimate the bound for ‖hn − hn,ln‖∞.

Theorem 3 For a given �, let h� ∈ Wk,∞ be the solution of Eq. 4 and u ∈ Ck′ [0, T].
If (32) and (33) hold, then there exist a positive constant c and a positive integer � ∈ N

such that for all L ∈ N
ν satisfying l′ := inf{ln : n ∈ Zν} > � and for all n ∈ Zν ,

‖hn − hn,ln‖∞ ≤ c

⎛
⎝μ−knln/n

n ‖hn‖kn,∞ + (ln + 1)
∑

m∈Zν

μ−kmlm/m
m ‖hm‖km,∞

⎞
⎠ . (47)

Proof By Lemmas 8 and 9, there exist a positive constant c and an � ∈ N such that for
all L ∈ N

ν satisfying l′ > � and for all h ∈ HL, c‖(�L + BL)h‖∞ ≥ ‖h‖∞. It follows
from the fact PLh� − hL ∈ HL that

‖h� − hL‖∞ ≤ ‖h� − PLh�‖∞ + c‖
(
�L + BL

)
(PLh� − hL) ‖∞. (48)

From Eqs. 4 and 36, we know that PL (� + U∗U) h� =
(
�L + BL

)
hL, which leads

to the formula
(
�L + BL

)
(PLh� − hL) = PL(� + U∗U)(PLh� − h�) +

(
BL − �L

)
PLh�. (49)

Substituting (49) into (48), we get that

‖h� − hL‖∞ ≤ (1 + c‖� + U∗U‖∞)‖h� − PLh�‖∞ + c‖
(
BL − �L

)
PLh�‖∞.

In particular, for n ∈ Zν we have that

‖hn − hn,ln‖∞ ≤ (1 + c‖� + U∗U‖∞)‖hn − Pn,ln hn‖∞ + c‖
(
Bn − �n

)
PLh�‖∞.

Finally, since h� ∈ Wk,∞, there exists a positive constant c such that for n ∈ Zν ,

‖hn − PLhn‖∞ ≤ cμn
−knln/n‖hn‖kn,∞. (50)

From the first estimate of Lemma 7 and (50), we obtain (47). �
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In the rest of this section, we consider the convergence property of the compres-
sion method (27). For this purpose, we prove that estimates (32) and (33) hold when
Kn′,n := Vn′,n. For fixed n, n′, we set Si′ := {i : κn′,n(ln − 2i) − i′ < 0}.

Lemma 10 If u ∈ Ck′ [0, T], then there exists a positive constant c such that for
h ∈ Wkn,∞,

∥∥∥(Un′,n − Vn′,n
)

h̄
∥∥∥∞

≤ cμ−knln/n
n ‖h‖kn,∞ (51)

and for h ∈ H∞
n ,

∥∥∥(Un′,n − Vn′,n
)

h̄
∥∥∥∞

≤ cμ
− 1

2 knln/n
n ‖h‖∞ , (52)

where h̄ := [hi, j : (i, j ) ∈ Un,ln ] satisfy (34).

Proof We first prove Eq. 51. Since h ∈ Wkn,∞, by Proposition 4.1 of [14], there exists
a positive constant c such that

max
{|hi, j| : j ∈ Z

0
wn(i)

} ≤ cμ−kni/n
n ‖h‖kn,∞, for all i ∈ Z

0
ln+1.

It follows that
∥∥∥(Un′,n − Vn′,n

)
h̄
∥∥∥∞

≤ c max
i′∈Z

0
ln′ +1

∑
i∈Z

0
ln+1

∥∥∥(Un′,n
)

i′,i − (Vn′,n
)

i′,i

∥∥∥∞
μ−kni/n

n ‖h‖kn,∞ .

(53)

Using the compression strategy and substituting (21) into (53), we obtain that

∥∥∥(Un′,n − Vn′,n
)

h̄
∥∥∥∞

≤ cμ−knln/n
n ‖h‖kn,∞ max

i′∈Z
0
ln′ +1

∑
i∈Si′

μ
kn/n

(
ln−2i− i′

κn′ ,n

)

n . (54)

To bound the right-hand side of the above inequality, we set ii′,0 := min{i : i ∈ Si′ }.
Using the summability of geometric series, we have the estimate

∥∥∥(Un′,n − Vn′,n
)

h̄
∥∥∥∞

≤ c
μ

−knln/n
n ‖h‖kn,∞(
1 − μ

−2kn/n
n

) max
i′∈Z

0
ln′ +1

μ
kn/n

(
ln−2ii′ ,0− i′

κn′ ,n

)

n . (55)

Since ii′,0 ∈ Si′ , by the definition of the set Si′ , we obtain that for all i′,

μ
kn/n

(
ln−2ii′ ,0− i′

κn′ ,n

)

n < 1. From (55), we obtain estimate (51).

To prove estimate (52), we set B := μ
1
2 knln/n
n

(
Un′,n − Vn′,n

)
. By Property (VI),

there exists a positive constant c such that

∥∥∥(Un′,n − Vn′,n
)

h̄
∥∥∥∞

≤ cμ
− 1

2 knln/n
n ‖B‖∞‖h‖∞. (56)
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Since u ∈ Ck′ [0, T], by Lemma 6, there exists a positive constant c such that

‖B‖∞ ≤ c max
i′∈Z

0
ln′

∑
i∈Si′

μ
kn/n

(
1
2 ln−i− i′

κn′ ,n

)

n ≤ c. (57)

By substituting (57) into (56), we obtain estimate (52). �

We are now ready to present the main result of this section.

Theorem 4 For a given �, let h� ∈ Wk,∞ be the solution of Eq. 4. If u ∈ Ck′ [0, T], then
there exist a positive constants c and a positive integer � ∈ N such that for all L ∈ N

ν

satisfying l′ > � and for all n ∈ Zν ,

‖hn − hn,ln‖∞ ≤ c

⎛
⎝μ−knln/n

n ‖hn‖kn,∞ + (ln + 1)
∑

m∈Zν

μ−kmlm/m
m ‖hm‖km,∞

⎞
⎠ . (58)

Proof Estimate (58) follows directly from Theorem 3 and Lemma 10. �

7 A numerical quadrature strategy

The numerical solution of the compression method (27) requires generating the
coefficient matrix VL. Hence, we have to compute the entries in the blocks (Vn′,n)i′,i
for i′ ∈ Z

0
ln′ +1, i ∈ Z

0
ln+1with 2i + i′/κn′,n ≤ ln, for n′, n ∈ Zν . These entries have the

integral form

In′,i′, j ′,n,i, j :=
∫

�n

〈
�n′,i′, j ′ , Kn′,n(·, ξ)

〉
wn,i, j(ξ)dξ, for i′, j ′ ∈ Un′,ln′ , i ∈ Si′ , j ∈ Z

0
wn(i),

(59)

where Kn′,n(η, ξ) is defined by (16). In this section, we propose a numerical
quadrature strategy for computing (59). Ideally, such a quadrature strategy should
preserve the convergence order for the compression method and use only O(NL)

number of functional evaluations in computing all nonzero entries of the matrix
VL. The quadrature strategy proposed in this section is influenced by the work in
[21, 25, 40, 47].

To describe the quadrature formula for In′,i′, j ′,n,i, j, we set fi′, j ′(ξ) :=〈
�n′,i′, j ′ , Kn′,n(·, ξ)

〉
, for ξ ∈ �n, and gi′, j ′,i, j(ξ) := fi′, j ′(ξ)wn,i, j(ξ), for ξ ∈ �n. Thus, we

have that

In′,i′, j ′,n,i, j =
∫

�n

gi′, j ′,i, j(ξ)dξ.

Fix n′ and n. For i′ ∈ Z
0
ln′ +1, we choose a partition Di′ := {Di′,ι : Di′,ι ⊂ �n, ι ∈ Z

0
τi′
}

of �n satisfying that �n =⋃ι∈Z0
τi′

Di′,ι and for ι1, ι2 ∈ Z
0
τi′ , int(Di′,ι1) ∩ int(Di′,ι2) = ∅,

ι1 �= ι2, where τi′ is a positive integer and int(A) denotes the interior of A. Appro-
priate choices of the partition Di′ will be given later to ensure that the quadrature
strategy has the desired convergence and computational complexity properties.
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Let qn be a positive integer. We choose a set of points Xi′,ι := {ξ l
i′,ι : l ∈ Z

0
qn

}⊂Di′,ι

and evaluate F j ′,ι,l := fi′, j ′
(
ξ l

i′,ι
)

for all j ′ ∈ Z
0
wn′ (i′), l ∈ Z

0
qn

and ι ∈ Z
0
τi′ . We also choose

the weights Ai′,ι := {al
i′,ι : l ∈ Z

0
qn

}
and introduce two index sets Vi′ := {(i, j ) : i ∈

Si′ , j ∈ Z
0
wn(i)

}
and Si′,i, j := {ι ∈ Z

0
τi′ : Di′,ι ⊂ �n,i, j

}
for (i′, j ′) ∈ Un′,ln′ , (i, j ) ∈ Vi′ . For

j ′ ∈ Z
0
wn′ (i′) and (i, j ) ∈ Vi′ , we compute the quadrature

Ĩn′,i′, j ′,n,i, j :=
∑

ι∈Si′ ,i, j

∑
l∈Z0

qn

al
i′,ι F j ′,ι,lwn,i, j

(
ξ l

i′,ι
)
. (60)

Note that the values F j ′,ι,l are used repeatedly when computing Ĩn′,i′, j ′,n,i, j for
(i, j ) ∈ Vi′ . Repeating using these values reduces significantly the number of func-
tional evaluations.

We let
(
Mn′,n

)
i′,i denote the block

(
Vn′,n

)
i′,i with In′,i′, j ′,n,i, j being replaced by

Ĩn′,i′, j ′,n,i, j for j ′ ∈Z
0
wn′ (i′), j∈Z

0
wn(i). Setting

(
Mn′,n

) :=[(Mn′,n
)

i′,i : i′ ∈ Z
0
l′n+1, i∈Z

0
ln+1

]
and ML := [Mn′,n : n′, n ∈ Zν

]
, we have the completely discrete equation

(EL + ML)hL = vL, (61)

which is an approximate equation for (27).
Next, we turn our attention to the choices of partitions Di′ . We require that they

satisfy the conditions:

(C-1) For i′ ∈ Z
0
ln′ +1, (i, j ) ∈ Vi′ and ι ∈ Z

0
τi′ , �n,i, j ∩ int(Di′,ι) = ∅ or �n,i, j ∩

int(Di′,ι) = int(Di′,ι).

(C-2) For i′ ∈ Z
0
ln′ +1, i ∈ Si′ , j ∈ Z

0
wn(i) and ι ∈ Z

0
τi′ , wn,i, j|int(Di′ ,ι) ∈ Cp(int(Di′,ι)).

Condition (C-1) ensures that for each ι ∈ Z
0
τi′ , Di′,ι is contained in the support of the

basis function wn,i, j. Condition (C-2) implies that on Di′,ι, wn,i, j is a smooth function.

We choose p :=
⌈

3kn′ n
2n′

⌉
and require that the quadrature formula chosen in (60)

satisfies the condition that for all h ∈ W p,∞,

∫
Di′ ,ι

h(ξ)dξ =
∑

l∈Z0
qn

al
i′,ιh

(
ξ l

i′,ι
)+ E(Di′,ι, Ai′,ι, Xi′,ι) (62)

with

|E(Di′,ι, Ai′,ι, Xi′,ι)| ≤ c max
|α|=p

{|(Dαh)(ξi′,ι,α)|} |d(Di′,ι)|pmeas(Di′,ι) (63)

for ξi′,ι,α ∈ Di′,ι. We also let dDi′ := max
{
d(Di′,ι) : ι ∈ Z

0
τi′
}

and ei′, j ′,i, j := |In′,i′, j ′,n,i, j −
Ĩn′,i′, j ′,n,i, j|, for all (i′, j ′) ∈ Un′,ln′ , (i, j ) ∈ Vi′ .
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Lemma 11 If u ∈ Ck∗ [0, T] with k∗ = p + k′ + 1, then there exists a positive constant
c such that for (i′, j ′) ∈ Un′,ln′ , (i, j ) ∈ Vi′ ,

ei′, j ′,i, j ≤ cdp
Di′ μ

−i′kn′ /n′
n′ μikn/n

n meas(�n,i, j ), (64)

and

‖Vn′,n − Mn′,n‖∞ ≤ c max
(i′, j ′)∈Un′ ,l′n

{
dp

Di′ μ
−3i′kn′ /(2n′)
n′ μlnkn/(2n)

n

}
. (65)

Proof Since u ∈ Ck∗ [0, T], we know that fi′, j ′ ∈ Wk∗,∞(�n). Hence, from condition
(C-2), we have that gi′, j ′,i, j ∈ Wk∗,∞(Di′,ι). Note that k∗ > p. By the definition of
ei′, j ′,i, j and (63), we observe that

ei′, j ′,i, j ≤ c
∑

ι∈Si′ ,i, j

max
|α|=p

{|(Dαgi′, j ′,i, j
)(

ξi′,ι,α
)|} |d(Di′,ι

)|pmeas
(
Di′,ι

)

with ξi′,ι,α ∈ Di′,ι. From conditions (C-2), we get that

ei′, j ′,i, j ≤ cdp
Di′ meas(�n,i, j) max

|α|=p

{|(Dαgi′, j ′,i, j)(ξi′,ι,α)|} . (66)

We next estimate max|α|=p
{|(Dαgi′, j ′,i, j)(ξi′,ι,α)|}. We let Kα(η) := Dα Kn′,n(η, ξi′,ι,α)

for |α| ≤ p. Since u ∈ Ck∗ [0, T], we know that Kα(η), |α| ≤ p, has continuous partial
derivatives Dβ Kα(η) for η ∈ �n′ , when |β| ≤ kn′ . Hence, as proceeded in [11] by using
the Taylor expansion and by properties (I), (IV) and (V), we obtain that there exists
a positive constant c such that

∣∣Dα fi′, j ′(ξ)
∣∣ ≤ cμ−i′kn′ /n′

n′ , (67)

for |α| ≤ p. It follows from the proof for Lemma 5.2 of [14] that there is a positive
constant c such that for all |α| ≤ p,

∣∣Dαwn,i, j(ξ)
∣∣ ≤ cμikn/n

n . (68)

Noting that gi′, j ′,i, j(ξ) = fi′, j ′(ξ)wn,i, j(ξ) and gi′, j ′,i, j ∈ Wk∗,∞(Di′,ι), it follows from
(67) and (68) that there exists a positive constant c such that

max
|α|=p

{|(Dαgi′, j ′,i, j
)(

ξi′,ι,α
)|} ≤ cμ−i′kn′ /n′

n′ μikn/n
n . (69)

Substituting (69) into (66), we get the estimation (64).
By (64) and the relation

∑
j∈Z

0
wn(i)

meas(�n,i, j) = meas(�n), there exists a positive
constant c such that

‖Vn′,n − Mn′,n‖∞ ≤ c max
(i′, j ′)∈Un′ ,l′n

{
dp

Di′ μ
−i′kn′ /n′
n′

∑
i∈Z

0
ln+1/Si′

μikn/n
n

}
(70)
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By the definition of Si′ , we conclude that there exists a positive constant c such that

∑
i∈Z

0
ln+1/Si′

μikn/n
n ≤ cμlnkn/(2n)

n μ
−i′kn′ /(2n′)
n′ . (71)

Substituting (71) into (70) yields estimate (65). �

In order to ensure that the quadrature will not ruin the convergence result, we
need the matrix obtained via the quadrature formula to satisfy

∥∥Vn′,n − Mn′,n
∥∥∞ ≤ c1μ

−lnkn/n
n ,

where c1 is a positive constant. Hence, it follows from Lemma 11 that we demand
that

dp
Di′ μ

−3i′kn′ /(2n′)
n′ μlnkn/(2n)

n ≤ c1μ
−lnkn/n
n ,

or equivalently,

dDi′ ≤ c1μ
−�i′
n′ , (72)

where �i′ := 3kn′
2pdn′

(
κn′,nln−i′

)
. This imposes an additional hypothesis on the partition.

Lemma 12 Let u ∈ Ck∗ [0, T] with k∗ = p + k′ + 1. If Di′ , i′ ∈ Z
0
ln′ +1 satisfies (72), then

there exists a positive constant c such that

‖Vn′,n − Mn′,n‖∞ ≤ cμ−lnkn/n
n . (73)

Proof By substituting (72) into (65), we obtain estimate (73). �

In order to reduce the complexity of quadrature, we also require that dDi′ ≥
c2μ

−�i′
n′ , where c2 is a positive constant. This, combined with (72), leads to the

following condition on the partition.

(C-3) For i′ ∈ Z
0
ln′ and ι ∈ Z

0
τi′ , there exists two positive constants c1 and c2 such that

c2μ
−�i′
n′ ≤ d(Di′,ι) ≤ c1μ

−�i′
n′ . (74)

On the other hand, since ∪ι∈Z0
τi′

Di′,ι = �n, from the left inequality of (74), we get that

for all i′ ∈ Z
0
ln′ +1,

τi′ ≤ cμ�i′
n′ (75)

where c is a positive constant.
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Table 1 Regularization
parameters related to the
uncompressed matrix UL
and the compressed
matrix VL

Parameters Parameters
related to UL related to VL

λ1 7.50E − 9 1.00E − 8
λ2 1.50E − 8 3.00E − 8
λ3 2.00E − 6 5.00E − 6

We next show that the quadrature strategy does not ruin the convergence rate of
the compression method (27). Let hL be the solution of Eq. 61 and let

hn,ln :=
ln∑

i=0

wn(i)−1∑
j=0

(
hL

)
n,i, j

wn,i, j, n ∈ Zν and hL := [hn,ln , n ∈ Zν

]T
.

Theorem 5 For a given �, let h� ∈ Wk,∞ be the solution of Eq. 4. If u ∈ Ck′ [0, T]
with k∗ = k′ + p + 1 and hL ∈ Wk,∞, then there exist a positive constants c and an
� ∈ N such that for all L ∈ N

ν satisfying ln > � and for all n ∈ Zν ,

‖hn − hn,ln‖∞ ≤ c

⎛
⎝μ−knln/n

n ‖hn‖kn,∞ + (ln + 1)
∑

m∈Zν

μ−kmlm/m
m ‖hm‖km,∞

⎞
⎠ . (76)

Proof By Theorem 3, it suffices to prove that inequalities (32) and (33) hold with
Kn,m := Mn,m.

Let h ∈ Wkm,∞ and h̄ satisfy (34). By the triangle inequality, we get that

∥∥∥(Un,m − Mn,m
)

h̄
∥∥∥∞

≤
∥∥∥(Un,m − Vn,m

)
h̄
∥∥∥∞

+
∥∥∥(Vn,m − Mn,m

)
h̄
∥∥∥∞

. (77)

From (53), we have that
∥∥∥h̄
∥∥∥∞

≤ c‖h‖km,∞. Combining this inequality with Lemma

12, we obtain that

∥∥∥(Vn,m − Mn,m
)

h̄
∥∥∥∞

≤ cμ−kmlm/m
m ‖h‖km,∞. (78)

By substituting (78) and (51) into (77), we get (32).

Table 2 Output errors
of the Volterra systems
identified by the
uncompressed matrix UL
and the compressed
matrix VL

Output errors Output errors
related to UL related to VL

e1 1.44E − 3 1.52E − 3
e2 4.57E − 2 4.82E − 2
e3 3.65E − 2 3.73E − 2
e4 4.87E − 2 5.09E − 2
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Table 3 Computing time for generating matrices UL and VL, and solution time for solving Eqs. 20
and 27

CT (s) ST (s)

UCM 4374.47 180.34
CM 551.63 1.20

CT computing time, ST solution time, UCM uncompressed coefficient matrix, CM coefficient matrix

It remains to show (33). Let h ∈ H∞. From Property (VI), we know that ‖h̄‖∞ ≤
c‖h‖∞. Employing the same procedure as in the proof of (32), we obtain (33). �

We next estimate the number Mn′,n of the point evaluations of Kn′,n, n′, n ∈ Zν

for generating the matrix ML. The total number of the point evaluations of Kn′,n,
n′, n ∈ Zν for computing the entries ML is then given by

ML :=
∑

n′∈Zν

∑
n∈Zν

Mn′,n.

In the next theorem, we give an estimate for ML.

Theorem 6 If ML is generated by the compression strategy (25) and the quadrature
strategy (60), then there exists a positive constant c such that

ML ≤ cNL. (79)

Proof We first estimate Mn′,n. Let Mn′,n,i′ be the number of the point evaluations
of Kn′,n for computing [(Mn′,n)i′,i : i ∈ Si′ ]. Since for a fixed i′ ∈ Z

0
ln′ +1, the evaluation

points of Kn′,n for computing (Mn′,n)i′,i are the same for all i ∈ Z
0
ln′ +1, we only need

to evaluate Kn′,n at these points once. Hence, from Property (II) and (75), we know
that there exists a positive constant c such that Mn′,n,i′ ≤ cμi′+�i′

n′ . Let r := 3kn′ n
2pn′ . By

the definition of �i′ , we obtain that Mn′,n,i′ ≤ cμ
rκn′ ,nln+(1−c̃)i′
n′ . Note that p ≥ 3kn′ n

2n′ and
r < 1. By summing all Mn′,n,i′ , i′ ∈ Z

0
ln′ +1, we get that

Mn′,n ≤ cμ
r(κn′ ,nln−ln′ )+ln′
n′ . (80)

It follows from (28) and (80) that there is a positive constant c such that Mn′,n ≤ cμln′
n′ .

Upon summing all Mn′,n for n′, n ∈ Zν , we get the estimation (79). �

Table 4 Parameters used
to identify the Volterra
systems of order two and three

Parameters

Parameters of order two
λ1 = 1.00E−8,

λ2 = 4.50E−6,

Parameters of order three
λ1 = 1.00E−8,

λ2 = 3.00E−8,

λ3 = 5.00E−6,
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Fig. 1 Outputs of the simulation system related to the uncompressed matrix and the compressed
matrix
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8 Numerical experiments

We report in this section results of three numerical experiments for the multiparame-
ter regularization via the multiscale collocation method. Experiment 1 is to confirm
approximation of the compressed coefficient matrix, Experiment 2 is to compare the
third order Volterra system with the second order Volterra system, and Experiment
3 is to test the effect of number of parameters used in regularization.

We suppose that our true system obeys the initial value problem of the nonlinear
oscillatory system

{
v′′(t) + 6v′(t) + 4π2v(t) + 4π2v2(t) = u(t), 0 < t < T,

v(0) = v′(0) = 0,
(81)

where u is the input and the solution v of (81) is the output. We will use the
multiparameter regularization method to construct its Volterra simulation system
of order three

(Vu)(t) = v(t), t ∈ [0, T].

In our experiments, we first solve Eq. 81 with the right-hand-side being the
input u0(t) = sin(0.125π t2) by the adaptive Runge-Kutta-Fehlberg method (a Matlab
subroutine) and obtain the output v0. We then use the input u0 and output v0 to
identify the Volterra system. In this identification process, the wavelet bases on the
unit interval (1-D), the unit triangle (2-D) and the unit simplex (3-D) and their
corresponding collocation functionals constructed in [14] are used where k1 = k2 =
k3 = 2. We choose l1 = 8, l2 = 5 and l3 = 2.

To test the resulting Volterra simulation system, we compare the outputs of the
true system (81) and the Volterra simulation system. We use

u1(t) = 4 sin
(
0.125π t2

)
, u2(t) = 8 sin

(
π t
2

)
+ 4 sin(2π t),

u3(t) = 8 sin

(
π t

3
2

2

)
+ 4 sin

(
2π t

1
2

)
, u4(t) = 8 sin

(
π t

3
2

2

)
+ 4 sin(2π t)

as our testing input signals. We denote by vi and ṽi the output of the true system and
Volterra simulation system, respectively, corresponding to input ui, for i = 1, 2, 3, 4.
We use

ei := ‖vi − ṽi‖2

‖vi‖2
, i = 1, 2, 3, 4

Table 5 Output errors
of the Volterra systems
of order two and three

Output errors Output errors
of order two of order three

e1 4.86E − 3 1.52E − 3
e2 1.12E − 1 4.82E − 2
e3 7.69E − 2 3.73E − 2
e4 6.97E − 2 5.09E − 2
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Fig. 2 Outputs ṽi, i = 1, 2, 3, 4 of the Volterra systems of order two and three
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to present the error of the output of the true system and that of the simulation system.
For each case in all experiments, the set of parameters for the case is chosen to
minimize the errors ei, i = 1, 2, 3, 4, corresponding to the case. One may also use
the L-curve principle developed in [3] to choose the parameters. The numerical
computation is performed in a personal computer with 1.6 GHz CPU, 512M memory
and operating system Windows XP.

8.1 Approximation by a compressed matrix

The numerical results presented in this subsection confirm that the compressed ma-
trix gives a satisfactory approximation property. The coefficient matrix UL defined
by (18) is approximated by a compressed matrix VL defined by (26). To illustrate the
approximation property of the compressed matrix, we compare the errors of outputs
of the Volterra system identified by UL and the Volterra system identified by VL

relative to the true system (81). Since matrix UL is full and matrix VL is spare, we use
Gaussian elimination algorithm to solve Eq. 20 and use the multilevel augmentation
method in [12, 15] to solve Eq. 27. To show the efficiency of compression strategy, we
also compare the computing time for generating the matrices UL, VL and the time
for solving Eqs. 20 and 27.
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Fig. 3 Outputs ṽ2 of the Volterra systems of order three identified by multiparameter regularization
methods using output signal v0 without noise (a–c)
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In this experiment, we use multiparameter regularization with on parameter for
each order term. For each of Eqs. 20 and 27, we choose a set of three regularization
parameters λi, i = 1, 2, 3 and let λi, j := λi, i = 1, 2, 3 and j ∈ N0, where λi, j is a
regularization parameter of (3). We list in Table 1 the parameters and in Table 2
the errors ei, i = 1, 2, 3, 4.

Figure 1 illustrates the outputs of the Volterra systems obtained by using the
uncompressed matrix and the compressed matrix, corresponding to inputs ui, i =
1, 2, 3, 4. In this figure, the red solid lines present outputs vi of the true system, the
blue dash lines in row (ai) present outputs ṽi of the Volterra system identified by
the uncompressed matrix UL and the blue dash lines in row (bi), present outputs
ṽi of the Volterra system identified by the compressed matrix VL. In Table 3, we
show the computing time for generating the coefficient matrices and the solution
time for solving the linear systems, with both uncompressed coefficient matrix and
compressed coefficient matrix, measured in seconds. Figure 1 and Table 2 show that
the outputs of the simulation systems related to the uncompressed matrix and to the
compressed matrix are similar. Table 3 confirms the compression strategy reduces
computing time significantly for both generating the coefficient matrix and solving
the corresponding linear system.
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Fig. 4 Outputs ṽ2 of the Volterra systems identified using output signal v0 with noise δ = 10% (a–c)
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8.2 Approximation by Volterra systems of higher orders

In this experiment, we demonstrate that when the nonlinear system (81) is approx-
imated by Volterra systems, the approximate result given by those of order three is
better than that given by those of order two. Specifically, we compare the errors ei

corresponding to the Volterra system of order three with the error ei corresponding
to the Volterra system of order two.

Parameters λi used in this experiment for both systems are listed in Table 4. Again
we choose the regularization parameters in (3) by λi, j := λi, for i = 1, 2, 3, j ∈ N0.
In Table 5, we list the errors ei, i = 1, 2, 3, 4, for both systems. The outputs ṽi, i =
1, 2, 3, 4 of the Volterra system of order two and that of order three are displayed
in Fig. 2, where the red solid lines represent outputs vi, of the true system, the blue
dash lines in row (ai) are outputs ṽi of the Volterra system of order two,a nd the
blue dash lines in row (bi) are outputs ṽi of the Volterra system of order three, for
i = 1, 2, 3, 4. This experiment shows that the Volterra system of order three catches
the nonlinearity of the true system (81) better than that of order two does.

8.3 Multiple parameters corresponding to different kernels and different scales

In this subsection, we show improvement of using the multiple parameters corre-
sponding to different kernels and different scales in the regularization method for
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Fig. 5 Outputs ṽ2 of the Volterra systems identified using output signal v0 with noise δ = 20% (a–c)
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Fig. 6 An illustration for
errors of the identification with
multiparameters using output
signal v0 with noise. a Error
of identification with
multiparameters for signals
with noise δ = 10%. b Error
of identification with
multiparameters for signals
with noise δ = 20%

(a)

(b)

identifying the Volterra system. Specifically, we identify the Volterra systems of
order three by the regularization method using one parameter, three parameters
(one for every kernel) and five parameters (two for the kernel of order one, two
for the kernel of order two, and one for the kernel of order three), respectively. In
particular, for the regularization method (3) with five parameters, we let λ1,i = λ1,
for i = 0, 1, . . . , 5, λ1,i = λ2, for i = 6, 7, 8, λ2,i = λ3, for i = 0, 1, 2, 3, 4, λ2,5 = λ4, for
i = 5 and λ3,i = λ5, for i = 0, 1, 2. In this subsection, we use the outputs ṽ2 of the
Volterra systems of order three to show the effects of the multiparameter regular-
ization method. We consider two cases: signals without noise and noisy signals. In
Figs. 3, 4 and 5, the red solid lines represent the outputs v2 of the true system (81), the
blue dash lines in image (a) represent the outputs ṽ2 of the Volterra system identified
with one parameter, the blue dash lines in image (b) represent the outputs ṽ2 of the

Table 6 Parameters for the
Volterra system identification
using the output signal v0
without noise

Parameters

1 parameter
λ = 2.00E − 8

3 parameters
λ1 = 1.00E−8
λ2 = 3.00E−8
λ3 = 5.00E−6

5 parameters
λ1 = 1.00E−8
λ2 = 1.50E−7
λ3 = 7.50E−9
λ4 = 5.00E−3
λ5 = 5.00E−6
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Table 7 Output errors of the
Volterra system identification
using output signal v0 without
noise

1 parameter 3 parameters 5 parameters

e1 4.41E − 2 1.52E − 3 1.22E − 3
e2 2.67E − 1 4.82E − 2 4.91E − 2
e3 5.42E − 1 3.73E − 2 3.62E − 2
e4 9.04E − 1 5.07E − 2 4.38E − 2

Volterra system identified with three parameters, and the blue dash lines in image
(c) represent the outputs ṽ2, of the Volterra system identified with five parameters.

8.3.1 Signals without noise

In this experiment, we test the performance of the multiparameter regularization
method solving the Volterra kernel identification problem when the signal v0 con-
tains no noise. We list in Table 6 the parameters used in this experiment and in
Table 7 the errors ei, i = 1, 2, 3, 4 corresponding to each case. This example confirms
that using multiple parameters for different kernels and different scales in Volterra
system identification improves significantly the approximation results of the Volterra
simulation system.

8.3.2 Signals with noise

In this experiment, we conduct the same experiment described in the last subsection
for signals with noise. We test the identification method for the output signal
v0 perturbed by the Gauss noise with mean 0 and two different variances which
reflecting two different noise levels δ = 10% and δ = 20%, where δ := ‖vδ

0−v0‖2

‖v0‖2
. We let

vδ
0 denote the noisy output signal. We list the parameters used in this experiment in

Table 8. In Table 9 we list the errors ei, i = 1, 2, 3, 4 of the Volterra systems identified
by the multiparameter regularization methods with different noise levels. We also
illustrate the errors in Fig. 6.

Table 8 Parameters for the Volterra system identification using output signal v0 with noise δ = 10%
and δ = 20%

1 parameter 3 parameters 5 parameters

λ1 = 1.00E−6,

λ1 = 6.00E−3, λ2 = 1.00E−3,

δ = 10% λ = 3.00E−1 λ2 = 3.00E−2, λ3 = 1.00E−2,

λ3 = 3.00E−1 λ4 = 6.00E−1,

λ5 = 4.00E−1
λ1 = 1.00E−3,

λ1 = 1.00E−2, λ2 = 1.60E−2,

δ = 10% λ = 4.90E−1 λ2 = 1.00E−1, λ3 = 2.30E−1,

λ3 = 4.00E−1 λ4 = 3.40E−1,

λ5 = 5.30E−1
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Table 9 Errors of the identification using output signal v0 with noise

δ = 10% δ = 20%

1 parameter 3 parameters 5 parameters 1 parameter 3 parameters 5 parameters

e1 8.21E − 1 4.80E − 2 2.89E − 2 9.92E − 1 5.93E − 2 3.59E − 2
e2 8.34E − 1 2.48E − 1 2.13E − 1 8.91E − 1 2.78E − 1 2.27E − 1
e3 7.82E − 1 1.75E − 1 1.46E − 1 7.82E − 1 2.04E − 1 1.46E − 1
e4 1.22E − 0 1.45E − 1 1.14E − 1 1.62E − 0 1.76E − 1 1.20E − 1

The experiments presented in this subsection reveal that when the output signal
contains noise of a higher level, the multiparameter regularization method for the
Volterra system identification is more efficient.
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