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Abstract We investigate a problem of approximate non-linear sampling recovery
of functions on the interval I := [0, 1] expressing the adaptive choice of n sampled
values of a function to be recovered, and of n terms from a given family of functions
�. More precisely, for each function f on I, we choose a sequence ξ = {ξ s}n

s=1 of
n points in I, a sequence a = {as}n

s=1 of n functions defined on R
n and a sequence

�n = {ϕks}n
s=1 of n functions from a given family �. By this choice we define a (non-

linear) sampling recovery method so that f is approximately recovered from the n
sampled values f (ξ 1), f (ξ 2), ..., f (ξn), by the n-term linear combination

S( f ) = S(ξ,�n, a, f ) :=
n∑

s=1

as( f (ξ 1), ..., f (ξn))ϕks .

In searching an optimal sampling method, we study the quantity

νn( f,�)q := inf
�n,ξ,a

‖ f − S(ξ,�n, a, f )‖q,

where the infimum is taken over all sequences ξ = {ξ s}n
s=1 of n points, a = {as}n

s=1 of
n functions defined on R

n, and �n = {ϕks}n
s=1 of n functions from �. Let Uα

p,θ be the
unit ball in the Besov space Bα

p,θ , and M the set of centered B-spline wavelets

Mk,s(x) := Nr(2
kx + ρ − s),
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which do not vanish identically on I, where Nr is the B-spline of even order r = 2ρ ≥
[α] + 1 with knots at the points 0, 1, ..., r. For 1 ≤ p, q ≤ ∞, 0 < θ ≤ ∞ and α > 1,
we proved the following asymptotic order

νn

(
Uα

p,θ , M
)

q
:= sup

f∈Uα
p,θ

νn( f, M)q � n−α.

An asymptotically optimal non-linear sampling recovery method S∗ for νn(Uα
p,θ , M)q

is constructed by using a quasi-interpolant wavelet representation of functions in the
Besov space in terms of the B-splines Mk,s and the associated equivalent discrete
quasi-norm of the Besov space. For 1 ≤ p < q ≤ ∞, the asymptotic order of this
asymptotically optimal sampling non-linear recovery method is better than the
asymptotic order of any linear sampling recovery method or, more generally, of any
non-linear sampling recovery method of the form R(H, ξ, f ) := H( f (ξ 1), ..., f (ξn))

with a fixed mapping H : R
n → C(I) and n fixed points ξ ={ξ s}n

s=1.

Keywords Non-linear sampling recovery · Quasi-interpolant wavelet
representation · Adaptive choice · B-spline · Besov space

Mathematics Subject Classifications (2000) 41A46 · 41A15 · 41A05 · 41A25 · 42C40

1 Introduction

1.1

We begin with shortly considering some known problems of sampling recovery of
functions defined on the interval I := [0, 1]. Suppose that ξ = {ξk}n

k=1 is a fixed
sequence of n points in I, and we want to approximately recover a function f on
I from the sampled values f (ξ 1), f (ξ 2), ..., f (ξn). Using this information we can
approximately recover a continuous function f on I, by the linear sampling recovery
method L defined by

L( f ) = L(�, ξ, f ) :=
n∑

k=1

f (ξk)ϕk, (1)

where � = {ϕk}n
k=1 is a fixed sequence of n functions I. Denote by Lq := Lq(I) the

normed space of functions on I with the usual qth integral norm ‖ · ‖q for 1 ≤ q <

∞, and the normed space C(I) of continuous functions on I with the max-norm ‖ ·
‖∞ for p = ∞. We will measure the error of the approximate recovery (1) by ‖ f −
L(�, ξ, f )‖q. For a subset W ⊂ Lq, the worst case error of the recovery of f ∈ W by
L( f ) can be represented by

sup
f∈W

‖ f − L(�, ξ, f )‖q.

To study optimal sampling linear methods of the form (1) for recovering f ∈ W, we
can use the quantity

λn(W)q := inf
�,ξ

sup
f∈W

‖ f − L(�, ξ, f )‖q, (2)

where the infimum is taken over all pairs (�, ξ) with ξ = {ξk}n
k=1 and � = {ϕk}n

k=1.



Non-linear sampling recovery based on quasi-interpolant wavelet representations 377

In a linear sampling recovery method (1) we use the information of the sampled
values of f at n fixed points ξ = {ξk}n

k=1. Restricted ourselves by the same informa-
tion, we can consider some non-linear sampling recovery methods. One of them is
defined by

G(�, ξ, a, f ) :=
n∑

k=1

ak( f (ξ 1), ..., f (ξn))ϕk, (3)

where a = {ak}n
k=1 is a given sequence of n functions on R

n. Similarly to (2), to study
optimal linear methods of the form (3) for recovering f ∈ W, we can use the quantity

γn(W)q := inf
�,ξ,a

sup
f∈W

‖ f − G(�, ξ, a, f )‖q,

where the infimum is taken over all triples (�, ξ, a) with ξ = {ξk}n
k=1, a = {ak}n

k=1 and
� = {ϕk}n

k=1. Another is the sampling method R given by

R(H, ξ, f ) := H( f (ξ 1), ..., f (ξn)) (4)

where H is a mapping from R
n into Lq. To study optimal sampling methods of

recovery for f ∈ W from n their values, we can use the quantity

�n(W)q := inf
H,ξ

sup
f∈W

‖ f − R(H, ξ, f )‖q,

where the infimum is taken over all sequences ξ = {ξk}n
k=1 and all mappings H from

R
n into Lq.
We use the notations: x+ := max{0, x} for x ∈ R; An( f ) � Bn( f ) if An( f ) ≤

CBn( f ) with C an absolute constant not depending on n and/or f ∈ W, and An( f ) �
Bn( f ) if An( f ) � Bn( f ) and Bn( f ) � An( f ).

Denote by Uα
p,θ the unit ball of the Besov space Bα

p,θ of functions on I. The
following results are known (see [13, 17, 19, 20, 23] and references there).

Theorem 1 Let 1 ≤ p, q ≤ ∞, 0 < θ ≤ ∞ and α > 1/p. Then there are the asymp-
totic equivalent relations

�n

(
Uα

p,θ

)

q
� λn

(
Uα

p,θ

)

q
� γn

(
Uα

p,θ

)

q
� n−α+(1/p−1/q)+ .

Moreover, we can explicitly construct an asymptotically optimal linear sampling
recovery method L∗ of the form (1), that is,

sup
f∈Uα

p,θ

‖ f − L∗( f )‖q � n−α+(1/p−1/q)+ .

1.2

In a sampling recovery method of the forms (1), (3) and (4) the points ξ = {ξk}n
k=1 at

which the sampled values are taken, and the mappings L, G, R which can be linear or
non-linear are the same for all functions, i. e., the information and recovery method
are non-adaptive. Let us introduce a new setting of non-linear sampling recovery
with adaptive information and recovery methods. Namely, we will let the choice of
points {ξk}n

k=1 and a recovery approximant constructed from the sampled values at
these points depend on a concrete function.
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Let W ⊂ Lq and � = {ϕk}k∈K be a family of functions in Lq. Let us have the
freedom to choose n terms ϕk from � and n sampled values for constructing
an approximate recovery. More precisely, given a function f ∈ W, we choose a
sequence ξ = {ξk}n

k=1 of n points in I, a sequence a = {ak}n
k=1 of n functions defined

on R
n and a sequence �n = {ϕks}n

s=1 of n functions from �. This choice defines an
sampling recovery method given by

S( f ) = S(�n, a, ξ, f ) :=
n∑

s=1

as( f (ξ 1), ..., f (ξn))ϕks . (5)

Then we consider the approximate recovery of f from its values f (ξ s), s = 1, 2, ..., n,
by S( f ). Clearly, an efficient choice essentially depends on f, and this dependence
is non-linear. Unlike sampling recovery methods of the forms (1), (3) and (4), for
each function f we will first search an optimal sampling recovery method with
regard to �

νn( f,�)q := inf
�n,a,ξ

‖ f − S(�n, a, ξ, f )‖q,

where the infimum is taken over all sequences ξ = {ξk}n
k=1 of n points in I, a = {ak}n

k=1
of n functions defined on R

n, and �n = {ϕks}n
s=1 of n functions from �. Then we want

to know the worst case of non-linear sampling recovery with regard to � for f ∈ W
by considering the quantity

νn(W,�)q := sup
f∈W

νn( f,�)q.

The idea of non-linear sampling recovery in terms of the quantity νn(W,�)q

naturally comes from the non-linear n-term approximation. The reader can find in
[10, 24] surveys on various aspects of this approximation and its applications.

For a given even natural number r = 2ρ, let Nr be the B-spline of order r with
knots at the points 0, 1, ..., r, and

Mr := Nr(· + ρ)

be the centered B-spline. Denote by M the set of all such B-spline wavelets

Mk,s(x) := Mr(2
kx − s),

which do not vanish identically on I.

The main result of the present paper is the following theorem.

Theorem 2 Let 1 ≤ p, q ≤ ∞, 0 < θ ≤ ∞, and 1 < α < r. Then for the unit ball Uα
p,θ

of the Besov space, there is the following asymptotic order

νn

(
Uα

p,θ , M
)

q
� n−α. (6)

For 1 ≤ p < q ≤ ∞, the asymptotic order of optimal non-linear sampling recovery
method for νn(Uα

p,θ , M)q is better than the asymptotic order of any linear sampling
recovery method of the form (1) and of any non-linear sampling recovery method of
the form (3) or (4). Namely, the asymptotic orders of λn, γn and �n are n−α+1/p−1/q,

while the asymptotic order of νn is n−α .
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1.3

To construct an asymptotically optimal non-linear sampling recovery method S∗ for
νn(Uα

p,θ , M)q which gives the upper bound of (6) we used a quasi-interpolant wavelet
representation of functions in the Besov space in terms of the B-splines Mk,s. It is
well known that a function on I has a B-spline wavelet representation:

f (x) =
∞∑

k=0

∑

s∈J(k)

λk,s( f )Mk,s(x) (7)

where J(k) is the set of s for which Mk,s do not vanish identically on I, and λk,s are
appropriate coefficient functionals.

There are many ways to define the functionals λk,s (see [9, 10, 21] and refer-
ences there). For construction of an asymptotically optimal sampling method for
νn(Uα

p,θ , M)q we need coefficient functionals of a special form λk,s( f ) which are
functions of a finite number of values of f. It is important that this number should
not depend on neither k, s nor f . Such a representation can be constructed by using
a quasi-interpolant of the form

Q( f, x) :=
∞∑

k=−∞
�( f, k)M(x − k), (8)

defined for functions on R, where

�( f, s) =
∑

| j|≤J

λ j f (s − j)) (9)

and � = {λ j}| j|≤J a given finite even sequence. We can see later that the B-spline
wavelet representation (7) based on a quasi-interpolant (8)–(9) has the coefficients
λk,s( f ) as functions of no more than 2J + r values of f, with J any fixed number not
smaller than r/2.

An asymptotically optimal non-linear sampling recovery method S∗ is constructed
as the sum of a linear quasi-interpolant operator Qk̄(n) and non-linear operator G∗

n.

The linear part Qk̄(n)( f ) with an appropriate k̄(n) gives the same approximation
order n−α+(1/p−1/q)+ as of λn(Uα

p,θ )q and γn(Uα
p,θ )q (see Corollary 2) while the “addi-

tional” non-linear part G∗
n( f ) which is the sum of greedy algorithms at some B-spline

dyadic scales improves the approximation order for the case 1 ≤ p < q ≤ ∞.

We restrict ourselves to consider the sampling recovery as an approximation
problem, not concerning the computation aspect. It is interesting to investigate the
cost of non-linear sampling recovery methods (algorithms) and complexity of our
problem. Notice that in the non-linear sampling recovery in terms the quantity νn of
the cost to compute the non-linear part of the approximant is mostly too expensive
(see [7, 8] for details).

The main results of the present paper were announced in [16].
We give a brief description of the remaining sections. In Section 2 we construct

a quasi-interpolant wavelet representation in terms of the B-splines Mk,s ∈ M for
Besov spaces and prove some quasi-norm equivalences based on this representation,
in particular, a discrete quasi-norm in terms of the coefficient functionals. In Section
3 we will discuss linear and non-linear sampling recovery methods using quasi-
interpolant wavelet representations, and give a Proof of Theorem 2.
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2 Quasi-interpolant wavelet representations

2.1

Let

S(ϕ) := span{ ϕ(· − s) }s∈Z

be the space spanned by the integer translates of a B-spline ϕ. A B-spline quasi-
inerpolant for S(ϕ) is a linear map

Qϕ( f ) :=
∑

k∈Z

λ( f, k)ϕ(· − k)

from a normed space of functions f on R into S(ϕ) which is local, bounded and repro-
duces some nontrivial polynomial space [9, p. 63]. For construction of sampling meth-
ods of recovery we will consider some special types of discrete quasi-interpolants
for which the coefficient functionals λ( f, k) are linear combinations of values of a
function f or its derivatives at a finite number of points.

Denote by Nr the B-spline of order r with knots at the points 0, 1, ..., r. The
B-spline N1 can be defined as the characteristic function of the interval [0, 1). For
r ≥ 2, Nr can be defined recursively by convolution:

Nr(x) :=
∫ ∞

−∞
Nr−1(x − y)N1(y)dy.

Notice that the support of Nr is [0, r] and Nr satisfies the refinement equation:

Nr(x) := 2−r+1
r∑

s=0

(
r
s

)
Nr(2x − s). (10)

Let

Mr := Nr(· + r/2)

be the centered B-spline. Denote by Sr and S∗
r the span of Nr(· − s), s ∈ Z, and

Mr(· − s), s ∈ Z, respectively.
Let � = {λ j}| j|≤J be a finite even sequence, i.e., λ− j = λ j. We define the operator

Q by

Q( f, x) :=
∞∑

s=−∞
�( f, s)Mr(x − s) (11)

for a function f defined on R, where

�( f, s) :=
∑

| j|≤J

λ j f (s − j). (12)

It is easy to verify that Q is a bounded linear operator in C(R) and

‖Q( f )‖C(R) ≤ ‖�‖‖ f‖C(R)
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for each f ∈ C(R), where

‖�‖ =
∑

|k|≤J

|λk|.

Moreover, Q is local in the following sense. There exists a positive number δ > 0
such that for any f ∈ C(R), and x ∈ R, Q( f, x) depends only on the value f (y) at a
finite number of points y with |y − x| ≤ δ. In the present paper, we will require it to
reproduce the space Pr−1 of polynomials of order at most r − 1, that is,

Q(p) = p, p ∈ Pr−1.

Then, such an operator Q will be a quasi-interpolant for S∗
r in the normed space

C(R). A method of construction of such a quasi-interpolant via Neumann series was
suggested in [5] (see also [4, p. 100–109]), is as follows.

Let the Laurent polynomials M̃r and D̃r be defined by

M̃r(z) :=
∑

k

Mr(k)zk,

D̃r(z) := 1 − M̃r(z).

Further, for a given non-negative integer ν we define �(ν) = {λk} in terms of the finite
Neumann series:

�̃(ν)(z) :=
∑

k

λkzk = 1 + D̃(z) + · · · + D̃ν(z).

Clearly, �(ν) is a finite even sequence. The operator Q in (11)–(12) associated with
�(ν), reproduces Pr−1 and therefore, is a quasi-interpolant [5].

For an even r = 2ρ and J ≥ ρ, general solutions for the construction of quasi-
interpolants of the form (11)–(12) with optimal approximation order were given
in [2, 3] intiated by a work of Schoenberg [22]. Such quasi-interpolants with near
minimal norm ‖�‖ which may be useful for numerical applications have been
recently constructed. See [21] for a survey on this direction.

We will need a quasi-interpolant for Sr in the norm of Cr−1(R) introduced in [6].
This quasi-interpolant is based on the values of derivatives and defined as follows.
For f ∈ Cr−1(R), we let

P( f, x) :=
∞∑

k=−∞
α( f, k)Nr(x − k), (13)

where

α( f, k) :=
∑

j<r

wk, j f ( j )(ξk), (14)

with any point ξk ∈ (k, k + r) and

wk, j := (−1)r−1− jψ
(r−1− j )
k (ξk), j < r,

ψk(x) := (k + 1 − x) · · · (k + r − 1 − x).

Then P is a quasi-interpolant which is a local bounded linear B-spline operator
mapping Cr−1(R) to Sr, and reproduces Pr−1 [6].
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2.2

In the present paper, we will consider sampling methods of recovering functions
on the interval I which possess a certain smoothness. Let us introduce Sobolev
and Besov spaces of smooth functions and give necessary knowledge of them. The
reader can read this and more details of Sobolev and Besov spaces in the books
[1, 11, 18].

Let G = [a, b ] be an interval in R. Denote by Lp(G) the normed space of functions
on G with the usual pth norm ‖ · ‖p,G for 1 ≤ p < ∞, and the normed space C(G)

of continuous functions on G with the max-norm ‖ · ‖∞,G for p = ∞. For 1 ≤ p ≤ ∞
and natural number α, the Sobolev space Wα

p(G) is the set of functions f ∈ Lp(G)

for which f (α−1) is absolutely continuous on G and f (α) ∈ Lp(G). The Sobolev semi-
norm and norm of Wα

p(G) are

| f |Wα
p(G) := ‖ f (α)‖p,G, ‖ f‖Wα

p(G) := ‖ f‖p,G + | f |Wα
p(G).

Let

ωl( f, t)p,G := sup
|h|<t

∥∥�l
h f
∥∥

p,Glh

be the lth modulus of smoothness of f where Glh := [a + lh, b − lh], and the lth
difference �l

h f is defined by

�l
h f :=

l∑

j=0

(−1)l− j
(

l
j

)
f (x + jh).

Let 1 ≤ p ≤ ∞, 0 < θ ≤ ∞ and 0 < α < l. The Besov space Bα
p,θ (G) is the set of

functions f ∈ Lp(G) for which the Besov quasi-semi-norm | f |Bα
p,θ

(G) is finite. The
Besov quasi-semi-norm | f |Bα

p,θ (G) is given by

| f |Bα
p,θ (G) :=

{ (∫∞
0 {t−αωl( f, t)p,G}θ dt/t

)1/θ
, θ < ∞,

supt>0 t−αωl( f, t)p,G, θ = ∞.
(15)

The Besov quasi-norm is defined by

B( f ) = ‖ f‖Bα
p,θ (G) := ‖ f‖p,G + | f |Bα

p,θ (G). (16)

The definition of Bα
p,θ (G) does not depend on l, i. e., for a given α, (15)–(16)

determine equivalent quasi-norms for all l such that α < l.
In what follows, we will drop I in a notation if G = I, in particular, we will use

the abbreviations: Lp := Lp(I); Wα
p := Wα

p(I); Bα
p,θ := Bα

p,θ (I). We will assume that
continuous functions to be recovered are from the Sobolev space Wα

p or the Besov
space Bα

p,θ with the restriction α > 1/p which is a sufficient condition of the compact
embedding of these spaces into C(I).

2.3

Let a quasi-interpolant Q of the form (11)–(12) be given. For h > 0 and a function f
on R, we define the operator Qh by

Qh( f ) = σh ◦ Q ◦ σ1/h( f ),
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where

σh( f, x) = f (x/h).

By definition it is easy to see that

Qh( f, x) =
∑

k

�h( f, k)Mr(h−1x − k),

where

�h( f, k) :=
∑

j

λk− j f (hj).

If a function f is defined on R and possesses a smoothness α in a neighborhood of
I, then the approximation by means of Qh has the asymptotic order [9, p. 63–65]

‖ f − Qh f‖∞ = O(hα).

However, we consider only functions which are defined in I. The quasi-interpolant
Qh is not defined for a function f on I, and therefore, not appropriate for an
approximate sampling recovery of f from its sampled values at points in I. An
approach to construct a quasi-interpolant for a function on I is to extend it by
interpolation Lagrange polynomials.

For a non-negative integer k, we put x j = j2−k, j ∈ Z. If f is a function on I, let

Uk( f, x) := f (x0) +
r−1∑

s=1

2sk�s
2−k f (x0)

s!
s−1∏

j=0

(x − x j ),

Vk( f, x) := f (x2k−r+1) +
r−1∑

s=1

2sk�s
2−k f (x2k−r+1)

s!
s−1∏

j=0

(x − x2k−r+1+ j) (17)

be the (r − 1)th Lagrange polynomials interpolating f at the left end points
x0, x1, ..., xr−1, and right end points x2k−r+1, x2k−r+3, ..., x2k , of the interval I, respec-
tively. We define the function f̄ as an extension of f on R by the formula

f̄ (x) :=

⎧
⎪⎨

⎪⎩

Uk( f, x), x < 0

f (x), 0 ≤ x ≤ 1

Vk( f, x), x > 1.

(18)

Obviously, f̄ is a continuous function on R. We introduce the operator Qk by

Qk( f ) = Q2−k
( f̄ ).

We have

Qk( f, x) =
∑

s∈J(k)

ak,s( f )Mk,s(x), ∀x ∈ I, (19)

where J(k) := {s ∈ Z : −r/2 < s < 2k + r/2} is the set of s for which Mk,s do not
vanish identically on I, and

ak,s( f ) := �2−k
( f̄ , s) =

∑

| j|≤J

λ j f̄ (2−k(s − j)). (20)

Notice that the number of the terms in Qk( f ) is of the size ≈ 2k.
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An important property of Qk is that the function Qk( f ) is completely determined
from the values of f at the points x0, x1, ..., x2k which are in I. For each pair k, s
the coefficient ak,s( f ) is a linear combination of the values f (2−k(s − j)), | j| ≤ J,
and maybe, f (2−k j) with j = 0, 1, ..., r − 1 or j = 2k − r + 1, 2k − r + 3, ..., 2k, if the
point 2−ks is near to the ends 0 or 1 of the interval I, respectively. Thus, the number
of these values does not exceed the 2J + r and not depend on neither functions f
and nor k, s. The operator Qk also has properties similar to the properties of the
quasi-interpolants Q and Qh. Namely, it is a local bounded linear mapping in C(I)

and reproducing Pr−1, more precisely,

Qk(p∗) = p, p ∈ Pr−1, (21)

where p∗ is the restriction of p on I. We will call Qk a quasi-interpolant for C(I).

2.4

For approximation a function f ∈ Wα
p, it is natural to use the quasi-interpolant Qm.

We will prove the following theorem.

Theorem 3 Let 1 ≤ p ≤ ∞, α ≤ r. Then for each f ∈ Wα
p, we have

‖ f − Qm f‖p ≤ C| f |Wα
p
2−αm,

where C is a constant depending on J, r, α and the norm ‖�‖ only.

Proof Let Is := [hs, h(s + 1)] ∩ I, where we use the abbreviation h = 2−k. We have

‖ f − Qm f‖p
p =

∑

s

∫

Is

| f (x) − Qm( f, x)|pdx =:
∑

s

Is. (22)

Let T be the Taylor polynomial of order α − 1 at a point xs ∈ Is of f . For simplicity
we use the same letter T to denote its restriction on I. Then, for each x ∈ I

F(x) := f (x) − T(x) =
∫ x

xs

f (α)(t)
(x − t)α−1

(α − 1)! dt. (23)

By (21) we have QmT = T, and therefore,

f (x) − Qm( f, x) = F(x) − Qm(F, x). (24)

Applying Hölder’s inequality to the right side of (23) gives

|F(x)| ≤ 1

(α − 1)! |Is|α−1/p‖ f (α)‖Lp(Is)

≤ hα−1/p

(α − 1)! ‖ f (α)‖Lp(Is), x ∈ Is. (25)

Let us estimate the second term in (24). By definition it is easy to see that

Qm(F, x) =
∑

k∈Js

�h(F̄, k)Mr(h−1x − k), x ∈ Is, (26)
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where

�h(F̄, k) =
∑

j

λk− j F̄(hj)

and Js := {k ∈ Z : −r/2 − 1 < s − k < r/2}. Indeed, we have

Qm(F, x) =
∑

k

�h(F̄, k)Mr(h−1x − k).

Further, Mr(h−1x − k) �= 0 for some x ∈ Is if and only if 0 < h−1x + r/2 − k < r.
Hence, if Mr(h−1x − k) �= 0, then 0 < (s + 1) + r/2 − k and s + r/2 − k < r. Thus, if
the inequalities

−r/2 − 1 < s − k < r/2

do not hold, then Mr(h−1x − k) = 0 for all x ∈ Is.

Using the inequalities 0 ≤ Mr(x) ≤ 1 and |Js| ≤ r, we obtain by (26)

|Qm(F, x)| ≤
∑

k∈Js

|�h(F̄, k)|

≤ r max
k∈Js

|�h(F̄, k)|, x ∈ Is, (27)

We will estimate �h(F̄, k) for k ∈ Js. From the equation

�h(F̄, k) =
∑

j∈Zk

λk− j F̄(hj),

with Zk := { j ∈ Z : | j − k| ≤ J}, we obtain

|�h(F̄, k)| ≤ max
j∈Zk

|F̄(hj)|
∑

j∈Zk

|λk− j| = ‖�‖ max
j∈Zk

|F̄(hj)|. (28)

Notice that

∪k∈Js Zk ⊂ Z ∗
s := {k ∈ Z : |k − s| ≤ J + r/2}.

Let j ∈ Z ∗
s . We first consider the case when hj ∈ I. This means that 0 ≤ j ≤ 2k. As

in (23), we have

F̄(hj) = F(hj) =
∫ hj

xs

f (α)(t)
(hj − t)α−1

(α − 1)! dt. (29)

Obviously, s ∈ Z ∗
s and hj ∈ I∗

s := ∪k∈Z ∗
s
Ik. Similar to (25), from (29) we derive that

|F̄(hj)| ≤ 1

(α − 1)! |I
∗
s |α−1/p‖ f (α)‖Lp(I∗

s )

≤ (2J + r + 1)hα−1/p

(α − 1)! ‖ f (α)‖Lp(I∗
s ). (30)
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We next consider the case when hj /∈ I. Then either −J − r/2 ≤ j < 0 or 2k <

j2k + J + r/2. For the case when −J − r/2 ≤ j < 0, by (17) and (18) we have

F̄(hj) = F̄(0) +
r−1∑

s=1

2sk�s
2−k F̄(0)

s!
s−1∏

i=0

(hj − hi),

= F̄(0) +
r−1∑

s=1

�s
2−k F̄(0)

s!
s−1∏

i=0

( j − i).

Hence, by a simple computation we obtain

|F̄(hj)| ≤ C1 max
0≤i≤r−1

|F̄(hi)|, (31)

where C1 is a constant depending on J, r only.
Similarly, for the case when 2k < j2k + J + r/2, we have

|F̄(hj)| ≤ C2 max
2k−r+1≤i≤2k

|F̄(hi)|, (32)

where C2 is a constant depending on J, r only. The inequalities (30)–(32) yield

|F̄(hj)| ≤ C3‖ f (α)‖Lp(I∗
s ), j ∈ Z ∗

s , (33)

where C3 is a constant depending on J, r, α only.
Combining (27), (28) and (33) gives

|Qm(F, x)| ≤ C4hα−1/p‖ f (α)‖Lp(I∗
s ), x ∈ Is, (34)

where C4 = C3‖�‖.
Let us estimate Is. We have by (24), (25) and (34)

Is =
∫

Is

| f (x) − Qm( f, x)|pdx

≤
∫

Is

(|F(x)| + |Qm(F, x)|)pdx

≤
∫

Is

(
hα−1/p

(α − 1)! ‖ f (α)‖Lp(Is) + C4hα−1/p‖ f (α)‖Lp(I∗
s )

)p

dx

≤ (2C4hα‖ f (α)‖Lp(I∗
s ))

p.

Hence, by (22) we get

‖ f − Qm f‖p
p =

∑

s

Is

≤ (
2C4hα

)p∑

s

‖ f (α)‖p
Lp(I∗

s )

≤ (
2C4hα

)p∑

s

∑

k∈Z ∗
s

‖ f (α)‖p
Lp(Ik).
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If j is a natural number such that I j �= ∅, then there are no more than 2J + r + 1 the
term ‖ f (α)‖p

Lp(I j )
in the sum taken over k ∈ Z ∗

s in the last expression. Hence,

‖ f − Qm f‖p
p ≤ (2C4hα

)p
(2J + r + 1)

∑

s

‖ f (α)‖p
Lp(Is)

≤ (Chα)p‖ f (α)‖p
p

≤ Cp| f |p
Wα

p
2−pαm,

where C is a constant depending on J, r, α and ‖�‖ only. ��

2.5

If { fk}∞k=0 is a sequence whose component functions are in Lp(G), for 0 < θ ≤ ∞ and
β ≥ 0 we use the lβθ (Lp(G)) “quasi-norms”

‖{ fk}‖lβθ (Lp(G))
:=
( ∞∑

l=0

{2βk‖ fk‖p,G}θ
)1/θ

with the usual change to a supremum norm when θ = ∞. When { fk}∞k=0 is a sequence
of real numbers, we replace ‖ fk‖p,G by | fk| and denote the corresponding norm by
‖{ fk}‖lβθ

. We will need the following discrete Hardy inequality

‖{b k}‖lβθ
≤ C‖{ak}‖lβθ

(35)

which holds if

|b k| ≤ C

(
m∑

k=0

2λ(k−m)|ak| +
∞∑

k=m+1

|ak|
)

(36)

with λ > β > 0.
For the Besov space Bα

p,θ (G), there is the following quasi-norm equivalence

B( f ) � B1( f ) := ‖{ωl( f, 2−k)p
}‖lαθ + ‖ f‖p,G.

We let the B-splines Nk,s be defined by

Nk,s(x) := Nr
(
2kx − s

)
, k, s ∈ Z.

Let G = [a, b ] be an interval with integers a, b . Let D(G, k) := { s ∈ Z : a2k − r <

s < b2k } be the set of s for which Nk,s do not vanish identically on G, and let �k be
the span of the B-splines Nk,s, s ∈ D(G, k). For each f ∈ Lp(G), the error of the
approximation of f by the the B-splines from �k is given by

Ek( f )p := inf
ϕ∈�k

‖ f − ϕ‖p,G.

For a function f ∈ Cr−1(G), we define the operator Pk by

Pk( f, x) :=
∑

s∈D(G,k)

αk,s( f )Nk,s(x),
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where

αk,s( f ) := α(σ2k( f ), s).

and α(σ2k( f ), s) is given by (14) with ξs the center of an interval (2−k j, 2−k( j + 1)),

j ∈ Z, contained in supp(Nk,s) ∩ G. It was proven in [12] that the operator Pk can be
extended to a bounded linear operator from Lp(G) into �k. We denote this extension
again by Pk.

Let

pk( f ) := Pk( f ) − Pk−1( f ) with P−1( f ) = 0.

Theorem 4 Let 1 ≤ p ≤ ∞, 0 < θ ≤ ∞, α > 1/p, r > α. Let G = [a, b ] be an inter-
val with integers a, b . Then for the Besov space Bα

p,θ (G), the following quasi-norms
are equivalent to the Besov quasi-norm B( f ):

B2( f ) := ‖{ f − Pk( f )}‖lαθ (Lp(G)) + ‖ f‖p,G,

B3( f ) := ‖{pk( f )}‖lαθ (Lp(G))

B4( f ) := ‖{Ek( f )p,G}‖lαθ + ‖ f‖p,G.

This theorem is known as a particular case of a more general result (see [12]).
It is easy to verify that there are constants C, C′ such that for each linear

combination

g =
∑

s∈D(G,k)

as Nk,s, (37)

from �k, we have

C ‖g‖p,G ≤
(

2−k
∑

s∈D(G,k)

|as|p

)1/p

≤ C′‖g‖p,G. (38)

Let

qk( f ) := Qk( f ) − Qk−1( f ) with Q−1( f ) := 0.

Theorem 5 Let 1 ≤ p ≤ ∞, 0 < θ ≤ ∞, 1 < α < r. Then for the Besov space Bα
p,θ ,

the following quasi-norms are equivalent to B( f ):

B5( f ) := ‖{ f − Qk( f )}‖lαθ (Lp) + ‖ f‖p,

B6( f ) := ‖{qk( f )}‖lαθ (Lp).

Proof We first prove the inequality

B5( f ) � B3( f ) (39)

for any f ∈ Bα
p,θ .

Let f ∈ Bα
p,θ . According to Theorem 4, f can be decomposed into the series

f =
∞∑

k=0

pk( f )
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converging in quasi-norm B3( f ) and in Lp-norm. We will assume that the B-splines
Nk,s in the related quasi-interpolant Pk( f ) are of order r′ > r. Since pk( f ) ∈ Sk,

we have

pk( f, x) =
∑

s∈D(I,k)

fk,s Nk,s(x), x ∈ I,

for some coefficient functionals fk,s. Hence, for each x ∈ I

f (x) =
∞∑

k=0

∑

s∈D(I,k)

fk,s Nk,s(x). (40)

The series converges in the Lp-norm. By (37) and (38) we also have
(

∑

s∈D(I,k)

| fk,s|p

)1/p

� 2k/p‖pk( f )‖p. (41)

The expression in the right-hand side of (40) can be considered as an extension of f
to the whole R, which we denote by F. For an integer m, we define the function Gm

on R by

Gm(x) := F(x) + (−1)r+1
∫ ∞

−∞
�r

hu(F, x)Nr(u)du,

where h := 2−m. Let gm be the restriction of Gm on I. We will use the functions gm

and Qm(gm) for mediate approximations of f, based on the identity

f − Qm( f ) = ( f − gm) + (gm − Qm(gm)) + (Qm( f − gm)). (42)

Let us first estimate the norms ‖ f − gm‖p and ‖gm − Qm(gm)‖p. Notice that
supp(F ) = [−r′, 2r′] ⊂ supp(Gm) = [−r′ − r, 2r′ + r] =: G. By a standard technique
we derive that

‖ f − gm‖p ≤ ‖F − Gm‖p,G ≤ rrω(2−m), (43)

and

2−rm‖g(r)
m ‖p ≤ 2−rm‖G(r)

m ‖p,G ≤ 2rω(2−m),

where we use the abbreviation: ω(2−m) := ωr(F, 2−m)p,G. By Theorem 3 we have

‖gm − Qm(gm)‖p ≤ C2−rm‖g(r)
m ‖p.

Hence,

‖gm − Qm(gm)‖p ≤ C2rω(2−m). (44)

Further, let us estimate the norm ‖Qm( f − gm)‖p. We put

φm(x) := f (x) − gm(x) = (−1)r
∫ ∞

−∞
�r

hu(F, x)Nr(u)du, x ∈ I. (45)

By definition we have

Qm(φm, x) =
∞∑

s=−∞
�h(φ̄m, s)Mm,s(x).



390 D. Dũng

By replacing φm by the integral in (45) and f by the series in (40) in the right side of
the last equation, we decompose Qm(φm) into the series:

Qm(φm) =
∑

k

qk,

where

qk(x) :=
∑

s∈D(I,k)

∞∑

l=−∞
fk,s�

h(σ̄k,s, l)Mm,l(x),

σk,s(x) := (−1)r
∫ ∞

−∞
�r

hu(Nk,s, x)Nr(u)du.

(46)

We have

‖Qm( f − gm)‖p = ‖Qm(φm)‖p ≤
∞∑

k=0

‖qk‖p. (47)

We will estimate the norm ‖qk‖p. From (46) we obtain for each x ∈ I

qk(x) =
∑

s∈D(I,k)

∑

|l−x/h|≤r/2

∑

| j−l|≤J

fk,sλl− jσ̄k,s(hj)Mm,l(x)

=
∑

|l−x/h|≤r/2

Mm,l(x)
∑

| j−l|≤J

λl− j

∑

s∈D(I,k)

fk,sσ̄k,s(hj). (48)

By Hölder’s inequality and (41) we have

∣∣∣∣
∑

s∈D(I,k)

fk,sσ̄k,s(hj)

∣∣∣∣ ≤
(

∑

s∈D(I,k)

| fk,s|p

)1/p ( ∑

s∈D(I,k)

|σ̄k,s(hj)|p′
)1/p′

� 2k/p‖pk( f )‖p

(
∑

s∈D(I,k)

|σ̄k,s(hj)|p′
)1/p′

.

Therefore, from (48) we receive

|qk(x)| � 2k/p‖pk( f )‖p

∑

|l−x/h|≤r/2

Mm,l(x)
∑

| j−l|≤J

|λl− j|
(

∑

s∈D(I,k)

|σ̄k,s(hj)|p′
)1/p′

. (49)

Obviously, the number of Mm,l(x) with the restriction |l − x/h| ≤ r/2, does not
exceed r. Further, the number of the nonzero σ̄k,s(hj), satisfying the condition

|l − x/h| ≤ r/2, | j − l| ≤ J, and s ∈ D(I, k), (50)

does not exceed

A(h, k) := r22kh + r + 1

for each j. Indeed, if either 2k(hj+r2h)−s≤0 or 2khj−s ≥ r+1, then �r
hu(Nk,s, hj)=

0, and consequently, by (46) σ̄k,s(hj) = 0. Hence, the estimation (49) can be contin-
ued as

|qk(x)| � 2k/p‖pk( f )‖p r A1/p′
(h, k) max

l, j,s
{Mm,l(x)|σ̄k,s(hj)|}‖�‖ (51)
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where the max is taken over all l, j, s with the restriction (50). From the inequality
∣∣�r

hu(Nk,s, hj)
∣∣ ≤ 2r‖Nk,s‖∞ ≤ 2r

for every h, u, k, s, j, and (46) we obtain

max
s∈D(I,k)

|σ̄k,s(hj)| ≤ (r + 1)2r. (52)

On the other hand, since Nk,s are B-splines of order r′ > r, they are in Wr∞ and have
the rth derivative not exceeding 2r2rk. Hence we have

∣∣�r
hu(Nk,s, hj)

∣∣ ≤ 2r(h2k)r,

and consequently,

max
s∈D(I,k)

|σ̄k,s(hj)| ≤ (r + 1)2r(h2k)r.

Combining the last inequality and (52) gives for each j

max
s∈D(I,k)

|σ̄k,s(hj)| ≤ (r + 1)2r min{1, (h2k)r},

and therefore, the max in (51) can be estimated by

max
l, j,s

{{Jm,l(x)| fk,sσ̄k,s(hj)|} � min{1, (h2k)r} max
l

Mm,l(x), (53)

where the max in the right side is taken over all l such that |l − x/h| ≤ r/2. Notice
that the norm ‖�‖ is an absolute constant and the quantity A(h, k) does not exceed
h2k multiplied by an absolute constant. Hence, by (51) and (53) we have

|qk(x)| � 2k/p(h2k)1/p′
min{1, (h2k)r}‖pk( f )‖p max

l
{Mr(h−1x − l).

From this inequality we derive

‖qk‖p
p =

∫ 1

0
|qk(x)|pdx

� 2k(h2k)p/p′
min{1, (h2k)rp}‖pk( f )‖p

p

∫ 1

0

(
max

l
Mr(h−1x − l)

)p
dx

� 2k(h2k)p/p′
min{1, (h2k)rp}‖pk( f )‖p

ph
∫ 1/h

0

(
max

l
Mr(y − l)

)p
dy

� (h2k)p min{1, (h2k)rp}‖pk( f )‖p
p.

Thus, we have obtained the following estimate for the norms ‖qk‖p:

‖qk‖p � (h2k) min{1, (h2k)r}‖pk( f )‖p,

which together with (47) implies

‖Qm( f − gm)‖p �
∞∑

k=0

(h2k) min{1, (h2k)r}‖pk( f )‖p.
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The last inequality yields

‖2m Qm( f − gm)‖p �
(

m∑

k=0

2r(k−m)‖2k pk( f )‖p +
∞∑

k=m+1

‖2k pk( f )‖p

)
.

Since α > 1, applying the discrete Hardy inequality (35)–(36) gives

‖{2k Qk( f − gk)}‖lα−1
θ (Lp) � ‖{2k pk( f )}‖lα−1

θ (Lp),

or equivalently,

‖{Qk( f − gk)}‖lαθ (Lp) � ‖{pk( f )}‖lαθ (Lp) = B3( f ). (54)

In a way similar to the proof of (54), one can derive that

B1(F, G) � B3(F, G) � B3( f ).

Consequently, from the inequalities (43) and (44) we can see that

‖{ f − gk}‖lαθ (Lp) � ‖{ω(2−k)}‖lαθ

= B1(F, G) � B3( f ), (55)

and

‖{gk − Qk(gk)}‖lαθ (Lp) � ‖{ω(2−k)}‖lαθ

= B1(F, G) � B3( f ). (56)

We now are in position to prove the inequality (39). From the identity (42) and
the inequality

‖{uk + vk}‖lαθ (Lp) ≤ ‖{uk}‖lαθ (Lp) + ‖{vk}‖lαθ (Lp)

for the case 1 ≤ θ ≤ ∞, and the inequality

‖{uk + vk}‖lαθ (Lp) ≤ 21/θ
(‖{uk}‖lαθ (Lp) + ‖{vk}‖lαθ (Lp)

)

for the case 0 < θ < 1, we obtain

‖{ f − Qk( f )}‖lαθ (Lp) � ‖{ f − gk}‖lαθ (Lp) + ‖{gk − Qk(gk)}‖lαθ (Lp)

+ ‖{Qk( f − gk)}‖lαθ (Lp). (57)

Now we can see that (39) is true by (54)–(57).
Further, since ‖qk( f )‖p ≤ ‖ f − Qk( f )‖p + ‖ f − Qk−1( f )‖p, we have

B6( f ) ≤ 2B5( f ). (58)

On the other hand, due to the inequality

‖ f − Qm( f )‖p ≤
∞∑

k=m+1

‖qk( f )‖p,

we receive by the discrete Hardy inequality (35)–(36)

B5( f ) ≤ B6( f ). (59)



Non-linear sampling recovery based on quasi-interpolant wavelet representations 393

Finally, by definition

B4( f ) ≤ B5( f ). (60)

Combining (39) and (58)–(60) completes the proof of Theorem 5. ��

We will deduce from Theorem 5 a quasi-interpolant wavelet representation of
a function in Bα

p,θ in terms of the B-splines Mk,s ∈ M, and a associated discrete
equivalent quasi-norm for the functional coefficients. We assume that the order of
the B-splines Mk,s is r = 2ρ an even natural number.

Let

J(k) := {s ∈ Z : −ρ < s < 2k + ρ}
be the set of s for which Mk,s do not vanish identically on I. We have by (19)

qk( f, x) = Qk( f, x) − Qk−1( f, x)

=
∑

s∈J(k)

ak,s( f )Mk,s(x) −
∑

s∈J(k−1)

ak−1,s( f )Mk−1,s(x), (61)

From the equation (10) it follows that

Mk−1,s(x) = 2−r+1
r∑

s′=0

(
r
s′

)
Mk,s+s′−ρ(x).

Hence, we get for each x ∈ I

∑

s∈J(k−1)

ak−1,s( f )Mk−1,s(x) = 2−r+1
∑

s∈J(k−1)

ak−1,s( f )

r∑

s′=0

(
r
s′

)
Mk,s+s′−ρ(x)

=
∑

s∈J(k)

a′
k,s( f )Mk,s(x),

where

a′
k,s( f ) := 2−r+1

s+3ρ∑

j=s+ρ

(
r

j − s − ρ

)
ak−1, j( f ).

The last equation and (61) give

qk( f, x) =
∑

s∈J(k)

ck,s( f )Mk,s(x), (62)

where for s ∈ J(k)

ck,s( f ) :=
{

ak,s( f ), if 2k−1 + ρ ≤ s < 2k + ρ,

ak,s( f ) − a′
k,s( f ), if − ρ < s < 2k−1 + ρ.

(63)

Let Mk := { Mk,s }s∈J(k) and �∗
k be the space spanned by Mk. If 1 ≤ q ≤ ∞, for all

non-negative integers k and all functions

g =
∑

s∈J(k)

as Mk,s
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from �∗
k, there is the norm equivalence

‖g‖q � 2−k/q‖{as}‖q, (64)

where

‖{as}‖p :=
(
∑

s∈J(k)

|as|p

)1/p

.

From the last relation, (62) and Theorem 5 we obtain

Corollary 1 Under the assumptions of Theorem 5 let r = 2ρ be an even natural
number. A function f on I belongs to the Besov space Bα

p,θ if and only if f has a
quasi-interpolant wavelet representation

f =
∞∑

k=0

qk( f ) =
∞∑

k=0

∑

s∈J(k)

ck,s( f )Mk,s (65)

with the convergence in the space Bα
p,θ , and in addition the quasi-norm of the Besov

space B( f ) is equivalent to the discrete quasi-norm

B7( f ) :=
( ∞∑

k=0

(
2(α−1/p)k‖{ck,s( f )}‖p

)θ
)1/θ

.

Remark From (20) and (63) we can see that for each pair k, s the coefficient
ck,s( f ) in the decomposition (65) is a function of the values f (2−k(s − j)), and
f (2−k+1(s′ − j)), | j| ≤ J, s′ = s − ρ, s − ρ + 1, ..., s + ρ. The number of these values
does not exceed 2J + r.

3 Non-linear sampling recovery of functions

3.1

Before constructing the non-linear sampling recovery methods based on quasi-
interpolant wavelet representations, we will briefly consider a linear sampling recov-
ery method using a quasi-interpolant Qk for C(I), given in (19)–(20). We will show
that it is a linear sampling method of recovery with nice approximation and local
properties. In this section, we assume that the order of the B-splines Mk,s is r = 2ρ

an even natural number.
We have

Qk( f, x) :=
∑

s∈J(k)

ak,s( f )Mk,s(x) (66)

where we recall that J(k) := {s ∈ Z : −ρ < s < ρ2k + ρ} is the set of s for which Mk,s

do not vanish identically on I, and the coefficients ak,s( f ) are given in (20).
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The formula (66) defines a linear sampling method of recovery of a function f
from its sampled values f (2−k j), j ∈ Z (k), where

Z (k) := {s ∈ Z : −J + ρ < s < 2k + J + ρ}.

The number of sampled values is |Z (k)| which does not exceed 2k + 2J + r + 1.

As mentioned above, for each pair k, s the coefficient ak,s( f ) is a linear combi-
nation of the values f (2−k(s − j)), | j| ≤ J, and maybe, f (2−k j) for j = 0, 1, ..., r − 1
or j = 2k − r + 2, 2k − r + 3, ..., 2k, if the point 2−ks is near to the ends 0 or 1 of the
interval I, respectively. Moreover, the number of these values does not exceed the
2J + r and not depend on neither functions f and nor k.

It is easy to see that for a given point x ∈ I, we have

Qk( f, x) =
∑

|2−ks−x|<2−kρ

ak,s( f )Mk,s(x).

Hence, the points 2−k j, j ∈ Z (k), at which the sampled values are taken in the linear
sampling method (19) for recovering f (x), are in the neighborhood of x

U(x) := {y ∈ I : |y − x| < 2−k(J + ρ)
}

whose size does not depend on x, and is 2−k multiplied by an absolute constant. The
number of these points does not exceed 2J + r. This shows that the linear sampling
recovery method (19) possesses a good local property.

We recall that Uα
p,θ denote the unit ball in Bα

p,θ . For 1 ≤ p, q ≤ ∞ and α > (1/p −
1/q)+, the space Bα

p,θ is embedded into the space Bα−(1/p−1/q)+
q,θ , that is,

Uα
p,θ ⊂ μUα−(1/p−1/q)+

q,θ

with a multiplier μ. Hence, by Theorem 5 we obtain the following estimates of the
error for the linear sampling recovery method Qk( f ) in (19):

Corollary 2 Under the assumptions of Theorem 5 let r = 2ρ be an even natural
number. Then there is the inequality

sup
f∈Uα

p,θ

‖ f − Qk( f )‖q ≤ C2−(α−(1/p−1/q)+)k, (67)

and the number of sampled values of a function in Qk( f ) does not exceed λ2k with
some absolute constants C and λ. Moreover, the linear sampling method Qk( f ) with
n � λ2k ≤ n, is asymptotically optimal for γn(Uα

p,θ )q and �n(Uα
p,θ )q.

3.2

Let us first establish the upper bound of νn(Uα
p,θ , M)q in (6) of Theorem 2 for the most

difficult and interesting case where 1 ≤ p < q ≤ ∞. In this case a linear sampling
recovery method does not work and therefore, we should construct a non-linear one.
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Recall that

M :=
∞⋃

k=0

Mk = {Mk,s : (k, s) ∈ K∗},

is the family of B-spline wavelets Mk,s which do not vanish identically on I, where

K∗ := {(k, s) : s ∈ J(k), k = 0, 1, 2, ...}.
Let

D∗ := {ξk,s = 2−ks : (k, s) ∈ K∗}

be the set of dyadic points indexed by K∗.
For each function f ∈ Uα

p,θ , we will choose a triple of a sequence ξ = {ξ j}n
j=1 of n

points in D∗, a sequence a = {a j}n
j=1 of n functions defined on R

n and a sequence
{Mk j,s j}n

j=1 of n B-spline wavelets from M. This choice will define a non-linear
sampling method of recovery of f from its values f (ξ s), s = 1, 2, ..., n by

Sn( f, x) :=
n∑

j=1

a j( f (ξ 1), ..., f (ξn)Mk j,s j(x).

To establish the upper bound of (6) for the case where 1 ≤ p < q ≤ ∞, we will show
that such a Sn can be explicitly constructed so that there hold the inequalities

νn

(
Uα

p,θ , M
)

q
≤ sup

f∈Uα
p,θ

‖ f − Sn( f )‖q � n−α.

From embedding theorems (see [1]) it follows that the space Bα
p,θ can be consid-

ered as a subspace of the largest space Bα
p,∞. Hence, it is sufficient to construct Sn

for U := Uα
p,∞. It will be constructed on the basic of the following representation of

functions from U.

Corollary 1 says that for arbitrary positive integer m, a function f ∈ U can be
represented by a series

f = Qm( f ) +
∑

k>m

qk( f ) (68)

with the functions

qk( f ) :=
∑

s∈J(k)

ck,s( f )Mk,s(x) (69)

from the subspace �∗
k and ck,s( f ) given in (63). Moreover, qk satisfy the condition

‖qk( f )‖p � 2−k/p‖{ck,s( f )}‖p, � 2−αk, k = m + 1, m + 2, ... (70)

Our strategy of using the representation (68)–(69) for construction of a recovery
approximant Sn( f ) is as follows. We will choose two appropriate integers k̄ and k∗.
Then we take the quasi-interpolant Qk̄( f ) as the main linear part of Sn( f ). The
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non-linear part is constructed as a sum of greedy algorithms Gk with regard to the
representations (69) for non-linear approximation of each component function qk( f )

in the subspaces �∗
k, k = 0, 1, ... for k̄ < k ≤ k∗.

Let mk := |J(k)| = 2k + 2ρ − 1 be the number of elements of Mk. We define a
integer k̄ from the condition

(2J + r)mk̄+2 ≤ n < (2J + r)mk̄+3. (71)

Next, we will select an integer k∗ and a sequence of non-negative integers {nk}k∗
k=k̄+1

such that

(2J + r)mk̄ + (2J + r)
k∗∑

k=k̄+1

nk ≤ n. (72)

To do this we fix a number ε satisfying the inequalities

0 < ε < (α − δ)/δ, (73)

where 0 < δ := 1/p − 1/q < α. Then an appropriate selection of k∗ and {nk}k∗
k=k̄+1

is

k∗ := [
ε−1 log(λn)

]+ k̄ + 1. (74)

and

nk = [
λn2−ε(k−k̄)

]
, k = k̄ + 1, k̄ + 2, ..., k∗, (75)

with a positive constant λ chosen such that there holds the inequalities (72) and nk <

mk. Here [t] denotes the integer part of t ∈ R.

Thus, the integers k̄ and k∗ as well the sequence {nk}k∗
k=k̄+1

have selected. We are
now in position to construct a non-linear sampling recovery method which will give
the upper bound of (6) for the case where 1 ≤ p < q ≤ ∞.

For a non-linear approximation of qk( f ) we define the greedy algorithms Gk with
regard to the decomposition (69) in the subspace �∗

k as follows. We reorder the
indexes s ∈ J(k) as {s j}mk

j=1 so that

|ck,s1( f )| ≥ |ck,s2( f )| ≥ · · · |ck,sn( f )| ≥ · · · |ck,mk( f )|,

and then take the first largest n term for a non-linear approximation of qk( f ) by
forming the linear combination

Gk(qk( f )) :=
nk∑

j=1

ck,s j( f )Mk,s j . (76)

The worst case error of this approximation for all f ∈ U is

sup
f∈U

‖qk( f ) − Gk(qk( f ))‖q � 2−αk2δkn−δ
k . (77)
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Indeed, we have (see [15])
⎛

⎝
mk∑

j=nk+1

|ck,s j( f )|q
⎞

⎠
1/q

≤ n−δ
k ‖{ck,s( f )}‖p. (78)

By the norm equivalence (64) and (70), we derive

‖qk( f ) − Gk(qk)‖q = ‖
mk∑

j=nk+1

ck,s j( f )Mk,s j‖q

� 2−k/q

⎛

⎝
mk∑

j=nk+1

|ck,s j( f )|q
⎞

⎠
1/q

� 2−k/qn−δ
k ‖{ck,s( f )}‖p

� 2−αk2δkn−δ
k .

Thus, (77) has been verified.
We define the non-linear operator S∗

n by

S∗
n( f, x) := Qk̄( f, x) + G∗

n( f, x)

where

G∗
n( f, x) :=

k∗∑

k=k̄+1

Gk(qk( f ), x).

By (66) and (76) we have

S∗
n( f, x) =

∑

s∈J(k̄)

ak,s( f )Mk,s(x) +
k∗∑

k=k̄+1

nk∑

j=1

ck,s j( f )Mk,s j(x). (79)

Thus, S∗
n is a sum of the linear quasi-interpolant Qk̄ and non-linear operator G∗

n.

The last one is the sum of the greedy algorithms Gk in the subspaces �∗
k. Since the

number of the sampled values determining each coefficient ak,s( f ) or ck,s( f ) in (79)
does not exceed 2J + r, by (72) the total number of sampled values determining
all the coefficients ak,s( f ) and ck,s( f ) in (79) does not exceed n and consequently,
we can consider ck,s( f ) and ak,s( f ) as a function of values of f at certain n points.
Further, also by (72) the number of B-spline wavelets Mk,s ∈ M in (79) does not
exceed n. This means that S∗

n is a non-linear sampling recovery method of the form
(5) with regard to the family of B-spline wavelets M and with the sampled values at
points in D∗.

Since

S∗
n( f ) = Qk̄( f ) +

k∗∑

k=k̄+1

Gk(qk( f )),

we obtain by (68)

f − S∗
n( f ) =

k∗∑

k=k̄+1

{qk − Gk(qk( f ))} +
∑

k>k∗
qk( f ).
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From (70), (64) and (77), one can derive that for each function f ∈ U

‖ f − S∗
n( f )‖q ≤

k∗∑

k=k̄+1

‖qk( f ) − Gk(qk( f ))‖q +
∑

k>k∗
‖qk( f )‖q

�
k∗∑

k=k̄+1

2−αk2δkn−δ
k +

∑

k>k∗
2−αk2δk.

By using (71), (73)–(74) and the inequalities α > 1 ≥ δ, we can continue the last
inequality as follows

� n−δ2−(α−δ)k̄
k∗∑

k=k̄+1

2−(α−δ+δε)(k−k̄) + 2−(α−δ)k∗ ∑

k>k∗
2−(α−δ)(k−k∗)

� n−δ2−(α−δ)k̄ + 2−(α−δ)k∗

� n−α.

Thus, we have proven the following theorem.

Theorem 6 The non-linear sampling recovery method S∗
n given in (79) is of the form

(5) for the family � = M. Moreover, it gives the upper bound of (6) in Theorem 2 for
the case where 1 ≤ p < q ≤ ∞. Namely, there are the following upper estimates

νn

(
Uα

p,θ , M
)

q
≤ sup

f∈Uα
p,θ

‖ f − S∗
n( f )‖q � n−α.

3.3

Proof of Theorem 2 The upper bound of (6) for the case where 1 ≤ p < q ≤ ∞ is
in Theorem 6 and can be obtained from (67) in Corollary 2 by applying the linear
sampling recovery method (19) for the case where 1 ≤ q ≤ p ≤ ∞. Let us prove the
lower bound.

We define the quantity of n-term approximation σn

(
Uα

p,θ , M
)

q
of Uα

p,θ in the Lq-

norm with regard to M by

σn

(
Uα

p,θ , M
)

q
:= sup

f∈Uα
p,θ

inf
ϕ∈�n(M)

‖ f − ϕ‖q

as the worst case error of the approximation of f ∈ Uα
p,θ in the Lq-norm by elements

from the set

�n(M) :=
⎧
⎨

⎩ϕ =
n∑

j=1

a jMk j,s j : (k j, s j ) ∈ K∗

⎫
⎬

⎭ .

Obviously,

νn

(
Uα

p,θ , M
)

q
≥ σn

(
Uα

p,θ , M
)

q
.
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Then the lower bound of (6) in Theorem 2 immediately follows from the last
inequality and the lower bound for σn(Uα

p,θ , M)q established in [14, 15]:

σn

(
Uα

p,θ , M
)

q
� n−α.

��
3.4

Some remarks As mentioned in Introduction the investigation of computation com-
plexity and cost of asymptotically optimal non-linear sampling recovery methods
(algorithms) for νn in comparing with asymptotically optimal linear methods and
non-linear methods for λn, γn and ρn, is of great interest.

Theorem 2 is proven for univariate functions with the restrictions 1 ≤ p, q ≤ ∞
and α > 1. It is natural to extend it to the case 0 < p, q ≤ ∞ and α ≥ 1/p, and
generalize it for multivariate functions on the cube [0, 1]d or more general, on a
Lipschitz domain as in [20] for the quantities λn(W)q and ρn(W)q.

Unlike λn(W)q, ρn(W)q and γn(W)q and depending on the family �, the quantity
νn(W,�)q is not absolute in the sense of n-widths or optimal methods. Similarly an
approach to the quantity of n-term approximation σn(W, �)q (see [24] for details),
one can consider the quantity

νn(W,B)q := inf
�∈B

νn(W,�)q,

for a collection B of families � with a given property, and find reasonable restrictions
to have nontrivial lower bounds of νn(W,B)q.

Some of these problems will be discussed in a forthcoming paper.
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