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Abstract Biharmonic equations have many applications, especially in fluid and
solid mechanics, but is difficult to solve due to the fourth order derivatives in the
differential equation. In this paper a fast second order accurate algorithm based on a
finite difference discretization and a Cartesian grid is developed for two dimensional
biharmonic equations on irregular domains with essential boundary conditions. The
irregular domain is embedded into a rectangular region and the biharmonic equation
is decoupled to two Poisson equations. An auxiliary unknown quantity �u along
the boundary is introduced so that fast Poisson solvers on irregular domains can be
used. Non-trivial numerical examples show the efficiency of the proposed method.
The number of iterations of the method is independent of the mesh size. Another
key to the method is a new interpolation scheme to evaluate the residual of the
Schur complement system. The new biharmonic solver has been applied to solve the
incompressible Stokes flow on an irregular domain.
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1 Introduction

In this paper, we consider a biharmonic equation defined on an irregular domain �

�2u(x, y) = f (x, y), (x, y) ∈ �,

u(x, y) = g1(x, y), (x, y) ∈ ∂�,

un(x, y) = g2(x, y), (x, y) ∈ ∂�, (1.1)

where

�2 ≡ ∇4 = ∂4

∂x4
+ 2

∂4

∂x2∂y2
+ ∂4

∂y4
, (1.2)

� is a bounded open set in R2 with a smooth boundary ∂�, un = ∂u
∂n is the normal

derivative of u on ∂�, and n is the unit normal derivative pointing outward, see Fig. 1
for an illustration.

Biharmonic equations arise in many applications. Classical examples can be found
in elasticity, fluid mechanics, and many other areas. In fluid mechanics, the solution
u(x, y) of equation (1.1) can be used to describe the stream-function of an incom-
pressible two-dimensional creeping flow (zero Reynolds number), see Section 5 and
[6, 16] for example. In linear elasticity, u(x, y) can be used to represent the airy stress
function, see [35]. In the theory of thin plates, equation (1.1) can be used to represent
a “clamped plate” where f is the external load, and the solution u(x, y) is the vertical
displacement.

Fig. 1 A diagram of the
problem: a biharmonic
equation on an irregular
domain
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If the second boundary condition in (1.1) is replaced by �u|∂� = g2(x, y), then
the biharmonic equation can be decoupled as two Poisson equations with a Dirichlet
boundary condition on the same irregular domain

{
�v(x, y) = f (x, y), (x, y) ∈ �,

v(x, y)|∂� = g2(x, y),
(1.3)

{
�u(x, y) = v(x, y), (x, y) ∈ �,

u(x, y)|∂� = g1(x, y).
(1.4)

This observation is one of basis of our numerical method in which we set �u|∂� as
an intermediate variable. It is much more difficult to solve the problem when un is
prescribed along ∂�.

Various numerical methods have been developed for biharmonic equations in the
literature when u and un are prescribed along ∂�. One approach is to use a body fitted
mesh with a finite element discretization. The discrete system then can be solved
using a multigrid method, see [2, 5, 12, 34] for example. There is not much difference
between regular or irregular domains in finite element methods except for the cost in
the mesh generation and the condition number of the discrete system of equations.

There are limited publications on finite difference methods for biharmonic equa-
tions on irregular domains, even fewer with convincing numerical examples. Most of
the finite difference methods appeared in the literature are for biharmonic equations
on regular (rectangular and circular) domains. For certain domains, a conforming
mapping can be used to solve the biharmonic equations defined on the domains
[3]. Among a few finite difference methods for biharmonic equations on irregular
domains, the remarkable ones are the fast algorithms based on integral equations
and/or the fast multipole method [9, 23, 24]. These methods are most effective for
homogeneous source term ( f (x, y) = 0) and the boundary conditions ( u|∂� = g1 and
un|∂� = g2 in (1.1)) are replaced by the values of ux and uy along the boundary. These
methods probably still can be applied with some extra efforts for non-homogeneous
source terms and the essential boundary condition in (1.1). The implementations of
these methods, especially when they are coupled with the fast multipole method,
however, are not trivial.

In this paper, we propose a finite difference method for biharmonic equations
based on the fast Poisson solver on irregular domains [19], the embedding technique,
and an augmented approach for the decoupled two Poisson equations. The irregular
domain is embedded in a rectangle and the biharmonic equation is augmented with
an intermediate unknown �u along the boundary ∂� which is a one-dimensional
quantity. We use the GMRES iterative method to solve the discrete unknown �u|∂�.
Each iteration involves solving two Poisson equations on the same irregular domain,
which we use the available package of the immersed interface method, and a specially
designed interpolation scheme to evaluate the residual. The irregular boundary
is expressed in terms of a level set function. Non-trivial examples show that the
method has second order accuracy in the infinity norm. The number of iterations is a
small constant independent of the mesh size. The proposed method works for other
type boundary conditions and three dimensional biharmonic equations on irregular
domains.
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1.1 A brief review of related finite difference methods

Under the assumption that u(x, y) is a classical solution of the biharmonic problems
(i.e., u ∈ C4(�)

⋂
C1(�̄) and u has piecewise continuous second order derivatives on

∂�). A popular technique is the so called coupled equation approach,{
�u(x, y) = v(x, y), (x, y) ∈ �,

u(x, y)|∂� = g1(x, y),
(1.5)

{
�v(x, y) = f (x, y), (x, y) ∈ �,

v(x, y)|∂� = �u(x, y)|∂� − c (un|∂� − g2(x, y)) ,
(1.6)

where c is a constant, see [7, 25, 30, 31] and others. If we give an initial guess v(x, y),
then an iteration can be generated until u(x, y) converges. In [25], the coupling
constant c is taken such that 0 < c < 2ν1, where ν1 is the smallest eigenvalue of the
Dirichlet eigenvalue problem. When � is a rectangular domain, this formulation
can lead to an iterative scheme which converges for all sufficiently small values
of c. In this case, the two Poisson equations can be solved by a fast Poisson solver,
for example, the Fishpack on rectangular domains [33]. However, for an irregular
domain, it is also challenging to solve Poisson equations efficiently.

One can also try to discretize (1.1) on a uniform grid directly. The classical 13-
point stencil for the biharmonic operator is most easily derived by applying the
standard 5-point Laplace’s operator twice

�2
13ui, j = L5(L5ui, j) = 2

h4
(20ui, j − 8(ui+1, j + ui−1, j + ui, j+1 + ui, j−1)

+ 2(ui+1, j+1 + ui−1, j+1 + ui−1, j−1 + ui+1, j−1)

+ (ui+2, j + ui−2, j + ui, j+2 + ui, j−2)). (1.7)

The local truncation error is order of h2. The finite difference approximation above
needs to be modified at grid points near the boundary. One popular choices is the
quadratic extrapolation where the normal derivative boundary condition at the grid
points near the boundary are used to extrapolate the ‘missing’ (exterior) point in the
13 point stencil. This results in a stencil of the form:

�2ui, j = 2

h4
(21ui, j − 8(ui+1, j + ui−1, j + ui, j+1 + ui, j−1)

+ 2(ui+1, j+1 + ui−1, j+1 + ui−1, j−1 + ui+1, j−1)

+ (ui+2, j + ui, j+2 + ui, j−2)) + 2hun(xi−1, yj), (1.8)

when the irregular point uij is adjacent to the left boundary.
Glowinski and Pironneau [8] made the observation that the 13-point finite differ-

ence scheme combined with a quadratic extrapolation formula near the boundary is
equivalent to solving the biharmonic equation using a mixed finite element method
with piecewise linear elements.

Many similar modifications are discussed in [11]. Proper treatment of the
points near the boundary remains a challenging problem with these schemes since
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inaccurate boundary approximations may affect the accuracy, but too complicated
boundary approximations may destroy the matrix structure.

There are other alternative finite difference approximations for the biharmonic
operator. Certain second and fourth-order finite difference approximations for the
biharmonic equation (1.1) on a 9-point compact stencil are given in [32]. The
approach there involves discretizing the biharmonic equation (1.1) using not only
the grid values of the unknown solution u(x, y) but also the values of the gradients
ux(x, y) and uy(x, y) at selected grid points.

The standard iterative methods suffer from slow convergence when used to solve
the system of finite difference equations for biharmonic equations, see for example,
[10]. Direct solvers can only be used for relatively coarse grids. Bjørstad [27] had
introduced a new iterative method that requires only O(N2) arithmetic operations
on a rectangular domain, where N is the number of grid lines in one coordinate
direction.

Due to the difficulties in handling the finite difference approximation close to
a curved boundary, all the finite difference methods discussed above are restricted
to rectangular domains. It is the purpose of this paper to provide an efficient finite
difference method for biharmonic equations on irregular domains. An advantage
using a Cartesian grid instead of a body fitted grid is that there is almost no cost
in the grid generation which is significant for free boundary and moving interface
problems that involve solving a biharmonic equation.

The paper is organized as follows. In Section 2, we introduce the main algorithm
and the fast Poisson solver for irregular domains. The interpolation scheme to
evaluate the residual of the Schur complement system is explained in Section 3.
Numerical examples with grid refinement and efficiency analysis are presented in
Section 4. The application to the incompressible Stokes flow is presented in Section 5.

2 The numerical method based on an augmented approach

Consider the solution of the following problem{
�v(x, y) = f (x, y), (x, y) ∈ �

v(x, y)|∂� = g(x, y),

{
�u(x, y) = v(x, y), (x, y) ∈ �

u(x, y)|∂� = g1(x, y).

(2.9)

The solution apparently is a functional of g(x, y) which is defined only along the
boundary ∂�. We denote the solution as ug(x, y) to express the dependency of the
solution on g(x, y).

Let the solution of the original problem (1.1) be u∗(x, y), and define

g∗(x, y) = �u∗(x, y), (x, y) ∈ ∂�. (2.10)

Then u∗(x, y) satisfies the second Poisson equation in (1.1) with g(x, y) ≡ g∗(x, y). In
other words, ug∗(x, y) ≡ u∗(x, y) and

∂u∗(x, y)

∂n

∣∣∣∣
∂�

= g2(x, y) (2.11)
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is satisfied. Therefore, solving the original problem (1.1) is equivalent to finding the
corresponding g∗(x, y) and then ug∗(x, y) in (2.9). Notice that g∗(x, y) is only defined
along the boundary, so it is one dimensional lower than the solution u(x, y).

We call g(x, y) an augmented (intermediate) variable along the boundary. The
auxiliary equation then is

∂ug(x, y)

∂n

∣∣∣∣
∂�

= g2(x, y). (2.12)

Therefore the system is still closed since we have one more variable and one more
equation.

The idea is to start with a guess g(k)(x, y) as an approximation to g∗(x, y). Once we
know g(k)(x, y), we can solve the two Poisson equations in (2.9) to get the solution
u(k)

g (x, y). From the residual equation (2.12), we hope to get a better approximation
g(k+1)(x, y). The process will become clearer after we discretize the system (2.9) and
(2.12) in this section.

2.1 The computational frame

We embed the irregular domain into a rectangular domain R : [a, b ] × [c, d] ⊃ �.
The original boundary ∂� then becomes an interface within R. We solve the two
Poisson equations in (2.9) on a uniform Cartesian grid

xi = a + ih, 0 ≤ i ≤ m,

y j = c + jh, 0 ≤ j ≤ n, (2.13)

where, for simplicity, we assume that h = (b − a)/m = (d − c)/n. The boundary ∂�

is expressed as the zero level set of a two dimensional function ϕ(x, y) defined on the
entire rectangular region

ϕ(x, y)

⎧⎪⎪⎨
⎪⎪⎩

> 0, if (x, y) ∈ R − �,

= 0, if (x, y) ∈ ∂�,

< 0, if (x, y) ∈ �.

(2.14)

There are a number of advantages using the level set method especially for
complicated geometries and high dimensions. We refer the readers to [26, 29] for
more information on the level set method.

The level set function is defined at all grid points by ϕij = ϕ(xi, yj). It is important
that ϕ(x, y) is a good approximation to the signed distance function at least in
the neighborhood of the boundary ∂�. If the level set function is not a good
approximation to the signed distance function, then a re-initialization is needed to
make it a good approximation to the signed distance function, see [13–15] for the
re-initialization process.

Using the grid function ϕij, all the grid points can be classified as regular (away
from the boundary ∂�) or irregular (close to or on the boundary ∂�) grid points.
Given a grid point (xi, yj), define

ϕmax
ij = max{ϕi−1, j, ϕi+1, j, ϕi, j−1, ϕi, j+1, ϕi, j},

ϕmin
ij = min{ϕi−1, j, ϕi+1, j, ϕi, j−1, ϕi, j+1, ϕi, j}. (2.15)
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A grid point (xi, yj) is irregular for our problem if

ϕmax
ij ϕmin

ij ≤ 0 (2.16)

is true. Otherwise the grid point is regular.

2.2 The orthogonal projections of irregular grid points on the boundary

The augmented variable g(x, y) and the augmented equation (2.12) are only defined
along the boundary ∂�. We need to discretize the augmented variable and the
equation at certain points along the boundary. Those points are chosen as the
orthogonal projection of the interior irregular grid points on the boundary, see Fig. 2
for an illustration.

Let xij = (xi, yj) be an interior irregular grid point which means ϕij ≤ 0, and
ϕmax

ij ϕmin
ij ≤ 0. The orthogonal projection of xij is approximated by the solution of the

following quadratic equation:

X∗ = x + α p, p = ∇ϕ

|∇ϕ| , (2.17)

where α is determined from the quadratic equation below:

ϕ(x) + |∇ϕ| α + 1

2

(
pT He(ϕ) p

)
α2 = 0, (2.18)

where He(ϕ) is the Hessian matrix of the level set function ϕ(x, y). All the quantities
are defined at the interior grid point xij = (xi, yj) (ϕij ≤ 0) and are evaluated using the
second order central finite difference scheme. The orthogonal projection computed
using this procedure has third order accuracy.

a

j

j+1

j–4

j–3

j–2

j–1

i+2i+1ii–1i–2

n

(x*, y*)

b

j

j+1

j–4

j–3

j–2

j–1

i+2i+1ii–1i–2

n

(x*, y*)

Fig. 2 Two illustrative examples of the orthogonal projection (x∗, y∗) of irregular grid points on the
boundary, and the selected grid points for interpolation scheme at the projection to get ∂u(X∗)

∂n
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We will denote these orthogonal projections of the interior irregular grid points by
Xk = (x∗, y∗), k = 1, 2, · · · , Nb , and will omit the dependency on the grid points for
simplicity of the notation. These orthogonal projections are not ordered and there
is no need to do so. The auxiliary variable g(x, y) is discretely defined at Xk. The
augmented equation (2.12) is going to be discretized at Xk as well. We use the upper
case letters such as Uij, Vij, Gk, for the discrete approximations at grid points and at
those orthogonal projections on the boundary respectively.

2.3 The fast Poisson solver on irregular domains

The fast Poisson solver for irregular domains used to solve the two Poisson equations
in (2.9) is based on the fast immersed interface method (IIM) developed in [18] and
a modified version developed in [13, 14, 22]. The modification is needed because
the original IIM in [17, 18] is designed for interface problems that are defined in
the entire domain with discontinuities occur at the interface. The main idea of the
fast Poisson solver on an irregular domain is to extend the Poisson equation to a
rectangular domain R ⊃ �. This procedure allows us to use fast Poisson solvers on
a fixed Cartesian grid on the rectangular domain, for example, the Fishpack [33]. A
short review on fast Poisson solvers on irregular domain can be found in [18].

The fast Poisson/Helmholtz solvers for interior/exterior problems with the bound-
ary represented by the zero level set of a two dimensional function are available
to the public [19]. We use the one designed for interior Helmholtz equations. The
package also provides the orthogonal projections Xk of the interior irregular grid
points, as well as the tangential and normal directions of the boundary ∂� at those
projections.

2.4 The discrete system of equations in matrix vector form

Given a discrete approximation of g(x, y) to the Laplacian �u|∂� along the boundary
at those orthogonal projections Xk, we can use the fast Poisson solver mentioned
above to solve the two Poisson equations in (2.9) to get ug(x, y). We denote the
vector of the discretized values of Uij (from the interior grid points) by U; and the
vector of the discretized values of g(x, y) at the orthogonal projections of the interior
irregular grid points by G. The discrete from (2.9) can be written as

AU + BG = F1 (2.19)

for some vector F1 and matrices A and B.1 It requires solving two Poisson equations
on the same irregular domain � with different Dirichlet boundary conditions to get
the solution U.

Once we know the solution U of the augmented system (2.9) given G, we
can interpolate Uij linearly to get ∂u

∂n at those projections Xk, 1 ≤ k ≤ Nb . The

1Actually, the discrete form of the first equation in (2.9) can be written as A1V = F + E1G for
some matrices A1 and E1; and the second equation can be written as A1U = V + E1G1. Therefore
we have A2

1U = F + E1G + A1 E1G1. However, the matrices A1, E1, A, and B are used only for
theoretical purposes and never formed explicitly. It would take more time and storage to compute
these matrices than to solve the two Poisson equations on irregular domain directly.
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interpolation scheme is crucial to the success of our algorithm and will be explained
in detail in the next section. Therefore we can write

∂U
∂n

∣∣∣∣
∂�

= CU

= CA−1 (F1 − BG) = CA−1F1 − CA−1 BG, (2.20)

where C is a sparse matrix determined by the interpolation scheme. The matrices
and vectors are only used for theoretical purposes but not actually constructed in our
algorithm. We need to choose such a vector G that the second boundary condition
∂u
∂n |∂� = g2(x, y) is satisfied along the boundary ∂�. Therefore we have the second
matrix vector equation

∂U
∂n

∣∣∣∣
∂�

= CA−1F1 − CA−1 BG = G2, (2.21)

where G2 is the vector formed from the boundary condition ∂u
∂n |∂� = g2(x, y) at Xk,

1 ≤ k ≤ Nb . Rewrite the equation above as

EG = G2 − CA−1F1 = F2, (2.22)

where E = −CA−1 B and F2 = G2 − CA−1F1. If we put the two matrix–vector
equations (2.19) and (2.22) together we get

[
A B
0 E

] [
U
G

]
=

[
F1

F2

]
. (2.23)

Note that G is defined only on a set of points Xk while U is defined at all interior
grid points. Let Nin be the total number of the grid points in the interior or on its
boundary ∂�, then we should have O(N2

b ) ∼ O(Nin).
The linear system of equations (2.23) is the result of one step of block Gaussian

elimination of the following linear system of equations

[
A B
C 0

] [
U
G

]
=

[
F1

G2

]
, (2.24)

which are the two the linear systems of (2.19) and (2.20) (the first line). The Schur
complement linear system of equations above is

(
0 − CA−1 B

)
G = G2 − CA−1F1 or EG = F2. (2.25)

If we can solve for the system above to get G, then we can get U easily. Because the
dimension of G is much smaller than U, we expect to get a reasonably fast algorithm
for the biharmonic equation on irregular domains if we can solve (2.25) efficiently. In
implementation, we use the GMRES [28] to solve (2.25). The GMRES method only
requires the matrix vector multiplication. We explain below why we do not need to
form the matrix E explicitly.



122 G. Chen et al.

First we set G = 0 and solve the two Poisson equations in (2.9), or (2.19) in the
discrete form, to get U(0) which is A−1F1 from (2.19). Note that the residual of the
Schur complement for G = 0 is

R(0) = E 0 − F2 = −G2 + CA−1F1

= −G2 + CU(0) = −G2 + ∂U(0)

∂n

∣∣∣∣
∂�

(2.26)

which gives the right hand side of the Schur complement system with an opposite
sign. The matrix–vector multiplication of the Schur complement system given G is
obtained from the following two steps:

Step 1: Solve the two Poisson equations in (2.9), or (2.19) in the discrete form, to
get U(G).

Step 2: Interpolate U(G) to get ∂U(G)

∂n |∂�. Then the matrix vector multiplication is

EG = ∂U(G)

∂n

∣∣∣∣
∂�

− ∂U(0)

∂n

∣∣∣∣
∂�

. (2.27)

This is because

EG = −CA−1 BG = −C
(

A−1F1 − U
)

= −CU(0) + CU(G) = ∂U(G)

∂n

∣∣∣∣
∂�

− ∂U(0)

∂n

∣∣∣∣
∂�

from the equalities E = −CA−1 B, AU + BG = F1, and U(0) = A−1F1.

Now we can see that a matrix vector multiplication is equivalent to solving the
two Poisson equations in (2.9), or (2.19) in the discrete form, to get U, and using
an interpolation scheme to get ∂U

∂n |∂� at the orthogonal projections of the interior
irregular grid points.

The computational complexity per GMRES step is two-calls to a fast Poisson
solver and Nin calls to an interpolation scheme to compute the residual at inside ir-
regular grid points near the boundary. In our implementation, we use the subroutine
from Fishpack [1] which requires O(N log(N)) operations, where N is the number
of interior grid points of the embedded domain. The interpolation scheme requires
O(Nin) operations which is negligible compared with O(N log(N)).

We could form the matrix E by choosing G = Gi = ei, i = 1, 2, · · · , eNin , where ei

is the unit ith directional vector. Then we can use the Gaussian elimination method
to solve the linear system of equations. The cost would be O(Nin N log(N)) to form
the matrix and O(N3

in/3) to solve the linear system of equations, where Nin is the
number of points on the irregular boundary where the G is defined. The approach of
generating the coefficient matrix is much more expensive than that using the GMRES
method directly.

In the GMRES iteration, the initial guess is chosen as zero vector. The GMRES
iterative method is insensitive to the initial guess.

The original idea of the augmented strategy for interface problems was proposed
in [18] for elliptic interface problems with a piecewise but discontinuous coeffi-
cient. With a little modifications, the augmented developed in [18] was applied to
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generalized Helmholtz including Poisson equations on irregular domains in [14, 22].
The augmented approach for the incompressible Stokes equations with a discontin-
uous viscosity is presented in [20, 21].

There are at least two motivations to use augmented strategies. The first one is
to get a faster algorithm compared to a direct discretization, particularly to take
advantages of existing fast solvers. The second reason is that, for some interface
problems, an augmented approach may be the only way to derive an accurate
algorithm. This will be illustrated through the augmented immersed interface method
for incompressible Stokes equations in which the jump conditions for the pressure
and the velocity are coupled together. The augmented techniques enable us to
decouple the jump conditions so that the idea of the immersed interface method
can be applied.

Using augmented strategies, some augmented variable g of co-dimension one
will be introduced. Once we know the augmented variable, it is relatively easy
to solve the original problem. In discretization the approximate solution (denoted
by U) to the original problem and the augmented variable g together form a large
linear system. If we eliminate U from the matrix vector equations, we will get the
Schur complement system for the augmented variable, which is generally much
smaller than that for U. Therefore we can use the GMRES iterative method [28]
to solve the Schur complement for the augmented variable. In implementation,
there is no need to explicitly form the matrices. The matrix–vector multiplication
needed for the GMRES iteration includes mainly two steps: (1) solving the original
problem assuming the augmented variable is known; (2) finding the residual of the
constraint using the computed approximate solution given the augmented variable.
The constraint is often the jump condition or the boundary condition. In this chapter,
we explain this technique for some interface problems and problems defined on
irregular domains.

While an augmented approach for an interface or irregular domain problem has
some similarities with an integral equation approach, or boundary element method,
to find a source strength, the augmented methods described in this chapter have a few
special features: (1) no Green function is needed; (2) no need to set up the system
of equations; (3) applicable to general PDEs with or without source terms; (4) the
process does not depend on the boundary condition. On the other hand, we may
have less knowledge about the condition of the Schur complement system and how
to apply pre-conditioning techniques. The efficiency of the algorithm depends on the
number of iterations of the GMRES method.

3 The weighted least squares interpolation scheme

The interpolation scheme (2.20) is crucial to the efficiency (accuracy and the number
of iterations of the GMRES) of the method. Since only the information inside the
domain � is useful, the interpolation scheme at a point X on the boundary can be
written as

∂U(X)

∂n
=

∑
i, j,ϕ(i, j )≤0

γij Uij dα(|X − xij|), (3.28)
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where dα(r) is a weighted distance function,

dα(r) = αδα/2(r) =
{

1
2 (1 + cos(πr/α)) if |r| < α

0 if |r| ≥ α.
(3.29)

Note that ∂U(X)

∂n is one of components needed in the matrix vector multiplication
EG. We need to determine the parameter α and the interpolation coefficients γij.
Below we discuss how to determine the coefficients γij. Actually, these coefficients
are different from point to point on the boundary. So they should really be labeled
as γij,X. But for simplicity of notation, we will concentrate on a single point X =
(X, Y) and drop out the subscript X.

Since it is the normal derivative that we are trying to interpolate, we use the local
coordinates at the boundary point (X, Y),

ξ = (x − X) cos θ + (y − Y) sin θ,

η = −(x − X) sin θ + (y − Y) cos θ, (3.30)

where θ is the angle between the x-axis and the normal direction at the point (X, Y).
Under such new coordinates, the interface can be parameterized by ξ = χ(η), η = η.
Note that χ(0) = 0, and, χ ′(0) = 0 as well, assuming that the boundary is smooth
enough at (X, Y).

We use an un-determined coefficients method to determine the coefficients γij.
Let (ξi, η j) be the ξ -η coordinates of (xi, yj), we have the following from the Taylor
expansion:

u(xi, yj) = u(ξi, η j) = u + uξ ξi + uηη j + 1

2
uξξ ξ

2
i + 1

2
uηηη

2
j + uξηξiη j + O(h3), (3.31)

where for simplicity, we use the same notation for u and its derivatives in the
original and the local coordinates, u, uξ , · · · , uξη are defined at (X, Y) in the original
coordinates, or (0, 0) in the local coordinates. Plugging in (3.31) into (3.28) and
collecting terms, we have

∂U(X)

∂n
≈

∑
i, j,ϕij≤0

γij u(xi, yj) dα(| �X − �xij|)

= a1u + a2uξ + a3uη + a4uξξ + a5uηη + a6uξη + O(h3 max |γij|) (3.32)

where the ai’s are given by

a1 =
∑

i, j

γijdα(|X − xij|) a4 =
∑

i, j

1

2
ξ 2

kγijdα(|X − xij|)

a2 =
∑

i, j

ξkγijdα(|X − xij|) a5 =
∑

i, j

1

2
η2

kγijdα(|X − xij|)

a3 =
∑

i, j

ηkγijdα(|X − xij|) a6 =
∑

i, j

ξkηkγijdα(|X − xij|). (3.33)
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From the local coordinate transformation, we have un = uξ , hence we can set up
the linear system of equations for the coefficients γij as

a1 = 0, a2 = 1, a3 = 0,

a4 = 0, a5 = 0, a6 = 0. (3.34)

If more than six different interior grid points are involved, then there is at least
one solution. Usually we choose an neighborhood of X that contains more than six
different interior grid points so that we have an under-determined system. We use the
singular value decomposition (SVD) to find the least squares solution with the least
l-2 norm. In this way, the coefficients γij have roughly the same magnitude O(1/h),
and γ ∗

ij dα(|X − xij|) is roughly a decreasing function of the distance measured from
X. The least squares interpolation plays an important role in the stability of the
algorithm. In practice, only a hand full of grid points, controlled by the parameter
α and the normal direction at the boundary point (X, Y), are involved. Those
grid points which are closer to (X, Y) have more influence than those which are
further away.

The only trade-off of our weighted least square interpolation is that we have to
solve an extra under-determined system of linear equations. The larger α is, the more
computational cost in solving (3.34). However, the size of the linear system is small
and the coefficients can be pre-determined before the GMRES iteration. We will see
that the extra cost in dealing with the boundary is only a fraction of the total CPU
time compared to the Poisson solvers. We also tried the third order interpolation
scheme (10 equations) and the numerical results are similar.

3.1 Selecting grid points for the interpolation scheme

If the interpolation points are chosen radially from the center of the interpolation
point X until enough interior grid points (6 ∼ 9 for second order schemes, 10 ∼ 15
for third order scheme) are included, the method works fine if the curvature at X is
not too large. However, if the curvature is large and there are fewer grid points in
a thin tube of the normal direction compared with that of the tangential direction,
then we may either need a large circle to include more interior points in the tube, or
we may not have a good accuracy for the interpolated normal derivative. Either case
will affect the efficiency of the numerical algorithm.

Our new interpolation scheme is to select the grid points in a thin cone. The vortex
of cone is the interpolation point X and the axis is the normal line passing though X,
see Fig. 2 for an illustration, and see [4] for more details. This approach works better
because we need the directional derivative of u along the normal direction. The angle
of the cone is a parameter such that tan ψ is between [1/10, 1/2] in our choice.

4 Numerical examples

We have done a number of numerical experiments which confirm the expected order
of accuracy. All the computations are done using Sun Ultra 10 workstations. The fast
Poisson solver on irregular domain used is from the IIM-pack [19], and the tolerance
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for the convergence is 10−6 for the 2-norm of the residual vector. In all the examples,
the initial approximation is chosen as zero vector.

Example 4.1 In this example we consider a biharmonic equation defined on a circle
x2 + y2 = 1/4 with the constructed exact solution

u(x, y) = x2 + y2 + ex, (x, y) ∈ �. (4.35)

The forcing term f (x, y) is obtained by applying the biharmonic operator to the exact
solution u(x, y)

f (x, y) = ex. (4.36)

The normal derivative of the solution on the boundary is

un(x, y) = 8x2 + 4xex + 8y2, (x, y) ∈ ∂�, (4.37)

where ∂� is the boundary of the circle. The computation domain is chosen as the
square [−1, 1] × [−1, 1].

Table 1 shows the results of a grid refinement study, where the first column is
the number of uniform grid points in the x and y directions. The maximum error is
defined over all the interior grid points,

‖En‖∞ = max
i, j,ϕ(i, j )≤0

|u(xi, yj) − Uij|, (4.38)

where Uij is the computed approximation at the interior grid points (xi, yj). The third
column is the ratio of two consecutive errors defined as

r1 = ‖En‖∞
‖E2n‖∞

. (4.39)

For a second order accurate method, the ratio should approach number four while
the ratio should approach number two for a first order method. We can see clearly
second order accuracy of our method. The fourth column is the number of iterations.
We see that only a few iterations are needed and the number is independent of the
mesh size. The fifth column is the CPU time which show the method is very fast
considering the very large condition number of the system of equations from a direct
discretization even for a regular domain such as rectangles. We will use the same
notations for the rest of examples in this section.

To better understand the nature of the Schur complement system, we have
generated the coefficient matrix G and found the condition numbers. The condition
numbers are 170.3239, 5897.5, and 28509 for the mesh sizes 64 by 64, 128 by 128,
and 256 by 256 respectively for Example 4.1. This is expected for the bi-harmonic

Table 1 A grid refinement
analysis for Example 4.1 Mesh size ‖En‖∞ r1 No. CPU(s)

64 × 64 3.0003×10−4 4 0.25
128 × 128 8.0076×10−5 3.74678 5 0.7709
256 × 256 1.9710×10−5 4.06270 5 2.3530
512 × 512 4.7654×10−6 4.13604 4 10.375
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system. The cost is O(Nin N log(N)) to form the matrix and O(N3
in/3) to solve the

linear system of equations. This approach is much expensive than that using the
GMRES method directly. Our method has fast convergence because the GMRES
method generally converges fast at first few iterations and we just need to iterate
to the level that is much smaller than the local truncation errors. The interpolation
scheme using a cone is an important factor in fast convergence.

Example 4.2 In this example, the boundary is a skinny ellipse x2

0.52 + y2

0.152 = 1. The
differential equation is:

�2u = 24y
(1 + x)5

− 12x
(1 + y)2

− 6x3

(1 + y)4
. (4.40)

We use the Dirichlet boundary condition which is determined from the exact solution

u(x, y) = x3 ln(1 + y) + y
1 + x

, (x, y) ∈ �, (4.41)

and un(x, y), the normal derivative of u(x, y) is also computed from the exact
solution. Note that the level set function is used to find the normal and tangential
directions. The computation domain is chosen as [−0.6, 0.6] × [−0.3, 0.3]. In other
words, we can use a rectangle that is just large enough to close the irregular domain.

Table 2 shows the results of a grid refinement study. We can see that the method
still has average second order accuracy, requires only a few iterations, and it is very
fast in terms of the CPU time. For this example, the curvature is quite large at two
ends of the major axes of the ellipse. The new interpolation scheme is crucial to the
algorithm. For irregular domain problems, the errors of the computed solution using
embedding techniques do not decline monotonically but rather fluctuate. This is
because the relative position of the irregular boundary and the underlying Cartesian
grid does not change in a fixed pattern. In other words, while the error C(h, ∂�)h2

converges quadratically, the error constant C(h, ∂�) is not a constant, see [18].
Nevertheless, the error constant C(h, ∂�) is bounded. It is more reasonable to do
the linear regression analysis to find the convergence order which is shown in Fig. 3.
The average order of convergence is 2.0240.

Example 4.3 In this example we consider a biharmonic equation defined on a non-
convex, non-concave region defined by{

x = (0.6 + 0.25 sin(5θ)) cos(θ),

y = (0.6 + 0.25 sin(5θ)) sin(θ),
θ ∈ [0, 2π). (4.42)

Table 2 A grid refinement
analysis for Example 4.2 Mesh size ‖En‖∞ r1 No. CPU(s)

64 × 32 3.6576×10−4 8 0.7310
128 × 64 9.5430×10−5 3.8327 4 1.0810
256 × 128 2.0889×10−5 4.5684 5 4.3360
512 × 256 4.9899×10−6 4.1862 6 21.000



128 G. Chen et al.

Fig. 3 The linear regression
analysis on the errors for
Example 4.2
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The differential equation is:

�2u = 0. (4.43)

The essential boundary condition u|∂� and un|∂� are determined from the con-
structed exact solution

u(x, y) = x2 + y2 + ex cos(y), (4.44)

in connection with the level set function.

Table 3 shows the results of a grid refinement study. Figure 4 shows the mesh
plot of the exact solution. Figure 5 shows the linear regression analysis. The average
convergence order is 1.9300.

4.1 Algorithm efficiency analysis

We have seen from previous examples that the number of iterations are fairly small.
For most of the examples, it is between 4 ∼ 10. Another concern about the algorithm
is how much overhead cost is needed for dealing with the interior irregular points.

Table 3 A grid refinement
analysis for Example 4.3 Mesh size ‖En‖∞ r1 No. CPU(s)

64 × 64 8.14721×10−4 9 2.2130
128 × 128 2.08149×10−4 3.91412 7 3.7360
256 × 256 8.06897×10−5 2.57962 9 13.520
512 × 512 1.83151×10−5 4.40563 9 52.034
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Fig. 4 The computed
solution for Example 4.3.
The difference between the
exact and computed
solutions is hardly visible
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The cost includes indexing the irregular grid points, finding the projections, and
solving a linear system of equations to find the coefficients of the interpolation
scheme at each orthogonal projection on the boundary of the interior irregular
points. Certainly the CPU time depends on the geometry. In Table 4, we show the
CPU time spent in dealing with the boundary and that in solving the entire problem.
We can see that the overhead time is only a fraction of the total CPU time especially
as the mesh gets finer.

Fig. 5 The linear regression
analysis on the errors for
Example 4.3
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Table 4 The CPU time in dealing with interior irregular grid points (tov) and the CPU time for the
linear solver (tsolve) for Example 4.1 and Example 4.3

Mesh size Example 4.1 Example 4.3

tov tsolve tov tsolve

64 × 64 0.0499 0.2510 0.0699 2.2130
128 × 128 0.1100 0.7749 0.2710 3.7360
256 × 256 0.1210 2.3530 0.5410 13.520
512 × 512 0.3999 10.3750 0.6610 52.035

5 An application of the biharmonic solver to the incompressible Stokes flow
on an irregular domain

Consider the incompressible Stokes flow in two dimensional spaces

μ�u = px − F1, x ∈ �,

μ�v = py − F2, x ∈ �,

∇ · u = 0, (5.45)

where μ is the fluid viscosity, p is the pressure, u = (u, v) is the velocity, and
F = (F1, F2) is a forcing term. Equations (5.45) are supplemented by the “no-slip”
boundary condition

u(x)|∂� = 0. (5.46)

The vorticity function, which is a scalar in two-dimensional case, is defined by

ω(x) = (∇ × u) · k = −uy + vx, x ∈ �, (5.47)

where k is the unit vector in the z-direction. The first two equation of (5.45) can be
written in vector form

μ�u = ∇p − F, x ∈ �. (5.48)

Taking curl of the above equation we get

−μ�ω = (∇ × F) · k, x ∈ �. (5.49)

The velocity field u is obtained by using (5.47) in conjunction with (5.46). This can
be done via the stream-function formulation as follows. Due to ∇ · u = 0, there is a
scalar function ψ(x) such that

u(x) = ∇⊥ψ =
(

−∂ψ

∂y
,
∂ψ

∂x

)
, x ∈ �. (5.50)

Therefore from (5.47), we get

�ψ = ω. (5.51)

Thus, equations (5.49) and (5.51), along with the relation (5.50), serve as the vorticity
stream-function formulation of the problem.
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We note that the “no-slip” condition (5.46) and the relation (5.50) implies

ψ(x)|∂� = ∂

∂n
ψ(x)

∣∣∣∣
∂�

= 0, (5.52)

where n is the unit normal vector of the boundary ∂� pointing outward. Note that
(5.52) follows since ψ is a constant along the boundary and is only determined up to
an additive constant.

Plugging in (5.51) into (5.49), and using the relation (5.52), we get

− μ�2ψ = (∇ × F) · k, x ∈ �,

ψ(x)|∂� = 0,

ψn(x)|∂� = 0. (5.53)

This is a well defined biharmonic equation with essential boundary condition. The
advantage of using the formulation to solve for the velocity field u is that it eliminates
the difficulty of dealing with the improper partition of boundary conditions of the
vorticity-stream function formulation. As we stated earlier, we assume that the
boundary of the domain ∂� is piecewise smooth.

We use the algorithm developed in previous sections to solve (5.53) numerically.
Once ψ is obtained, the standard central difference formula can be used to interpo-
late (5.50) to get u and v at regular grid points. For irregular interior grid points, we
use a similar least squares interpolation technique developed in Section 3 to recover
u and v.

We have tested our algorithm for the Stokes flow with Reynolds number being
400. The stream function is

ψ(x, y) = 1

π
sin2

(
x2 + y2

4
π

)
− 1

π
. (5.54)

The fluid is confined in a circular region

� = {
(x, y)| x2 + y2 = 2

}
(5.55)

and the computation region is chosen to be [−1.6, 1.6] × [−1.6, 1.6]. The no-slip
boundary condition

ψ(x, y) = 0, (x, y) ∈ ∂�,

ψn(x, y) = 0, (x, y) ∈ ∂�. (5.56)

are satisfied.

Table 5 A grid refinement
analysis of u = (u, v) for
examples 5.10–5.12

Mesh size ‖E(u)n‖∞ r ‖E(v)n‖∞ r

64 × 64 1.07739×10−2 1.08006 × 10−2

128 × 128 2.54015×10−3 4.2415 2.56114 × 10−3 4.2171
256 × 256 4.49293×10−4 5.6570 4.49161 × 10−4 5.7037
512 × 512 1.09871×10−4 4.0892 1.09842 × 10−4 4.0907
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In Table 5, we show the results of a grid refinement study for the velocity field u
and v. We can see clearly second order accuracy for the solution (u, v) in the infinity
norm. We also tested other examples and got similar results.

6 Summary

In this paper, a fast iterative method has been developed for biharmonic equations
defined on irregular domains with essential boundary conditions. The method takes
advantage of the fast Poisson solver on irregular domains available to the public and
uses an augmented approach so that the biharmonic equation is decomposed to two
Poisson equations. The GMRES method is used to solve the augmented variable
which is the Laplacian of the solution along the boundary. An interpolation scheme
for approximating the normal derivative of the solution is crucial to the success of
the algorithm. Numerical examples show the efficiency of the second order accurate
method. Only a few iterations are needed to solve the augmented variable and the
entire problem. An application of the fast biharmonic solver to the incompressible
Stokes flow is also presented.
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