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Abstract This paper deals with the asymptotic stability of exact and discrete solu-
tions of neutral multidelay-integro-differential equations. Sufficient conditions are
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of classical Runge-Kutta and linear multistep methods are suggested for solving
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384 C. Zhang, S. Vandewalle

1 Introduction

Consider the following complex p-dimensional system of neutral multidelay-integro-
differential equations (NMIDEs) with constant delays 7, > 0,

d d d d ¢
- YO=Y " Nyy(t—14) =Ly(t)+Zqu(t—tq)+ZQq/y(0)d9, t>1
g=1 g=1 g=1 Ty

}’(t) = (p(t)5 te [t() - fv t()]v

(1.1)

with matrices L, M, Ng, Q; € CP*? and T = max;<4<4{74}. Function ¢(?) is a given
p-dimensional vector-valued function, and y(f) € C? is unknown for ¢ > fy. Such
equations, or special cases of these equations, arise in practical applications, e.g.,
in visco-elasticity, control theory, epidemiology, and population dynamics (cf. [1, 2]).

In the past, many researchers have studied the stability of special cases of (1.1).
These studies usually concentrated on non-distributed delay equations, i.e., the
case Q, =0, often with also N, =0, for ¢ =1,2,...,d. Their results have been
presented, e.g., in the following papers [3-10]. More recently, one has noticed a
growing interest in the analysis of delay-integro-differential equations (DIDEs).
Baker & Ford [11] studied the asymptotic stability of a class of linear multistep
(LM) methods for scalar linear DIDEs; Koto [12] dealt with the linear stability of
Runge-Kutta (RK) methods for systems of DIDEs; Huang & Vandewalle [13] gave
sufficient and necessary stability conditions for exact and discrete solutions of linear
scalar DIDEs, and Luzyanina, Engelborghs & Roose [14] developed computational
procedures for determining the stability of DIDEs.

No results have been found in the literature that directly deal with systems
as general as (1.1). Under the assumption that y(¢) is continuous for ¢ > £, the
transformation

t
xq(t)=/ YO0, q=1,2,....d (1.2)
-1,

converts (1.1) into a system without distributed delay. With the linear stability theory
of [5, 8] some delay-independent stability results can be obtained for such a non-
distributed-type delay system. This approach is indirect, however, and comes at the
price of changing the inherent structure of the system. Here, we prefer to take the
more direct route of studying (1.1) immediately. This approach will also enable us to
obtain delay-dependent stability results.

The paper is structured as follows. In Section 2 we give asymptotic stability
criteria for exact solutions of system (1.1). Some examples are given to illustrate
the applicability of the criteria. In Section 3 we suggest an adaptation of the classical
Linear Multistep and Runge-Kutta methods for solving (1.1). These adaptations are
based on the use of a compound quadrature rule to discretize the integrals in the
system. In Section 4 and Section 5, we deal with the asymptotic stability of Runge—
Kutta and Linear Multistep methods, respectively. The stability criteria presented
there can be considered discrete versions of the stability criteria derived in Section 2.
The theoretical results are illustrated by some numerical examples.

@ Springer



Asymptotic stability of exact and discrete solutions 385

2 Stability criteria for the exact solution

Before starting the stability analysis, we introduce a complex function

Im;j, zeC\{0,1}
nz)=430 z=0 (2.1)
-1, z=1,
where Inz =1In|z|+iargz (z #0,1; —m <argz <), is the principal branch of

the multi-valued complex natural logarithm. The function n(z) will appear in the
characteristic equation of (1.1).

Lemma 2.1 Function 1(z) is analytic in C\ R;, where Rj :={x e R: x <0}, and
satisfies |n(z)| < 1 for|z] < 1.

Proof The proof of analyticity in C \ {R; [ J{1}} is straightforward. To show analytic-
ity at z = 1, we only need to verify that n’(1) exists. This follows from de I’'Hospital’s
rule:

H-h 1
/ . Inz
0= lim =y
It remains to prove the bound on |n(z)|. To that end, we consider the open unit
disk with a slit from 0 to —1,i.e., D :={z:0 < |z| < 1, |argz| < &}. The function
n(z) is analytic inside D, and can be continuously extended on the boundary of D.
This extension is multi-valued for z € (—1,0), because lim._on(z £ie) = (1 —
7)/(In(—z) £ ir). By the maximum modulus principle for analytic functions on
Riemann surfaces, the maximum of |n(z)| is found on the boundary of D.

Forz e {z:|z| =1, |argz| < '}, setting z = exp(if), we find

1 —exp(iG)’ B V(1 = cos0)? +sin6 _ 2|sin%| - 2|%| _,
i0 1] ol ~ 16|

when 6 # 0, and |(z)| = 1 when 6 = 0. For z € [—1, 0], we find for both branches of
the multi-valued function that

In(2)] :‘

1—z 2

@)= < = <1
Vin*(=z)+ 72 T
when z # 0, and [n(z)| = 0 when z = 0. This completes the proof. O

Specializing Corollary 3.1 in Hale & Verduyn Lunel [1, Ch.9] to the case of system
(1.1) immediately yields the following lemma.

Lemma 2.2 Assume sup{f(1) : P(L) =0} < 0, where

d d d
POy =det| AL, =Y e N, | =L =Y e M;+Y nle "7, 0,
g=1 g=1 g=1
is the characteristic polynomial of (1.1). Then, system (1.1) is asymptotically stable.
@ Springer



386 C. Zhang, S. Vandewalle

M=

Lemma 2.3 Letr € R be such that matrix (I = e Nq) is invertible for R > r.

1

q
Then the function

-1
d d d

P() :=det |3°I,—| I, - > e N, AL+AY €M+ (1—e™)Q,
q=1 q=1 q=1

has at most a finite number of zeros when R\ > r.

Proof When 9ix > r, function P(A) can be expanded into the form
PO =22 4+ Yy g (€7, e ) AP g (e L e

where y; (e7*",...,e7*%) for i=0,1,...,2p — | are rational functions of the ex-
pressions e 2%, 7?2 .. e7*% Because of the invertibility assumption in the lemma
these functions have no poles for %A > r. Since 7; > 0, we have for %A > r that

‘efkr;’ — e*f,‘fﬁ)» < efr,r’
and, hence, there exist constants K; > 0 such that
|i(e ™™, ...,e*™)| <K, i=0,1,....2p—1.

Let M be a positive number large enough so that

K2p—1 K2p—2 KO

which implies, for ®A > r and |[A| > M, that

y Kopor  Kopo K,
|P(k)|z|k|2”[l—£—£—...——°]>0.

So, P(x) # 0 in the set {1 : N >r and |A| > M}. Also, by the isolation property of
the zeros of analytic functions, P(1) has at most a finite number of zeros in the set
{L: M1 >rand |r| < M}. This proves the lemma. O

In the following, we denote the spectrum of a square matrix A by o(A) and
introduce the set C~ = {z € C : R(z) < O}.

Theorem 2.4 System (1.1) is asymptotically stable if
d
(a) det |:Ip - X:l";:qui| #0 for |§| <1,
q:
(b) o(G(§)) cC f01r E=(1&, ... &))" with |§] <1, where G()=
d - d d
<Ip_ X:léqu> <L+ X:IS(IM(/_ Zln(éq)quq)
q= q= q=
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Asymptotic stability of exact and discrete solutions 387

Proof When |§;| <1forg=1,...,d condition (a) leads to

g=1 q=1

B d d d
PO &1 &y, k) i=det | A, =2 ) &Ny — L= &My+ Y n()t,Qq
- q=1

d
= det| I, — Y &N, | detlr], — G&)].
g=1

By condition (b) this implies P(A) = P(A,e™*", ™2, ... e=*%) £ 0 for %(A) > 0.
Hence,

sup{M(r) : P(r) =0} <0. (2.2)

Next, we show that the strict inequality in (2.2) holds. Consider the function
F(&1, &, ..., &) defined as

d
F(E1. &, ... &) ==det | I, — Y &N,

q=1

This function is a multivariate polynomial, which by condition (a) is nonzero on the
compact domain defined by |£,| < 1,g =1, ..., d,and equal to 1 at the origin. Hence,
its modulus is bounded from below by a value € > 0, i.e.,

|F(¢1,&,...,6)| =€ >0, when || <1forg=1,...,d.
By the continuity of F, there exists a § > 0 such that
|F(‘§13527"'7Ed)| >07 When |$q| = 1 +5f0rq: 13"'ad-

From this, it follows that
d
det| I, — ) eN, | #0, when e < 1+8forqg=1,....d.
g=1

Let r be the strictly positive number r = In(1 + 8)/ max g then
q=1,...,

d
det| I, =Y €N, | #0, for%r>—r
q=1

Thus, we can apply Lemma 2.3 to show that equation P(1) = 0 has only a finite
number of roots when %A > —r. By condition (a), the same holds true for the
equation P(A) = 0. Combined with (2.2), this shows that the characteristic equation
has at most a finite number of roots in the region {A : —r < %A < 0}. Set —y equal
to the maximum real part of any of those roots, or equal to —r, if there are no such
roots. Hence, y > 0. Then, when i1 > —y, the characteristic equation P(1) = 0 has
no root. Hence, a strict inequality holds in (2.2). Application of Lemma 2.2 completes
the proof. O
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388 C. Zhang, S. Vandewalle

In order to be able to derive our next stability criteria, we need to introduce
some more notations. Throughout this paper, p(-) will denote the spectral radius of
a matrix; A;(-) will denote the /th eigenvalue, and w(-) is the logarithmic norm subject
to a given matrix norm || - ||; matrix | M| satisfies | M| = (|m;;|) when M = (m;;), and
the inequality M < M means my; < ny; for M = (m;;) and M= (m;;) € R™". By
Theorem 1 in [15, Ch.15] and by classical properties of spectral radius and norm,
we can prove the following inequalities for any matrix norm || - ||:

d d d d
P D &N | <o D INJ| and oD &N, | <D NIl for &) < 1.
q=1 q=1 g=1 g=1

With this information we can now reformulate Theorem 2.4.

Theorem 2.5 System (1.1) is asymptotically stable when condition (b) from Theorem

2.4 holds and when there exists a matrix norm || - || such that
d d
min{p [ Y INg | D INgIE < 1. (2.3)
q=1 q=1

Remark 2.6 Theorem 1.1 in [8] and Lemma 2.1 in [5] can be derived immediately
from Theorem 2.5 when one sets O, =0 (¢ =1,2,...,4d).

Remark 2.7 For the p-dimensional one-delay system

%[
)’(t) = gﬂ(t), te [t() - T, t()]v

d t
YO-Nyu=0) = Lyo+ My = 0+0 [ y@)ds, =0 0
-t N

condition (a) in Theorem 2.4 can be guaranteed by p(N) < 1 since the following
inequalities hold for |§] < 1:

p(EN) < 5lp(N) < p(N).
Hence (2.3) can be replaced by p(N) < 1 in the case of one-delay systems. This also

implies that Theorem 2.4 covers Theorem 2.1 in [4], where the case Q =0 was
considered.

Example 2.1 Consider system (2.4) with t = 1/10, and with

10 2 2 2 —4 1
L=| 2 =8 -3|. M=o 1 —2].
1 5 -9 0 —1 —4
(52 102
N=—|60-3|, o=[410],
10\ o 3 0 201
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and any initial function ¢(f). A direct calculation yields p(N) = 0.4767 < 1. Also,
using a MATLAB code, we numerically computed that

max(R(L) : & € o[GE) = ~4.7104 < 0.

This implies that o (G(¢)) € C~ for |&] < 1. Thus, by Theorem 2.5 and Remark 2.7
we may conclude that this system is asymptotically stable.

Obviously, it is quite difficult in the multidelay case to check the conditions of
Theorem 2.4. To deal with this, we derive some sufficient conditions that are more

easily verified.

Theorem 2.8 System (1.1) is asymptotically stable if there exists a matrix norm | - ||
such that

d
@) X INgll <1,
q=1

d d
> |:||NqL||+ Z(IINqull-FT@IINngII)}
gq=1 g=1
<0

d d
(0) WL+ 1Myl + D gl Qg+ -
= o= 1= 21Nl
g=1

Proof By Theorem 2.5 and condition (&), it suffices to show that condition (b)
from Theorem 2.4 holds. In fact, with Theorem 1 in [15, Ch.11], properties of
the logarithmic norm (cf. [16, Ch.7]), Lemma 2.1 and condition (3), one can infer
the bound given below for all / and |§,| < 1. Using the notation H := ZZ;I £,Ny,
we have

RA(GEN] = ulG@)]

B 0 d d
=u (IP+ZHi> (L-I-Zéqu—Z’?@q)Tqu)
i=1

g=1 q=1

= | L+Y &My =) )10 + <1P+2Hi>
= i=1

g=1

d d
. (HL + HZEQM‘I — Hzn(éq)quq)

g=1 q=1

< M(L)+ZIIM I +qu||Qq|| + 1+Z (Z 1N, ||)
i=1 =1

ZHN L| +ZZ“N M| +ZqullN Q;ll

q=1 =1 q=1 =1 (2.5)
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390 C. Zhang, S. Vandewalle

Hence condition (6) guarantees R[A;(G(£))] < 0, and (b) in Th. 2.4 holds. O

Remark 2.9 Theorem 2.8 can be simplified when N, = 0 for all g, which leads to
the first conclusion of Theorem 4 in [6]. In addition, when N, = Q, = 0 for all g,
Theorem 2.8 becomes Theorem 2.2 in [10].

Example 2.2 Consider a system of the form (1.1) with

—-68 0 2 1 2 3 2 —-11
L= 1 =79 -3 |\, Mi=\2 22|, M,={|1—-13]},
1 —4 —82 3 =25 0 2 1
1 1 =30 1 1 —1 1 -1 2 4
N1=£ 2 0 2 ,N2=% 1 —11],0,= 2 -1 3 1|
-1 3 2 30 0 1 0 -2
0] 21 03 } ! !
2=1 -1 = , TIl=77 Ta= ——.
3 2 1 20 10

With the 2-norm || A|,=+/p(AAT) and its induced logarithmic norm uy(A) =
max{a(AJrTAT)}, a simple computation yields Z;:I INgll2 =0.3769 < 1, QAz
—5.6623 < 0, with © denoting the left-hand side of the inequality in condition (b).
Hence, this system is asymptotically stable.

3 Runge—Kutta and linear multistep methods

In this section, we will confine our discussion to systems of NMIDEs with commen-
surate delays, i.e., systems of the form (1.1) with ¢, = gt:

d d d d t
G |0 Nyyt=qr) | = Ly0+ 3 Myya-g0+ Y 0, [ y@rds. 1= 1,
! g=1 q=1 a=1 gt (3.1)

y) =), telty—dr, i,

where v > 0 is a constant and L, M,, N,, Q, € CP*?. Before constructing discrete
schemes for this system, we review classical Runge-Kutta (RK) methods, Linear
Multistep (LM) methods and related concepts. This is done mainly for setting some
notation and for future reference. For solving ODE systems of the form y'(f) =
f@, y(@), t=>ty, with y(ty) = yo, there are two classes of classical methods. RK
methods are of the form

S
}’En):yn+hzaijf(tn+cih»)’;n)), i=12,..,s,
=1 (3.2)

s
Yus1 = Yn+h Y bjft, +cjh, yj-")), n>0,
=1
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where the abscissae cj, the weights b; and the coefficients g;; are characteristics of

the method; / denotes the stepsize; t, = ty + nh, and y(”) and y, are approximations
to y(t, 4+ c;h) and y(t,), respectively. The other class of methods are LM methods,
compactly denoted as

P(E)y, = hQ(E)fn’ (33)

where E is the shift operator, P(¢) and Q(§) are irreducible polynomials,
k ) k .
PE) =Y aig! and Q&) =) Bj&/,
=0 =0

and y, and f, are approximations to y(f,) and f(t,, y(¢,)), respectively. The stability
regions (cf. [18]) of these methods are given by the sets:

Sek :={c € C: (I;—¢A)isinvertible and |1 + ¢bT (I, — t A) el < 1},
Stm:={ceC: P@i)=¢9%) = |z| <1},

where b = (by,bs,...,b)", A= (a;) and e=(1,1,...,1)7 € R’. If there exists
an « € (0, 5] such that the stability region contains the sector S, :={¢ e C:
|arg(—¢)| < o}, the method is called A(a)-stable. In particular, an A(%)-stable
method is called A-stable.

Adapting (3.2) to (3.1), for h = -, with m a positive integer, yields, for n > 0 and
j=1,2,...,5s,

f]{") Ly(ﬂ)+z M y(“ qm) Z N f(n qm)+h Z Z Urqu(n r)7

g=1r=0

W= yuth Zl ay f{". (34)
]:

Yol =Yn+h Zlbjf;n)’
]:

where y,,y (") and f(") are approximations to y(t,), y(t, + ¢;h) and y'(t, + cjh),
respectively. For the discretization of the integral item ft:f’h o y(0)df, a convergent

compound quadrature formula with weights v, has been used. In (3.4), when mesh
points ¢, or off-step points ¢, + ¢ ;i belong to the initial set [ty — 7, f], we will set

=¢t). YW =¢lu+cih) and [ =gty +cjh).

With the similar argument of Theorem 4.2.5 (compare also Theorem 4.1.6) in [16],
we can deduce the following convergence result.

Theorem 3.1 Suppose the underlying RK method (3.2) is of order p and the employed
quadrature rule is of order q. Then the induced method (3.4) is convergent of order

min{p, q}.
@ Springer



392 C. Zhang, S. Vandewalle

Applying the LM method (3.3), together with a convergent compound quadrature

formula with weights v,, gives,forn > —(k—1)and j=1,2,...,k,
d d d gqm
Jot+j = Lyntjt+ > Mg yn+j—gm + >Ny Jotjam +h > 2 v Qg Ynsjrs
q=1 q=1 q=1r=0 (3.5)

k k
2 %Vnsj=hY Bjfut,
=0 =0

where y, and f, are approximations to y(t,) and y’'(¢,). Moreover, when mesh points
t, belong to the initial set [ty — T, fy], we will set

Yn = @(tn) and fn = ‘p/([n)~

The convergence order of method (3.5) follows from a small modification of the
proof of Theorem 2.1 in [17].

Theorem 3.2 Suppose the underlying LM method (3.3) is of order p and the employed
quadrature rule is of order q. Then the induced method (3.5) is convergent of order

min{p, q}.

Remark 3.3 1f interpolatory-type quadrature formulae are used in (3.4) and (3.5)
with non-negative weights, one has the following property for all ¢, which will be
used further on to simplify certain stability conditions,

qm qm
rq=f,1qrdv=h§)v,=h;)|v,|, g=12,....d. (3.6)

Next, we will study the asymptotic stability of methods (3.4) and (3.5).

Definition 3.4 A numerical method for (1.1) is called asymptotically stable if the
numerical solution y, generated by the method satisfies lim y, = 0.

4 Stability criteria for the adapted RK methods

With the Kronecker product ® and the notations:
) T mT wT\" ) o ol wT\"
F =<f1 N AR ) and Y =<y1 N S ) ,

the method (3.4) can be written more compactly as
F" = (e® L)y, +h(A® L)F™

d
+ 2 [(€® My)yngn + H(A® M O™ 4 (I, @ Ny F="]
Vi (4.1)
+hY Y v [e® 0)ynr+h(AQ Q) F" "]

g=1r=0
Ynt1 = Yn + h(bT ® Ip)F(n)a

@ Springer



Asymptotic stability of exact and discrete solutions 393

Define
wmT T - Y A A 2
Yn+1=<F ,ynﬂ), L=hL, M,=hM,. Q,=hQ, and Q,=h>Q,.

Then, (4.1) can be transformed into the following difference equation:
= d
@I, —AQL 0 (0 e®L 0 e M,
(e n)rn=(o 75 ) e 20 75" v
q:

A®M +I ®N; O
Z 0 Ynfqm+l

d qm
+2

g=1 r=0

d qm
+szr<A®Qq ) n—r+1-

g=1 r=0

) (0 e® Qq> Y,

Its characteristic equation is given by

Ti(z) T2(z) | _
det |: T3(2) T4(Z)i| =0, zeC (4.2)

where, with my = md, we have that

d d gqm _
Ti(z) = 2" L® [ I,-) 27" N, |-A® L+Zz MMy D vz 0] |
B q=1 g=1 r=0
B d qm
Ty(z) = =7 | e® (L+Zz Mg+ D vz Qq) :
g=1 r=0

T3(z) = —z’"““h bT®1,), Tiz)=2"(z— DI,
It follows from the theory on difference equations (cf. [15]) that lim Y, = 0if all the
zeros of (4.2) satisfy |z| < 1. Hence, we can formulate the following lemma.

Lemma 4.1 Numerical method (4.1) satisfies lim y, = 0 if all the zeros of (4.2) satisfy
|z] < 1.

Lemma 4.2 Assume that condition (a) from Theorem 2.4 holds and assume that the
matrices Iy — 1(r(2))A (1 <1 < p) are invertible for |z| > 1, where

d - d qm
r(z) = ([p — Z Z_quq) (L + Z Z_qu + Z Z vz Qq) (4.3)
q=1

g=1 r=0

Then, det[T1(z)] # 0 for|z| > 1.
@ Springer



394 C. Zhang, S. Vandewalle

Proof Condition (a) in Theorem 2.4 implies that matrix /, — ZZ: , 279" N, is invert-
ible for |z| > 1. A simple computation using properties of the Kronecker product (cf.
[19, Ch.4]) lead to

d
Ti(z) = 7™+ |:IS ® (Ip — Zz_quq)j| [IS ®Il,—A ®r(z)] for |z| > 1.

q=1

With this, we have for |z| > 1 that

=S

B d
det[T1(2)] = (2™")"7 | det (5—22“””%) det[/; ® I,— A ®@7(2)]
- q:1

s
p s

i d
— (™) | det (Ip -y quNq) [TT T =re@)rAN.

I=1 j=1

(44)

The invertibility of the matrices I; — A;(r(z)) A means that A;(r(z))A;(A) # 1 for all
I, j. Hence, det[ T (z)] # O for |z| > 1. O

Theorem 4.3 Method (3.4) is asymptotically stable if condition (a) in Theorem 2.4
holds and o[r(z)] C Sgk for |z| > 1.

Proof By Lemma 4.1, we need to prove that all the zeros of (4.2) satisfy |z| < 1. If
this were not true, there would exist a zo € C : |zo| > 1 such that

T1(z0) T2(zo) | _
det |: T3(z0) T4(Zo):| =0 (4.5)

By Lemma 4.2 one has that det[ T (z0)] # 0; hence, (4.5) is equivalent to
det[ T4(z0) — T3(20) T ' (20) T2(20)] = 0. (4.6)

Using properties of the Kronecker product (cf. [19, Ch.4]) and the Jordan canonical
form J(zg) of r(zp), we find

det[T4(z0) — T3(z0) T ' (z0) T2(z0)]
= 70" det{zol, — [, + 0T @ 1,)(I; ® I, — A ®1(20)) "' (e ® r(z0))1}
=z det{zol, — [, + (I, ® b)Y (I, ® I, — 1(z0) ® A) "' (r(z0) ® )1}

= 70" det{zol, — [I, + (I, @ b 1)1, ® I, — J(z0) ® A) " (J(z0) ® &)1}

P
= 20" [ Jtzo = [1 4+ A(r(zo)b T (I; = M(r(z0) A) ~el}. (4.7)
=1
@ Springer
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Combining (4.7) with (4.6) shows that there is an / such that
1+ M(r@o)b (L = d(r(20)) A) el = |20l = 1.

This implies A;(r(z0)) ¢ Srk, which contradicts the earlier assumption o[r(z)] € Sgx
for |z| > 1. Hence, the theorem is proven. O

A combination of Theorem 4.3 and the definitions of A(«)- and A-stability leads
to the following results.

Theorem 4.4 Assume that the classical RK method (3.2) is A(x)-stable (resp. A-
stable) and system (3.1) satisfies condition (a) in Theorem 2.4, and assume that
o[r(z)] €S, (resp. o[r(z)] € C7) for |z| = 1. Then, the method (3.4) is asymptotically
stable.

Theorem 4.5 Assume that the classical RK method (3.2) is A(w)-stable (resp. A-
stable) and system (3.1) satisfies (2.3), and assume that o[r(z)] C S, (resp. o[r(z)] C
C™) for |z| = 1. Then, the method (3.4) is asymptotically stable.

Moreover, with Theorem 4.5 and a similar derivation as the one in the proof of
Theorem 2.8, we can show the correctness of the following theorem.

Theorem 4.6 Assume that the classical RK method (3.2) is A-stable and that system

(3.1) satisfies conditions (a) and ) from Theorem 2.8. Then, the method (3.4) is
asymptotically stable when stepsize h satisfies

qm
hY vl <1, q=12,...,d (4.8)

r=0

Remark 4.7 When the employed quadrature rule is of interpolatory type and the
coefficients v, are all nonnegative, the condition (4.8) can be dropped, because
of (3.6).

Theorems 4.4, 4.5 and 4.6 can be viewed as the discrete counterparts of Theo-
rems 2.4, 2.5 and 2.8, respectively. Furthermore, It is well-known that the classical
Radau IA, Radau ITA, Gauss, Lobatto IIIA, Lobatto IT1IB and Lobatto ITIC methods
are all A-stable (cf. [18]). Combining this with Theorems 4.5 and 4.6 yields the next
two corollaries.

Corollary 4.8 Assume that system (3.1) satisfies (2.3) and that o[r(z)] € C~ for
|z| > 1. Then, method (3.4) based on a Radau IA, Radau IIA, Gauss, Lobatto 11IA,
Lobatto I1IB or Lobatto I1IC method is asymptotically stable.

Corollary 4.9 Assume that system (3.1) satisfies conditions (8)—-(b) from Theorem 2.8.
Then, method (3.4) based on a Radau IA, Radau IIA, Gauss, Lobatto IIIA, Lobatto
IIIB or Lobatto I1IC method is asymptotically stable whenever (4.8) holds.

As an illustration for Corollaries 4.8 and 4.9, we give two examples.
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Fig. 1 Numerical solution

y = !,y yI'HT obtained
with the adapted two-stage
Gauss method and the
compound Simpson rule with
m = 10 for the system in or
Example 2.1 4

- N W s
T—
I

yI‘ yIIY y\II

Example 4.1 We consider method (3.4) based on the 2-stage classical Gauss method
and the compound Simpson rule

h m/2 (m-2)/2
= 3 (y;n) +4Z)’§n_2r+l) +2 ) y yE"‘””) where m = 10.
r=1

r=1

We apply this method to the system of Example 2.1 with initial condition ¢(¢) =
(=2,2, 9T fort e [—1/10, 0]). Numerically one can verify that

{n‘a)l({éﬁ()») Aeoa[r(2)]} = -0.0471 <0,

1=

which shows that o [r(z)] CC~ for |z| > 1. Moreover, we have that p(N)=0.4767 < 1.
Hence, by Corollary 4.8 and Remark 2.7 this will produce an asymptotically stable
numerical solution, as shown in Fig. 1.

Example 4.2 Consider method (3.4) induced by the 2-stage classical Radau ITA
method and the compound Gregory rule

gm—2
w0 = b <5y§”) +13y" Y 12 D YD 13yl 5y§”“1”’)) :
r=

where ¢ = 1,2 and m = 50. We apply this method to the system in Example 2.2
with initial condition ¢(¢) = (-1, 0.5, l)TA for t € [—1/10, 0]. We have shown earlier
that this system satisfies conditions (a)—(b) of Theorem 2.8 with 7, = ¢/20 (¢ = 1, 2).
By Remark 4.7, condition (4.8) is satisfied since the quadrature rule coefficients
are positive. Thus, it follows from Corollary 4.9 that the numerical solution is
asymptotically stable, see Fig. 2.

Fig. 2 Numerical solution 1
y =l y!, y"T obtained '
with the adapted two-stage
Radau ITA method and the
compound Gregory rule with
m = 50 for the system in
Example 2.2

4

2
e
I

yIv yll’ ylH
=)
T

|
o
o
T
I

I I I I
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
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5 Stability criteria for the adapted LM methods

In our study of the asymptotic stability of the methods (3.5), we will again use the

symbols L. M, Q and Q, which were introduced in Section 4. Substituting the first
equation of (3.5) into the second one and using the equality

k k
> W intjogm =hY_Bjfuti-gm

j=0 j=0
lead to
k d
Za;‘ Yntj— Z Ny Yntj-gm
j=0 g=1
k
Z Yn+1+Z qYn+j— qm+ZQqZUrYn+] rl- (5.1)
j=0 r=
The characteristic equation of this difference equation for z € C is given by
d d qm _
det | P(2) [ I,-) z7"N, | -Q) | L +Zz MY D 0z, | [ =0.
q=1 g=1 r=0

(5.2)

In the theory on difference equations one finds the next result.

Lemma 5.1 Numerical method (5.1) is asymptotically stable if all the zeros of (5.2)
satisfy |z] < 1.

Theorem 5.2 Method (3.5) is asymptotically stable if condition (a) in Theorem 2.4
holds and o[r(z)] € Sp for |z| = 1, where r(z) is given by (4.3).

Proof By Lemma 5.1, we need to prove that all the zeros of (5.2) satisfy
|z] < 1. Assume that there exists a zo with |zo| > 1 such that (5.2) holds with z = z,.
Since matrix I, — >4_, 25" N, is assumed to be invertible, (5.2) is equivalent to
det[P(z0)1, — Q(z0)r(z0)] = 0, which implies that there exists an / such that P(zy) =
M (r(20))Q(zo). Since |zo| > 1 one has A;(r(zg)) ¢ Spm. This contradicts the earlier
assumption o [r(z)] € Spu for |z| > 1. Hence, the theorem holds. O

Combining Theorem 5.2 with the definitions of A(«)- and A-stability, we obtain
the following results.

Theorem 5.3 Assume that the LM method (3.3) is A(a)-stable (resp. A-stable) and
system (3.1) satisfies condition (a) in Theorem 2.4, and assume that o[r(z)] € S, (resp.
o[r(z)] € C7) for |z| = 1. Then, the method (3.5) is asymptotically stable.
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398 C. Zhang, S. Vandewalle

Theorem 5.4 Assume that the LM method (3.3) is A(x)-stable (resp. A-stable) and
system (3.1) satisfies (2.3), and assume that o [r(z)] S, (resp. o[r(z)1<C™) for|z| > 1.
Then, the method (3.5) is asymptotically stable.

Theorem 5.5 Assume that the LM method (3.3) is A-stable and system (3.1) satisfies
conditions (a)—(b) in Theorem 2.8. Then, the method (3.5) is asymptotically stable
whenever (4.8) holds.

Remark 5.6 With (3.6), condition (4.8) can be dropped in Theorem 5.5 if the
employed quadrature rule is of interpolatory type and the coefficients v, are all
nonnegative.

We may regard Theorems 5.3, 5.4 and 5.5 as discrete versions of Theorems 2.4, 2.5
and 2.8, respectively. The following examples illustrate Theorems 5.4 and 5.5.

Example 5.1 The classical BDF method of order 3 is A(86.03°)-stable. Adapting this
method towards (3.5) with the compound Gregory rule

m—=2
Ynt+j 1= 1% (5)’n+/’+ Bynyj1 +12 Z:z Yntjr + 13Ynt jmms1 + 5)’n+/’—m) )
r=

where m = 10, we obtain a numerical method for the system in Example 2.1. Earlier,
we showed that p(N) = 0.4767 < 1;in addition it can be numerically verified that the
system satisfies

I‘n‘iylgﬂ arg(—A)| : A €or(z)]} = 54.90°,

which shows that o[r(z)] € Sgeos- for |z| > 1. Hence, it follows from Theorem 5.4
and Remark 2.7 that the method will produce an asymptotically stable numerical
solution.

Example 5.2 The classical second order BDF method is A-stable. Based on this
method and the compound trapezoidal rule

h gm—1

Yntj g = 5 (yn+j+2 Z Yo+t j—r +yn+qu> , 4= 1,2; m =150,
r=1

we obtain a numerical scheme of the form (3.5). If the method is applied to the system

in Example 2.2, which has been proven to satisfy conditions (é)—(f)) for t, = q/20
(g=1, 2), an asymptotically stable numerical solution will be generated. This follows
from Theorem 5.5 together with Remark 5.6.
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