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Abstract In this paper we address the problem of constructing quasi-interpolants
in the space of quadratic Powell-Sabin splines on nonuniform triangulations. Quasi-
interpolants of optimal approximation order are proposed and numerical tests are
presented.
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1 Introduction

It is well known that the term quasi-interpolation denotes a general approach to
construct, with low computational cost, efficient local approximants to a given set
of data or a given function. A quasi-interpolant (q.i.) for a given function f is usually
obtained as linear combination of the elements of a suitable set of functions which are
required to be positive, to ensure stability, and to have small local support in order
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to achieve local control. The coefficients of the linear combination are the values of
linear functionals depending on f and on its derivatives/integrals.

Quasi-interpolation has received a considerable attention by many authors since
the seminal paper [23].

In the univariate case various effective quasi-interpolating schemes are available,
based on values of f, and/or its derivatives, and/or its integrals (see for examples [1–
3, 14–16, 23] and references quoted therein) and interesting applications have been
proposed in different fields.

Similarly, various interesting results have been obtained in the bivariate setting by
using quasi-interpolating schemes based on tensor-product polynomial splines (see
for example [1, 2, 13, 22] and references quoted therein), on spaces of splines over
three directional and four directional partitions both for the uniform and the non-
uniform case (see for example [4, 5, 7, 21, 22]) or on other spline spaces as those
generated by simplex splines (see [5, 8, 11, 18] and references quoted therein).

In this paper we address the problem of constructing quasi-interpolants in the
space of quadratic splines over a Powell-Sabin refinement of a generic triangulation,
[19]. The low degree and the simplicity of the Bézier-Bernstein representation
coupled together with the possibility of handling arbitrary triangulations of polygonal
domains, make this spline space very interesting not only from the theoretical point
of view but also for applications. Thus, Powell-Sabin quadratic splines have been
widely studied by several authors (see for example [6, 9, 10, 12, 17, 20, 26, 28]).

In the space of Powell-Sabin quadratic splines the Hermite interpolation prob-
lem at the vertices of the triangulation has a unique solution and the interpolant
can be locally computed in each triangle of the triangulation. So, the Hermite
interpolant can be seen as a special quasi-interpolant. However, other interes-
ting quasi-interpolanting schemes can be constructed in this space. In particular,
we describe quasi-interpolants, not requiring derivatives of the function f, which
reproduce quadratic polynomials and we determine upper bounds for their infinity
norm. Therefore, it turns out that the proposed quasi-interpolants provide the full
approximation order in the space.

The results we present are based on the properties of the quadratic Powell-Sabin
B-splines constructed and analysed by Dierckx and some coauthors, see [9, 24–28].

The remaining of the paper is divided into 5 sections. In the next one we briefly
recall from [9] the construction and some salient properties of quadratic B-splines
over a Powell-Sabin refinement of a triangulation of a planar domain. In Section 3
we discuss differential quasi-interpolants. In Section 4 we construct some families of
discrete quasi-interpolants reproducing bivariate quadratic polynomials and upper
bounds of their infinity norms are determined in Section 5. Finally, we end in
Section 6 with some numerical examples and some final remarks.

2 Quadratic B-splines over a Powell-Sabin refinement

In this section we briefly summarize from [9] the construction and some properties
of quadratic B-splines over a Powell-Sabin refinement of a triangulation of a planar
domain (see also [24, 26–28]).

For the sake of simplicity, in the following the Bézier-Bernstein representation
will be used to describe polynomials over triangles (see for example [9, 19, 20]).
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Let τ be a triangle with vertices Vi j := (xi j, yi j)
T , j = 1, 2, 3, and let (u, v, w) be

the barycentric coordinates of a point (x, y)T ∈ IR2 with respect to the triangle τ ,
that is the values determined by the linear system

⎛
⎝

1 1 1
xi1 xi2 xi3
yi1 yi2 yi3

⎞
⎠
⎛
⎝

u
v

w

⎞
⎠ =

⎛
⎝

1
x
y

⎞
⎠ .

Let IPn denote the linear space of algebraic polynomials of degree less than or equal
to n. Any element p ∈ IPn has a unique representation in barycentric coordinates

p(x, y) =
∑

i+ j+k=n

b i, j,k
n!

i! j!k!uiv jwk.

The coefficients bi, j,k are the Bézier ordinates of the polynomial p with respect to
the triangle τ. Usually, this representation is called Bézier-Bernstein representation
of p and it is schematically represented by associating each coefficient bi, j,k with the
domain point

(xi, j,k, yi, j,k) (1)

having barycentric coordinates ( i
n ,

j
n , k

n ). The points

(xi, j,k, yi, j,k, bi, j,k) ∈ IR3, i + j + k = n,

are the Bézier control points of p.

Let � be a polygonal domain in IR2 and let � be a regular triangulation of �. We
denote by

Vl := (xl, yl)
T , l = 1, . . . , NV,

the vertices of the given triangulation. A Powell-Sabin refinement, �PS, of � is the
refined triangulation, [19], obtained (see Fig. 1) by subdividing each triangle of �

into six subtriangles as follows. Select a point, say C j, inside any triangle τ j of �

and connect it with the three vertices of τ j and with the points C j1 , C j2 , C j3 where
τ j1 , τ j2 , τ j3 are the triangles adjacent to τ j. If τ j is a boundary triangle the undefined
C ji are specified points (usually the midpoints) inside the corresponding boundary
edges. We assume that each segment C jC ji , i = 1, 2, 3, intersects the interior of the
common edge of τ j and τ ji .

Fig. 1 A triangulation � and a
Powell-Sabin refinement �PS
of �
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We denote by S1
2(�PS) the space of Powell-Sabin splines, [19], that is the linear

space of piecewise quadratic polynomials on �PS with C1 continuity in �. It is well
known, [9, 19, 20], that:

• dim(S1
2 (�PS)) = 3NV;

• any element of S1
2 (�PS) is determined by its value and its gradient at the vertices

of �;
• any element of S1

2 (�PS) can be locally computed in each triangle of � provided
that its values and its gradients at the three vertices of the triangle are given.

In [9] B-spline bases of the space S1
2 (�PS) have been proposed as follows. Let us

associate three functions to any vertex of �

{B( j )
l , j = 1, 2, 3, l = 1, . . . , NV}, (2)

such that s = ∑NV
l=1

∑3
j=1 cl, jB

( j )
l for all s ∈ S1

2 (�PS), and

B( j )
l (x, y) ≥ 0,

NV∑
l=1

3∑
j=1

B( j )
l (x, y) = 1. (3)

A system satisfying these properties is often called a “blending system”. The
functions B( j )

l will be referred to as Powell-Sabin B-splines.
Let �l be the subset of � consisting of the points belonging to the union of all the

triangles of � containing the vertex Vl. From the Bézier-Bernstein representation,
it is immediate to see that if we ask Powell-Sabin B-splines to have minimal support
then the support for any B( j )

l is contained in the cell �l.

The three functions B(1)

l , B(2)

l , B(3)

l can be locally constructed over the cell �l

once their values and gradients at any vertex of � are given. Due to the structure of
the support we have:

B( j )
l (Vk) = 0,

∂

∂x
B( j )

l (Vk) = 0,
∂

∂y
B( j )

l (Vk) = 0, if k �= l. (4)

Moreover, we denote:

B( j )
l (Vl) =: α

( j )
l ,

∂

∂x
B( j )

l (Vl) =: β
( j )
l ,

∂

∂y
B( j )

l (Vl) =: γ
( j )

l . (5)

In order to obtain a partition of unity, we have to impose

α
(1)

l + α
(2)

l + α
(3)

l = 1,

β
(1)

l + β
(2)

l + β
(3)

l = 0,

γ
(1)

l + γ
(2)

l + γ
(3)

l = 0. (6)

Using the Bézier-Bernstein representation, it is possible to prove, [9], that B( j )
l is

non negative if and only if the Bézier ordinates of the Bézier points (1) which are
direct neighbours of the vertex Vl are non negative (see Fig. 2). The positivity of
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Fig. 2 ∗: location of the Bézier
points which are “direct
neighbours” of the vertex Vl
and (shaded) two possible
“valid” triangles for them

V l Vl

the above mentioned coefficients has the following very nice geometric interpreta-
tion, [9]. Let us denote e10(x, y) := x, e01(x, y) := y. For each index l, we want to
determine points {Q( j )

l , j = 1, 2, 3} such that the following expansions hold

e10 =
NV∑
l=1

3∑
j=1

e10

(
Q( j )

l

)
B( j )

l , e01 =
NV∑
l=1

3∑
j=1

e01

(
Q( j )

l

)
B( j )

l . (7)

Since e10, e01 ∈ S1
2 (�PS), then they are uniquely determined by their values and their

gradients at the vertices of �. So, denoting by Fk,x, Fk,y the coordinates of the point
Fk, we have

Ml

⎛
⎜⎝

Q(1)

l,x

Q(2)

l,x

Q(3)

l,x

⎞
⎟⎠ =

⎛
⎝

xl

1
0

⎞
⎠ , Ml

⎛
⎜⎜⎝

Q(1)

l,y

Q(2)

l,y

Q(3)

l,y

⎞
⎟⎟⎠ =

⎛
⎝

yl

0
1

⎞
⎠ , l = 1, . . . , NV, (8)

where

Ml :=
⎛
⎜⎝

α
(1)

l α
(2)

l α
(3)

l

β
(1)

l β
(2)

l β
(3)

l

γ
(1)

l γ
(2)

l γ
(3)

l

⎞
⎟⎠ . (9)

The Powell-Sabin B-splines are required to be linearly independent, therefore the
matrix Ml is non singular. So, for each vertex Vl , systems (8) uniquely determine
three points Q( j )

l , j = 1, 2, 3. From [9], Section 4, we have the following result (see
also Fig. 2)

Theorem 1 The functions B( j )
l , j = 1, 2, 3, are non negative if and only if the triangle

with vertices Q( j )
l , j = 1, 2, 3, contains the Bézier points (1) which are direct neigh-

bours of Vl.

On the other hand, it is immediate to see that, given three non collinear points
Q( j )

l , j = 1, 2, 3, they uniquely determine, via (8) and (6), the values and gradients
of the three functions B( j )

l , j = 1, 2, 3, at the vertex Vl and so they completely
determine the three functions B( j )

l . Summarizing, the points Q( j )
l , j = 1, 2, 3 – and so

the triangle they form – are uniquely associated with the triple B( j )
l , j = 1, 2, 3, and

can be efficiently used to identify and describe these functions and their properties
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instead of α
( j )
l , β

( j )
l , γ

( j )
l . Moreover, [9], triangles with a small area produce B-splines

with “better” computational properties. In [9] an optimization strategy has been pro-
posed to select triangles with minimal area ensuring positivity of the corresponding
B-splines.

3 Differential quasi-interpolants in S1
2(�PS)

In this section we describe how the B-splines introduced in Section 2 can be used to
define q.i.s, based on derivatives of the given function f, which are exact on IP2.

We are interested in q.i.s of the following form

Q f =
NV∑
l=1

3∑
j=1

μ
( j )
l ( f )B( j )

l , (10)

where μ
( j )
l ( f ), j = 1, 2, 3, l = 1, . . . , NV, are suitable linear functionals. First of all

we note (see also [27]) that, if

f (Vl), ∇ f (Vl), l = 1, . . . , NV, (11)

are given, setting
⎛
⎜⎝

μ
(1)

l ( f )
μ

(2)

l ( f )
μ

(3)

l ( f )

⎞
⎟⎠ := M−1

l

⎛
⎝

f (Vl)

fx(Vl)

fy(Vl)

⎞
⎠ , (12)

then, from (5) and (9), expression (10) provides the unique element in S1
2 (�PS)

which interpolates the data (11). So, the scheme (10) with coefficients given by (12)
is a quasi-interpolating (actually Hermite interpolating) scheme in S1

2 (�PS) which
obviously reproduces IP2. Moreover, (12) and (9) show that this is the unique q.i. of
the form (10) with

μ
( j )
l ( f ) := a( j )

l f (Vl) + b ( j )
l fx(Vl) + c( j )

l fy(Vl), a( j )
l , b ( j )

l , c( j )
l ∈ IR,

which is a projection, [14], in S1
2 (�PS), i.e. satisfies

Qs = s, ∀s ∈ S1
2 (�PS).

A second q.i. reproducing IP2 can be obtained as a modification of the Schoenberg-
Marsden type ([16]) scheme

Q1 f :=
NV∑
l=1

3∑
j=1

f
(

Q( j )
l

)
B( j )

l . (13)

From (6) and (7) we have

(Q1 p)(Vl) = p(Vl), ∇(Q1 p)(Vl) = ∇ p(Vl), l = 1, . . . , NV, ∀p ∈ IP1,

so that

Q1 p = p, ∀p ∈ IP1. (14)
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Thus, we modify Q1 f in order to obtain reproduction of quadratic polynomials. We
have the following result

Theorem 2 Let us define

Q̃2 f :=
NV∑
l=1

3∑
j=1

μ̃
( j )
l ( f )B( j )

l . (15)

where, for j = 1, 2, 3, l = 1, . . . , NV

μ̃
( j )
l ( f ) := f

(
Q( j )

l

)
− 1

2

(
Q( j )

l − Vl

)T ∇2 f (Vl)
(

Q( j )
l − Vl

)
. (16)

Then,

Q̃2 p = p, ∀p ∈ IP2.

Proof Let us consider p ∈ IP2. From Taylor expansion

p
(

Q( j )
l

)
= p(Vl) + ∇T p(Vl)

(
Q( j )

l − Vl

)
+ 1

2

(
Q( j )

l − Vl

)T ∇2 p(Vl)
(

Q( j )
l − Vl

)
,

thus, from (16)

Q̃2 p =
NV∑
i=1

3∑
j=1

[
p(Vi) + ∇T p(Vi)

(
Q( j )

i − Vi

)]
B( j )

i .

Hence, from (4)

(Q̃2 p)(Vl) =
3∑

j=1

[
p(Vl) + ∇T p(Vl)

(
Q( j )

l − Vl

)]
B( j )

l (Vl)

= p(Vl)

3∑
j=1

B( j )
l (Vl) + ∇T p(Vl)

⎛
⎝

3∑
j=1

Q( j )
l B( j )

l (Vl)

⎞
⎠

− ∇T p(Vl)(Vl)

3∑
j=1

B( j )
l (Vl),

so that, from (5), (6) and (8) we obtain

(Q̃2 p)(Vl) = p(Vl), l = 1, . . . , NV .

Similarly,

∇(Q̃2 p)(Vl) = ∇ p(Vl), l = 1, . . . , NV .
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The assertion follows since any element in S1
2 (�PS) is uniquely determined by its

values and gradients at the vertices of �. �	

4 Discrete quasi-interpolants in S1
2 (�PS)

The Hermite interpolant and the q.i. (15) require the computation of values of the
function f and of some of its derivatives. In this section we describe how it is possible
to construct q.i.s of the form (10) which reproduce IP2 and do not require values of
derivatives of f . More precisely, we are interested in q.i.s of the form (10) with

μ
( j )
l ( f ) : =

N( j )
l∑

k=1

q( j,k)

l f
(

Z( j,k)

l

)
,

q( j,k)

l ∈ IR, q( j,k)

l �= 0, Z( j,k)

l ∈ IR2, 1 ≤ N( j )
l ∈ IN. (17)

Since the set of functions (2) forms a basis of S1
2 (�PS), from (13) and (14) we deduce

that any q.i. defined via (10) and (17) reproduces IP1 if and only if

1 =
N( j )

l∑
k=1

q( j,k)

l , Q( j )
l =

N( j )
l∑

k=1

q( j,k)

l Z( j,k)

l . (18)

The following result shows that, for a q.i. of the form (10) and (17) which repro-
duces quadratic polynomials, with N( j )

l ≤ 3, the set of points {Z( j,k)

l , k = 1, . . . , N( j )
l }

has a specific geometric configuration.

Theorem 3 Let Q be any q.i. of the form (10) with μ
( j )
l defined according to (17) and

N( j )
l ≤ 3. If

Qp = p, ∀p ∈ IP2, (19)

then, for any l ∈ {1, . . . , NV} and j ∈ {1, 2, 3}, the points

Vl, Q( j )
l , Z( j,k)

l , k = 1, . . . , N( j )
l ,

are collinear.

Proof From Theorem 2 we know that (16) provides the coefficients of the represen-
tation of any polynomial of degree less than or equal to 2 with respect to the basis
(2). Thus, from (19) we have that

μ
( j )
l (p) = μ̃

( j )
l (p), ∀p ∈ IP2, l = 1, . . . , NV, j = 1, 2, 3. (20)
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Let us fix l ∈ {1, . . . , NV} and j ∈ {1, 2, 3}. Without loss of generality we can assume
Vl = (0, 0)T . Specifying equality (20) for the monomial basis of bivariate quadratic
polynomials we obtain

∑N( j )
l

k=1
q( j,k)

l = 1
∑N( j )

l

k=1
q( j,k)

l Z ( j,k)

l,x = Q( j )
l,x∑N( j )

l

k=1
q( j,k)

l Z ( j,k)

l,y = Q( j )
l,y∑N( j )

l

k=1
q( j,k)

l

(
Z ( j,k)

l,x

)2 = 0
∑N( j )

l

k=1
q( j,k)

l

(
Z ( j,k)

l,y

)2 = 0
∑N( j )

l

k=1
q( j,k)

l

(
Z ( j,k)

l,x

) (
Z ( j,k)

l,y

)
= 0. (21)

Since N( j )
l ≤ 3, the system (21) can have solutions only if the rows of the matrix

⎛
⎜⎜⎜⎜⎜⎜⎝

(
Z ( j,1)

l,x

)2 · · ·
(

Z
( j,N( j )

l )

l,x

)2

(
Z ( j,1)

l,y

)2 · · ·
(

Z
( j,N( j )

l )

l,y

)2

Z ( j,1)

l,x Z ( j,1)

l,y · · · Z

(
j,N( j )

l

)

l,x Z

(
j,N( j )

l

)

l,y

⎞
⎟⎟⎟⎟⎟⎟⎠

are linearly dependent, that is only if the cartesian coordinates of the points
Z( j,k)

l , k = 1, . . . , N( j )
l satisfy the equation

rx2 + sy2 + txy = 0, (22)

for some r, s, t ∈ IR, r2 + s2 + t2 > 0. The locus determined by (22) in the plane is the
union of two straight lines through the origin or reduces to the point (0, 0)T . Thus, if
system (21) has solutions the points Z( j,k)

l , k = 1, . . . , N( j )
l ≤ 3, belong to two straight

lines through Vl.

If N( j )
l = 1, it is clear that system (21) can have solutions only if Z( j,1)

l = Q( j )
l = Vl,

so that the assertion holds.
Now, let us consider the case N( j )

l = 3. If two points, say Z( j,1)

l , Z( j,2)

l , and Vl are
collinear, since from (17) q( j,3)

l �= 0, from the last three equations in (21) we have that
Z( j,3)

l is collinear with Z( j,1)

l , Z( j,2)

l and Vl too. Thus, Z( j,1)

l , Z( j,2)

l , Z( j,3)

l and Vl are
collinear and Q( j )

l has to belong to the same line otherwise the first three equations
of (21) cannot hold.

In a similar way we can conclude that the same result is valid in the case N( j )
l = 2.

�	

As noticed in the proof of the previous theorem, q.i.s of the form (10), (17) with
N( j )

l = 1, can reproduce quadratic polynomials only if Q( j )
l = Vl . From Theorem 1,

this condition can be satisfied only by boundary vertices. Thus, we will concentrate
our interest in the cases N( j )

l = 2, 3.
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First, considering the results of Theorem 3 we completely describe the q.i.s of the
form (10) with coefficients given by (17), reproducing quadratic polynomials, in the
case N( j )

l = 2.

Theorem 4 Let Q be any q.i. of the form (10) with μ
( j )
l defined according to (17).

Then

Qp = p, ∀p ∈ IP2

if and only if, for any l = 1, . . . , NV, j = 1, 2, 3, with N( j )
l = 2 and Q( j )

l �= Vl we have

Z( j,1)

l :=
(

1 − 1

ζ
( j )
l

)
Vl + 1

ζ
( j )
l

Q( j )
l ,

Z( j,2)

l := − ζ
( j )
l(

1 − ζ
( j )
l

)Vl + 1(
1 − ζ

( j )
l

)Q( j )
l ,

q( j,1)

l :=
(
ζ

( j )
l

)2

2ζ
( j )
l − 1

, q( j,2)

l := −
(

1 − ζ
( j )
l

)2

2ζ
( j )
l − 1

, ζ
( j )
l ∈ IR, ζ

( j )
l �= 0,

1

2
, 1. (23)

Proof Let us put Q( j )
l = (1−ζ

( j,k)

l )Vl +ζ
( j,k)

l Z( j,k)

l , k = 1, 2. Since Q( j )
l �=Vl, imposing

μ
( j )
l (p) = μ̃

( j )
l (p), p ∈ {1, x, y, x2, y2, xy},

results (see also the proof of Theorem 3) in the nonlinear system

q( j,1)

l + q( j,2)

l = 1

q( j,1)

l

ζ
( j,1)

l

+ q( j,2)

l

ζ
( j,2)

l

= 1

q( j,1)

l(
ζ

( j,1)

l

)2 + q( j,2)

l(
ζ

( j,2)

l

)2 = 0

whose solutions are the values of q( j,k)

l , ζ
( j,k)

l , k=1, 2, given in (23) setting ζ
( j )
l = ζ

( j,1)

l .
�	

For the case N( j )
l = 3, the following Theorem provides a family of q.i.s reproduc-

ing quadratic polynomials.

Theorem 5 For l = 1, . . . , NV, j = 1, 2, 3 let Wl j ∈ IR2, Wl j �= Vl, be so that

Q( j )
l =

(
1 − λ

( j )
l

)
Vl + λ

( j )
l Wl j, λ

( j )
l ∈ IR.
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Let Q be any q.i. of the form (10) with μ
( j )
l defined according to (17) where, for

l = 1, . . . , NV, j = 1, 2, 3, N( j )
l = 3,

Z( j,1)

l := Vl,

Z( j,2)

l :=
(

1 − ζ
( j )
l

)
Vl + ζ

( j )
l Wl j, ζ

( j )
l ∈ IR, ζ

( j )
l �= 0, 1,

Z( j,3)

l := Wl j, (24)

and

q( j,1)

l := 1 − λ
( j )
l − λ

( j )
l

ζ
( j )
l

, q( j,2)

l := λ
( j )
l

ζ
( j )
l

(
1 − ζ

( j )
l

) , q( j,3)

l := − λ
( j )
l ζ

( j )
l

1 − ζ
( j )
l

, (25)

then

Qp = p,∀p ∈ IP2.

Proof For any l = 1, . . . , NV, and j = 1, 2, 3, we consider the triple of points
Z( j,k)

l , k = 1, 2, 3, given in (24) and we impose

μ
( j )
l (p) = μ̃

( j )
l (p), p ∈ {

1, x, y, x2, y2, xy
}
.

This results (see also the proof of Theorem 3) in the system

q( j,1)

l + q( j,2)

l + q( j,3)

l = 1

q( j,1)

l +
(

1 − ζ
( j )
l

)
q( j,2)

l = 1 − λ
( j )
l

q( j,2)

l ζ
( j )
l + q( j,3)

l = λ
( j )
l

q( j,2)

l

(
ζ

( j )
l

)2 + q( j,3)

l = 0. (26)

It is immediate to verify that the values (25) uniquely solve (26) so that the corre-
sponding μ

( j )
l (p), l = 1, . . . , NV, j = 1, 2, 3, exactly provide the coefficients of p ∈

IP2 with respect to the basis (2). �	

The q.i.s constructed in Theorem 5 require evaluating f at points collinear with
the vertices of � and with the points Q( j )

l defining the used family of B-splines. So, it
seems natural to investigate the case where the above mentioned points lie over the
edges of �. In order to do that we have to assume that the partition � and the family
of B-splines we are dealing with satisfy the following hypothesis (see Figs. 2 and 3).

Hypothesis 6 For any pair (Vl, Q( j )
l ) there exists a vertex Vl j of � such that Vl ,

Q( j )
l , Vl j are collinear.

If Hypothesis 6 holds, we can easily estimate

1

2

(
Q( j )

l − Vl

)T ∇2 f (Vl)
(

Q( j )
l − Vl

)
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Fig. 3 The three B-splines, B( j )
l , j = 1, 2, 3 associated with the vertex Vl corresponding to the

triangle in Fig. 2 right. Top: the functions B( j )
l , Bottom: contour lines for B( j )

l

by the second (univariate) divided difference of f along VlQ
( j )
l ,

∥∥∥VlQ
( j )
l

∥∥∥
2 [

Vl, Q( j )
l , Vl j

]
f.

This estimate is exact for any element of IP2, and involves values of f at Vl, Q( j )
l , Vl j

only. Thus, from Theorem 2 we immediately have the following result

Theorem 7 If Hypothesis 6 holds, define

Q2 f : =
NV∑
l=1

3∑
j=1

μ
( j )
l ( f )B( j )

l

μ
( j )
l ( f ) : = f

(
Q( j )

l

)
−
∥∥∥VlQ

( j )
l

∥∥∥
2 [

Vl, Q( j )
l , Vl j

]
f. (27)

then

Q2 p = p, ∀p ∈ IP2.

Remark 8 When Hypothesis 6 holds, if we choose Wl j := Vl j, l = 1, . . . , NV, j =
1, 2, 3 in (24) and ζ

( j )
l = λ

( j )
l in (24)-(25) (if λ

( j )
l �= 0, 1) then the q.i. defined by (10),

(17), (24) and (25) coincides with (27).

Remark 9 The q.i. (27) reproduces quadratic polynomials and only uses linear
combination of the values of the given function f at the vertices of � or at points
belonging to edges of the triangulation (or to their prolongation). However, though
it seems reasonable to assume that the function f can be evaluated at some (given)
points belonging to the edges of �, on the other hand it seems too restrictive to ask
for values of f at any point of the edges of �. So, it can be useful to deal with q.i.s
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where the evaluation points can be selected according to the available data. In this
respect, if Hypothesis 6 holds, we can apply Theorem 5 with the choice

Wl j := Vl j, l = 1, . . . , NV, j = 1, 2, 3,

and selecting ζ
( j )
l so that Z( j,2)

l in (24) does not necessarily coincides with Q( j )
l but is

a point where the value of f is available.

We end this Section by noting that, starting from the Hermite interpolant, (see
(10), (12) and (9)), and using the same approach as in Theorem 7, it is not difficult to
construct a q.i. which reproduces IP2 and only uses values of the given function f. It
suffices to approximate ∇ f (Vl) by means of a linear combination of values of f which
provides an exact estimate for quadratic polynomials. As an example, if S(1)

l , S(2)

l are
two points not collinear with Vl we can estimate the directional derivative

∇T f (Vl)
(

S(k)

l − Vl

)
, k = 1, 2,

by

d(k)

l :=
f
(

D(k)

l

)
+ νl,k(νl,k − 2) f (Vl) − (1 − νl,k)

2 f
(

S(k)

l

)

νk,l(1 − νk,l)
, (28)

where

D(k)

l := νk,lVl + (1 − νk,l)S
(k)

l , νk,l �= 0, 1, k = 1, 2.

From (28) we immediately obtain an estimate for the gradient of f which can
be substituted to ∇ f (Vl) in (12) providing the following new expression for the
coefficients of the q.i. (10)

⎛
⎜⎝

μ
(1)

l

μ
(2)

l

μ
(3)

l

⎞
⎟⎠ := M−1

l

⎛
⎜⎝

1 0 0
0 S(1)

l,x − Vl,x S(1)

l,y − Vl,y

0 S(2)

l,x − Vl,x S(2)

l,y − Vl,y

⎞
⎟⎠

−1 ⎛
⎝

f (Vl)

d(1)

l

d(2)

l

⎞
⎠ . (29)

From (8) we have

M−1
l =

⎛
⎜⎜⎝

1 Q(1)

l,x − Vl,x Q(1)

l,y − Vl,y

1 Q(2)

l,x − Vl,x Q(2)

l,y − Vl,y

1 Q(3)

l,x − Vl,x Q(3)

l,y − Vl,y

⎞
⎟⎟⎠ .

Thus, setting

Q( j )
l =

(
1 − ζ

( j,1)

l − ζ
( j,2)

l

)
Vl + ζ

( j,1)

l S(1)

l + ζ
( j,2)

l S(2)

l , ζ
( j,k)

l ∈ IR, j = 1, 2, 3,



296 C. Manni, P. Sablonnière

after some manipulations we obtain a new and more elegant form of (29)

μ
( j )
l ( f ) = f (Vl) + ζ

( j,1)

l d(1)

l + ζ
( j,2)

l d(2)

l , j = 1, 2, 3. (30)

As estimates (28) of the directional derivatives are exact for quadratic polynomials,
the q.i. (10) with coefficients given by (29), (or 30) reproduces IP2. Since each
coefficient μ

( j )
l consists in a linear combination of five values of f, the obtained q.i. is

of the form (17) with N( j )
l = 5.

In order to minimize the number of needed values of f , it is convenient to select
the points S(k)

l as vertices of �. On the other hand, since any element of S1
2 (�PS) is a

quadratic polynomial in each subtriangle of the Powell-Sabin refinement of �, if the
points Vl, S(i)

l , D(i)
l , i = 1, 2 belong to the same subtriangle of �PS then

(
S(1)

l,x − Vl,x S(1)

l,y − Vl,y

S(2)

l,x − Vl,x S(2)

l,y − Vl,y

)−1 (
d(1)

l

d(2)

l

)
= ∇T f (Vl),∀ f ∈ S1

2(�PS).

Thus we can state the following:

Theorem 10 Let Q be any q.i. of the form (10) with μ
( j )
l defined according to (29).

If the points of each triple Vl, S(i)
l , D(i)

l , i = 1, 2 belong to the same subtriangle of the
Powell-Sabin refinement of �, then

Qs = s, ∀s ∈ S1
2 (�PS).

5 Bounding the norm of discrete quasi-interpolants

In this section we will provide upper bounds of the infinity norms of the discrete q.i.s
in the space S1

2 (�PS) described in the previous section.
This is motivated by the fact that, denoting by ‖g‖∞,ϒ := supx∈ϒ |g(x)|, and by

‖Q‖∞,ϒ the corresponding induced norm, if Q reproduces quadratic polynomials we
have

‖Q f − f‖∞,� ≤ max
l=1,...,NV

(1 + ‖Q‖∞,�l ) inf
p∈IP2

‖ f − p‖∞,�l . (31)

Thus, bounding ‖Q‖∞,�l allows us to affirm that the q.i. is third order accurate, that
is it provides the optimal approximation order in S1

2 (�PS).
From the blending properties of the B-spline basis (see (3)), for any q.i. of the

form (10) with coefficients μ
( j )
l given by (17), if Z( j,k)

l ∈ �l , we immediately have

‖Q‖∞,�l ≤ max
l=1,...,NV

max
j=1,2,3

N( j )
l∑

k=1

∣∣∣q( j,k)

l

∣∣∣ =: ‖Q‖. (32)



Powell-Sabin q.i. 297

With some elementary manipulations we have the following results

Theorem 11 Let Q be any q.i. of the form (10) with μ
( j )
l defined according to (17) and

(23) then

∣∣∣ζ ( j )
l

∣∣∣ =
∥∥∥Q( j )

l − Vl

∥∥∥
∥∥∥Z( j,1)

l − Vl

∥∥∥
,

∣∣∣1 − ζ
( j )
l

∣∣∣ =
∥∥∥Q( j )

l − Vl

∥∥∥
∥∥∥Z( j,2)

l − Vl

∥∥∥
,

∣∣∣
(

1 − ζ
( j )
l

)
ζ

( j )
l

∣∣∣
∣∣∣2ζ

( j )
l − 1

∣∣∣
=

∥∥∥Q( j )
l − Vl

∥∥∥
∥∥∥Z( j,2)

l − Z( j,1)

l

∥∥∥
,

so that

‖Q‖ = max
l=1,...,NV

max
j=1,2,3

⎧⎪⎨
⎪⎩

∥∥∥Q( j )
l − Vl

∥∥∥
∥∥∥Z( j,1)

l − Z( j,2)

l

∥∥∥

∥∥∥Z( j,1)

l − Vl

∥∥∥
2 +

∥∥∥Z( j,2)

l − Vl

∥∥∥
2

∥∥∥Z( j,1)

l − Vl

∥∥∥
∥∥∥Z( j,2)

l − Vl

∥∥∥

⎫⎪⎬
⎪⎭

. (33)

As far as q.i.s based on three points are concerned (see Theorem 5 and Remarks 8
and 9) we limit ourselves to present an upper bound for a particularly significant q.i.
of the family. However, completely similar results can be obtained for other choices
of the values ζ

( j )
l .

Theorem 12 Let Q be any q.i. of the form (10) with μ
( j )
l defined according to (17) and

(24), with ζ
( j )
l = λ

( j )
l , then

|ζ ( j )
l | =

∥∥∥Q( j )
l − Vl

∥∥∥
∥∥∥Z( j,3)

l − Vl

∥∥∥
=
∥∥∥Z( j,2)

l − Vl

∥∥∥
∥∥∥Z( j,3)

l − Vl

∥∥∥
,

∣∣∣1 − ζ
( j )
l

∣∣∣ =
∥∥∥Z( j,2)

l − Z( j,3)

l

∥∥∥
∥∥∥Z( j,3)

l − Vl

∥∥∥
,

so that

‖Q‖= max
l=1,...,NV

max
j=1,2,3

⎧⎪⎨
⎪⎩

∥∥∥Q( j )
l − Vl

∥∥∥
2

∥∥∥Z( j,3)

l − Vl

∥∥∥
∥∥∥Z( j,3)

l − Z( j,2)

l

∥∥∥
+

∥∥∥Z( j,3)

l − Vl

∥∥∥
∥∥∥Z( j,3)

l − Z( j,2)

l

∥∥∥
+
∥∥∥Q( j )

l − Vl

∥∥∥
∥∥∥Z( j,3)

l − Vl

∥∥∥

⎫⎬
⎭.

(34)

It is worthwhile to notice that, in both cases, the upper bounds for ‖Q‖∞,�l depend
on the position of the points Z( j,k)

l with respect to the points Q( j )
l and Vl.

Roughly speaking, once the family of B-splines, that is the points Q( j )
l , has been

selected, the upper bound of the norm of the q.i. decreases as the two distances of
Z( j,k)

l from Vl and of Z( j,k)

l from Z( j,r)
l increase. Thus, “ less localized” q.i.s have a

lower upper bound for the infinity norm.
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On the other hand, if we fix the points of Z( j,k)

l , and we select a family of B-
splines, we have that the upper bound of the infinity norm of the corresponding
q.i. decreases as the distance of the points Q( j )

l from the vertex Vl decreases. Thus,
B-splines determined by points Q( j )

l having minimal distance from Vl (taking into
account positivity of the functions B( j )

l , see Theorem 1) are preferable because they
produce q.i.s with a lower bound for the infinity norm.

In both cases it is of interest to provide upper bounds for ‖Q( j )
l − Vl‖. Let us

denote by Il the set of indices of vertices of �, different from Vl , belonging to �l

(see Section 2). Let us put

Hl := max
j∈Il

‖Vj − Vl‖, hl := min
j∈Il

‖Vj − Vl‖.

With some elementary geometry we have that any equilateral triangle circumscribed

to the circle centered in Vl and having radius Hl
2 contains all the Bézier points (1)

which are direct neighbours of Vl. Thus, choosing the points Q( j )
l , j = 1, 2, 3, as the

vertices of such a triangle, the corresponding B( j )
l are non negative (see Theorem 1).

Hence, if no specific configuration of the points Q( j )
l , j = 1, 2, 3, is required we can

limit ourselves to work with families of B-splines such that
∥∥∥Q( j )

l − Vl

∥∥∥ ≤ Hl. (35)

On the other hand, if we deal with points Q( j )
l belonging to the edges of � (or

to their prolongation), see Hypothesis 6 and Fig. 4, we can observe (see Fig. 4) that
the distance of Vl from any point of the edge Q( j )

l Q( j+1)

l (superscripts modulo 3) is
greater than

min
{∥∥∥Q( j )

l − Vl

∥∥∥,
∥∥∥Q( j+1)

l − Vl

∥∥∥
}

cos

(
θ

( j )
l

2

)
,

Thus, assuming as it is reasonable, that
∥∥∥Q(i)

l − Vl

∥∥∥
∥∥∥Q( j )

l − Vl

∥∥∥
≤ Hl

hl
, i, j = 1, 2, 3, (36)

Fig. 4 Points Q( j )
l satisfying

Hypothesis 6 and
corresponding angles θ

( j )
l

θ(3)

lθ
θ

(1)

l
(2)

l

Q
(1)

l

Q
(2)

l

Q
(3)

l
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we can have positive B-splines B( j )
l considering

∥∥∥Q( j )
l − Vl

∥∥∥ ≤ Hl

hl

Hl

2
max

i=1,2,3

[
cos

(
θ

(i)
l

2

)]−1

. (37)

Finally, bounds similar to (33) and (34) can be obtained for the family of q.i.s of
the form (10) with μ

( j )
l defined according to (29). As an example we have

Theorem 13 Let Q be any q.i. of the form (10) with μ
( j )
l defined according to (28),

(30) with νl,k = 1

2
. If S(i)

l is collinear with Vl and Q( ji)
l , j1 �= j2, j1, j2 ∈ {1, 2, 3}, then

‖Q‖ ≤ 1 + 8 maxl=1,...,NV max

⎧⎨
⎩

∥∥∥Q( j1)
l − Vl

∥∥∥
∥∥∥S(1)

l − Vl

∥∥∥
,

∥∥∥Q( j2)
l − Vl

∥∥∥
∥∥∥S(2)

l − Vl

∥∥∥
,

A1

∥∥∥Q( j1)
l − Vl

∥∥∥
∥∥∥S(1)

l − Vl

∥∥∥
+ A2

∥∥∥Q( j2)
l − Vl

∥∥∥
∥∥∥S(2)

l − Vl

∥∥∥

⎫⎬
⎭ (38)

where Ai denotes the ratio among the area of the triangle VlQ
( ji+1)

l Q( ji+2)

l and that one
of the triangle VlQ

( j1)
l Q( j2)

l (superscripts modulo 3).

In particular, the points S(i)
l can be selected so that the triangle VlQ

( j1)
l Q( j2)

l has
area of maximum value among the three triangles obtained connecting Vl with
Q( j )

l , j = 1, 2, 3, so that

A1, A2 ≤ 1. (39)

Moreover, if Hypothesis 6 and (36) hold, choosing S(i)
l , i = 1, 2, as vertices of �,

different from Vl , belonging to �l and such that (39) holds, from (37) and (38) we
obtain

‖Q‖ ≤ 1 + 8 max
l=1,...,NV

(
Hl

hl

)2

max
i=1,2,3

[
cos

(
θ

(i)
l

2

)]−1

.

Remark 14 For a q.i. as in Theorem 10, estimates for ‖Q f − f‖∞,� can be also be
obtained by using the error bounds for Hermite interpolation presented in [20] and
considering bounds on differences between exact and approximate gradients.

6 Numerical examples

In this section we illustrate the numerical performances of some quasi-interpolating
schemes presented above.

Before presenting the numerical results we note that, in order to construct in
practice the q.i.s analysed in Theorem 7 and in Remark 9, we have to construct
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a family of (positive) B-splines whose associated points Q( j )
l satisfy Hypothesis 6.

Since, in order to ensure positivity of B-splines

B(1)

l , B(2)

l , B(3)

l , (40)

the triangle Q(1)

l Q(2)

l Q(3)

l has to contain the Bézier points which are “direct neigh-
bours” of Vl (see Theorem 1 and Fig. 2), then, in order to satisfy Hypothesis 6, it
is necessary that the edges emanating from any interior vertex Vl belong at least
to three different directions (special conditions can also be necessary for boundary
vertices).

In case Hypothesis 6 can be satisfied, we try to obtain a B-spline basis of S1
2 (�PS)

with good performances from the computational point of view (see Section 2 and
[9]) and producing q.i.s with a small upper bound (32) for the infinity norm (see
Section 5). For any vertex Vl of � we will determine the triangle Q(1)

l Q(2)

l Q(3)

l by
imposing that its vertices belong to some edges of � emanating from Vl (or to their
prolongation) and it has a small – possibly minimal – area, see Figs. 2 and 3.

The minimal area procedure proposed in [9] does not produce in general triangles
with vertices belonging to the edges of � (see Fig. 2 and [9]). Algorithm 15
summarizes the procedure we have used, for the interior vertices {Vl, l = 1, . . . , NI},
in order to satisfy the above properties. Of course, the outlined procedure has to be
suitably adapted for the boundary vertices. Moreover, we mention that, from the
numerous numerical tests we performed, it turns out that other “initial” strategies
can be sometimes efficiently used instead of that one described in step 2.1, which is
suggested by (37). For the sake of brevity we omit the related details.

Algorithm 15.
1. Let the triangulation � and the Powell-Sabin refinement �PS be given;
2. for l = 1, . . . , NI

2.1. determine (if it is possible) a triangle Q̂(1)

l Q̂(2)

l Q̂(3)

l containing Vl in its
interior, having vertices belonging to edges of � emanating from Vl (or
onto their prolongation), which minimizes

max
i=1,2,3

θ
(i)
l .

2.2. select a point Q( j )
l over the line Q̂( j )

l Vl, j = 1, 2, 3, so that the triangle
Q(1)

l Q(1)

l Q(3)

l has minimal area and contains all the Bézier points which are
direct neighbours of the vertex Vl;

2.3. compute the three B-splines B( j )
l , j = 1, 2, 3, corresponding to the three

points Q( j )
l , j = 1, 2, 3.

�Fig. 5 Example. Top to Bottom: triangulation and triangles determining the set of Powell-Sabin B-
splines; f and its contour lines; Q2 f and its contour lines; the Hermite interpolant (10)-(12) and its
contour lines
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Fig. 6 Left to right: triangulations �(k), k = 0, 1, 2, and their Powell-Sabin refinements

We remark that, due to the completely local construction of the q.i.s, different
definitions for the coefficients μ

( j )
l can be used for different vertices. Moreover,

for the practical construction of the q.i.s, a special attention must be payed for the
boundary vertices. For such vertices it may happen that Vl = Q( j )

l for some j or that
two distinct points Q( j )

l are collinear with Vl, so that some of the quasi-interpolating
schemes presented in Section 4 cannot be applied around this vertices. However, as
an example, the schemes presented in Theorem 5 (and/or Remark 9) are well defined
even for boundary vertices.

For a practical example we have considered the function

f (x, y) = exp(x(1 − x)(1 − y)y(x − y)). (41)

Figure 5 top shows the considered triangulation with the Powell-Sabin refinement
and the triangles determining the used B-splines. All the vertices of the triangles lie
on the edges of � (or on their prolongations). The second row of Fig. 5 shows the
graph of f and its contour lines while in the third row we have the graph of Q2 f
(see (27)) and its contour lines. For comparison we depict in the last row of Fig. 5
the graph and the contour lines of the the classical Powell-Sabin Hermite interpolant
(see (10)-(12)). The two approximants are completely comparable and the contour
lines of Q2 f present a little bit smoother behaviour.

Finally, to numerically confirm the approximation power of the proposed q.i.s,
we have considered the triangulation �(0) depicted in Fig. 6 (left) and the refined
triangulations �(k) (see Fig. 6, for k = 0, 1, 2) obtained considering the midpoint of
any edge of �(k−1) and taking the Delaunay triangulation of this new set of vertices.
For all the triangulations we have considered the B-splines obtained according to
Algorithm 15 so that Hypothesis 6 holds.

Table 1 Error behaviour of different q.i.s for triangulations �(k)

k NV interp. q.i. (23) q.i. (24) q.i. Th. 10

0 5 0.016997 0.018356 0.016837 0.013519
1 13 0.003767 0.003681 0.006568 0.002856
2 41 0.000578 0.000573 0.001051 0.000448
3 145 0.000078 0.000143 0.000143 0.000093
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We have applied different q.i.s to the function (41) over the partitions �(k), k =
0, 1, 2, 3, and we have computed in each case

max
r,s=1,...,50

| f (xr, ys) − Q f (xr, ys)| (42)

where xr, ys are equally spaced points in [0, 1].
The results are depicted in Table 1. Any row of the table refers to a triangulation

�(k) for fixed k. The first column indicates the refinement level while the second one
shows the number of vertices of the triangulation. In the remaining columns we have
the values of the tabulated absolute error (42) for different q.i.s. In column 3 we have
considered the Hermite interpolant see (10), (12). Column 4 shows the results for the
q.i. presented in Theorem 4 (see (23)) with ζ

( j )
l = .7 (setting Z( j,k)

l = Vl, k = 1, 2 for
boundary vertices where Vl = Q( j )

l ). In column 5 we present the behaviour of the q.i.
of Remark 9 with ζ

( j )
l = .5. Finally, column 6 refers to the q.i. (10) with μ

( j )
l defined

by (29) taking S(i)
l along two edges emanating from Vl as points of split of the Powell-

Sabin refinement of �(k), and νk,l = 0.5.
Since the maximum length of an edge of the triangulation halves at each level of

refinement, the numerical results in Table 1 are in agreement with the expected cubic
reduction of the error (see (31)) .

Summarizing, we have presented and analysed several families of discrete q.i.s
in the space S1

2 (�PS) reproducing quadratic polynomials. For any vertex of �, the
q.i.s are obtained via linear combinations of values of the given function f at (few)
points around the vertex. The fact that the evaluation points can be chosen (possibly
under some special assumptions on the used family of B-splines) as vertices of
the triangulation � and/or belonging to its edges, makes the schemes attractive in
practical applications.

Moreover, upper bounds for the infinity norm of the presented q.i.s have been pro-
vided. Thanks to quadratic polynomial reproduction, these upper bounds completely
describe the optimal approximation order of the presented schemes.

The structure of the mentioned upper bounds indicates that, even in the context of
quasi-interpolation, families of B-splines defined in terms of triangles (see Section 2)
with small (minimal) area, are preferable.
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