
Adv Comput Math (2008) 28:119–139
DOI 10.1007/s10444-006-9015-2

Dirac delta methods for Helmholtz transmission
problems

V. Domínguez · M.-L. Rapún · F.-J. Sayas

Received: 19 October 2004 / Accepted: 15 May 2006 /
Published online: 25 November 2006
© Springer Science+Business Media B.V. 2006

Abstract In this paper we use a boundary integral method with single layer potentials
to solve a class of Helmholtz transmission problems in the plane. We propose
and analyze a novel and very simple quadrature method to solve numerically the
equivalent system of integral equations which provides an approximation of the
solution of the original problem with linear convergence (quadratic in some special
cases). Furthermore, we also investigate a modified quadrature approximation based
on the ideas of qualocation methods. This new scheme is again extremely simple to
implement and has order three in weak norms.

Mathematics Subject Classifications (2000) 65R20 · 65N38

Keywords boundary integral equations · Helmholtz transmission problems ·
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1. Introduction

Traditionally, Helmholtz transmission problem (HTP) is the name given to a system
of Helmholtz equations with different wave numbers, one on a bounded domain
and the other on its complement, coupled through continuity conditions for the
unknown and some related fluxes. A relevant field where these problems appear
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is the scattering of acoustic waves in locally homogeneous media in time-harmonic
regime. This has led to extensive analytical and numerical studies, aiming at obtaining
reliable simulations and at paving the way for two important related problems:
electromagnetic waves and associated inverse problems. The books [8, 9] deal with
direct and inverse problems for the Helmholtz equation, with an emphasis on exterior
boundary value problems and on scattering in non-absorbing media. Although this
kind of problems have led research on the Helmholtz equation on unbounded
domains, transmission problems have also received attention in the last decades.
Different formulations using boundary integral equations can be found for instance
in [10, 13, 15, 26, 27].

More recently, HTP have also appeared in the analysis of the scattering of thermal
waves [17, 18], based on related work in physical literature [16, 24, 25]. Also, the
use of the Laplace transform with numerical quadrature for the inversion formula on
special contours [12] allows for the transformation of evolutionary problems into a
set of steady-state Helmholtz equations for several wave numbers. In all these cases,
transmission problems are more relevant than purely exterior BVP and the media
have absorbtion.

In this work we deal with an indirect formulation for HTP based on the use
of single layer potentials. This approach can fail when either the interior or the
exterior constants for the Helmholtz equation are Dirichlet eigenvalues for the
Laplace operator in the interior domain. In these singular cases, our integral system
cannot be used. It is however valid in all the situations related to diffusion processes
mentioned above and in most purely acoustic situations. The proximity to a Dirichlet
eigenvalue for the Laplace operator is in fact detected in the numerical methods as
a drastic increase in the condition number. At that point, the formulation should
be changed: for instance, a mixed single–double layer potential (Brakhage–Werner
or Panich potential, see [8, 9]) can be used. The corresponding system of boundary
integral equations has a similar structure but uses hypersingular operators. At the
present state of our research we are not able to develop and analyze a quadrature
method for these operators. Anyway, the range of applicability of our methods to
non-purely acoustic equations or to heat-diffusion problems (and the corresponding
inverse problems) supposes a wide set of interesting practical problems.

To solve numerically the integral system, we propose two numerical methods: a
family of quadrature methods (in which two particular cases show superconvergence)
and an improvement based on ideas of qualocation methods. All these discretizations
can be interpreted as non-conforming Petrov–Galerkin methods with discrete sets
of Dirac deltas for both trial and test spaces. We give a complete convergence and
stability analysis based on classical compact perturbation theory and in the previous
results of [4] when dealing with quadrature methods. We carry out the analysis of the
modified quadrature method with new techniques based upon some technicalities
related to qualocation methods [6, 11].

Quadrature methods for equations of logarithmic type had been previously
studied by an equivalent formulation with trigonometric polynomials in [19] or as
Dirac delta approximations in [4]. For equations of the second kind, the approach
is usually based on the classical analysis of Nyström methods (see, for instance, [2,
14]). Here we give a simple alternative that works for the periodic case with simple
rules on equidistant grids based on a non-conforming Dirac delta approximation of
the identity operator and a perturbative analysis. Unlike the previous analyses of
spline-delta or delta–delta methods in [4], where discrete spaces of Dirac delta masses
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enter the Sobolev variational setting either in duality products (when Fourier series
converge absolutely) or as evaluations of piecewise Hölder functions (when Fourier
series are semiconvergent in the point of evaluation), the product of two Dirac delta
distributions in the principal part of the operator of the second kind can only be
defined at a discrete level. This apparently trivial idea simplifies enormously the way
the subsequent analysis is carried out and supposes a novel feature of our variational
approach to delta methods that extends the techniques in [4] to new situations that
did not follow straightforwardly from the analysis in that work. Also, combinations of
two (or more) grids for quadrature methods following the philosophy of qualocation
schemes opens new horizons to proposing and analysing extremely simple high order
methods. To the best of our knowledge, this is a non-minor novelty of the present
work.

We believe that the possibility of obtaining a method of order three for a class
of two dimensional HTP requiring no implementation effort at all (setting up the
system is trivial, the only problem is solving it) has an interest in itself, since it gives
the possibility of obtaining reliable numerical results with very little knowledge on
the intricacies of boundary element methods. Both formulation and approximation
have, logically, drawbacks: it is not clear which modifications will be needed for non-
smooth interfaces (a fully satisfactory analysis of high order convergence collocation
on polygons is still lacking); the three dimensional case is even farther away from the
theoretical point of view.

We have also limited our analysis to estimates in weak norms. These are used for
a posteriori computations, such as the value of the unknown for the transmission
problem at some distance of the interface, or far-field computations. Nevertheless,
some improvements in this direction are at hand. Following the ideas of [4, 5], we
could obtain an asymptotic expansion of the error. From this, it is possible to obtain
some pointwise superconvergence results for the unknowns of the integral system
(the densities for the single layer potentials) as well as theoretical justification for
the use of Richardson extrapolation, either to accelerate convergence or to have a
global a posteriori estimate of the error. With the analysis developed in this work and
the results in [4], with due adaptations and some new technicalities, these additional
results can be easily proven. We do not carry out this analysis here to keep the paper
in a reasonable size.

Notation. Throughout the paper C,C′,C′′ will denote general positive constants
independent of the discretization parameter (h = 1/N) and of any quantity that is
multiplied by them, being possibly different in each occurrence.

2. Statement of the problem

Let �−
⊂ R2 be a simply connected open set and 0 := ∂�− its boundary which is

assumed to be a parameterizable regular curve. Our aim is to solve numerically the
following transmission problem

1u + λ2u = 0, in �+
:= R2

\�−, (1)

1u + µ2u = 0, in �−, (2)
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u|
int
0 − u|

ext
0 = g0, (3)

α ∂nu|
int
0 − β ∂nu|

ext
0 = g1, (4)

lim
r→∞

r1/2(∂ru − ıλu) = 0, (5)

where α 6= −β are given parameters satisfying αβ 6= 0 and −λ2, −µ2 are not Dirichlet
eigenvalues of the Laplace operator in �−. The equality given in (5) is known as the
Sommerfeld radiation condition at infinity and has to be satisfied uniformly in all
directions.

Conditions on the parameters α, β, λ and µ that ensure existence and uniqueness
of solution to the problem above can be found for instance in [10, 13, 15, 26, 27].
Throughout this work we will assume that our parameters are such that (1–5) has a
unique solution.

Now we give a boundary integral formulation of the problem above. Let x : R → 0

be a 1−periodic regular parameterization of 0. For simplicity, we will assume that
x ∈ C∞(R), but the results we will see do not need as much regularity.

For a density ψ : R → C we define the single layer potential

Sρψ :=

∫ 1

0

ı
4

H(1)
0 (ρ| · − x(t)|) ψ(t)dt : R2

−→ C,

H (1)
0 being the Hankel function of the first kind and order zero. We use an indirect

formulation to find the solution to Problem (1–5), that is, we look for a function of
the form

u :=

∣∣∣∣Sλψ+, in �+,
Sµψ−, in �−,

where the densities ψ± have to be determined. With this choice u satisfies Equa-
tions (1), (2) and (5). We now consider the following integral operators

Vρψ =

∫ 1

0
Vρ( · , t) ψ(t)dt:=

∫ 1

0

ı
4

H (1)
0 (ρ|x( ·)− x(t)|) ψ(t)dt : R −→ C,

Jρψ =

∫ 1

0
Jρ( · , t) ψ(t)dt:=

∫ 1

0

ı
4

|x′( ·)| ∂n( · )H
(1)
0 (ρ|x( ·)− x(t)|) ψ(t)dt : R −→ C,

where ∂n(s) is the exterior normal derivative at x(s). The parameterized version of the
well-known jump relations of the single layer potential (see [7, Chapter 7], [10]) is

Sρψ |
int
0 ◦ x = Sρψ |

ext
0 ◦ x = Vρψ, (6)

|x′
| ∂nSρψ |

int
0 ◦ x =

1
2 ψ + Jρψ, |x′

| ∂nSρψ |
ext
0 ◦ x = −

1
2 ψ + Jρψ. (7)

If we consider the parameterized forms of the data functions, for which we keep the
same notation,

g0 := g0 ◦ x, g1 := |x′
| g1 ◦ x,

then, by the jump relations (6–7), conditions (3–4) are equivalent to the following
system of integral equations

H

[
ψ−

ψ+

]
:=

[
Vµ

−Vλ

α( 1
2 I + Jµ) β( 1

2 I − Jλ)

] [
ψ−

ψ+

]
=

[
g0

g1

]
. (8)
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In order to study the invertibility and regularity of this operator (and therefore to
the solution of the original transmission problem) we deal with the periodic Sobolev
spaces (see [14, Chapter 8] or [20, Chapter 5]),

H s
:= {φ ∈ D′

||φ̂(0)|2 +

∑
0 6=k∈Z

|k|
2s

|φ̂(k)|2 < ∞},

where D′ is the space of 1-periodic distributions on the real line and φ̂(k) are the
Fourier coefficients of φ. The H 0

= L2(0, 1) inner product extends to the antiduality
bracket between H s and H−s for all s ∈ R. Both will be denoted by ( · , · ). We will
use the notation ‖ · ‖s for the usual norm in H s.

It can be shown (see [18, Proposition 3.3]) that

H : H s
× H s

−→ H s+1
× H s

is an isomorphism for all s ∈ R.

3. Quadrature methods

Let N ∈ N, h := 1/N and

ti := ih, ti+ε := (i + ε)h, i = 1, . . . , N,

where 0 6= ε ∈ (−1/2, 1/2). The method we propose consists of solving the following
system of linear equations∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ±

h = (ψ±

1 , . . . , ψ
±

N)
>

∈ CN,

N∑
j=1

Vµ(ti+ε, t j) ψ
−

j −

N∑
j=1

Vλ(ti+ε, t j) ψ
+

j = g0(ti+ε), i = 1, . . . , N,

α

2
ψ−

i + αh
N∑

j=1

Jµ(ti, t j) ψ
−

j +
β

2
ψ+

i − βh
N∑

j=1

Jλ(ti, t j) ψ
+

j = h g1(ti), i=1, . . . , N.

(9)

Note that implementation of this method is trivial. The first group of equations is
a quadrature method with displaced nodes whereas the second one corresponds to
a classical Nyström method for equations of the second kind. The evaluation of
Vρ(ti+ε, t j) is not a problem since ε 6= 0 and the kernel of Vρ only has a logarith-
mic singularity on its diagonal. The values ε = ±1/2 are not allowed for stability
questions (see [4, 20]). In Section 6 we will see that the choices ε = ±1/6 provide
superconvergent methods.

Once we have the solution ψ±

h ∈ CN to (9), we take

uεh(z) :=

∣∣∣∣∣∣∣∣∣∣∣

ı
4

N∑
j=1

H (1)
0 (λ|z − x(t j)|) ψ

+

j , if z ∈ �+,

ı
4

N∑
j=1

H (1)
0 (µ|z − x(t j)|) ψ

−

j , if z ∈ �−,

(10)

as an approximation to the solution to (1–5).
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To analyze the discretization above we are going to rewrite it as a generalized
Petrov–Galerkin method using the following Dirac delta spaces

Sh := C〈 δi, i = 1, . . . , N 〉, Sεh := C〈 δi+ε, i = 1, . . . , N 〉,

δi and δi+ε being the 1-periodic Dirac delta distributions on the nodes ti and ti+ε
respectively.

If f is continuous at x, we will denote

{ f, δx} = {δx, f } := f (x).

We also introduce the notation

{δi, δ j}h :=
1

h
δij,

where δij is the Kronecker symbol.
Now the linear system of equations given in (9) can be seen as a generalized

Petrov–Galerkin method in the following sense: if ψ±

h = (ψ±

1 , . . . , ψ
±

N)
>

∈ CN is a
solution to (9), then ψ±

h :=
∑N

j=1 ψ
±

j δ j ∈ Sh is a solution to∣∣∣∣∣∣∣∣
ψ±

h ∈ Sh,

{Vµψ−

h , ϕ
−

h } − {Vλψ+

h , ϕ
−

h } = (g0, ϕ
−

h ), ∀ϕ−

h ∈ Sεh,

{
α
2 ψ

−

h , ϕ
+

h }h + (α Jµψ−

h , ϕ
+

h )+ {
β

2 ψ
+

h , ϕ
+

h }h − (β Jλψ+

h , ϕ
+

h ) = (g1, ϕ
+

h ), ∀ϕ+

h ∈ Sh,

(11)
and vice versa.

We denote by [ · , · ] to the antiduality in the product space (H s
× H r)× (H−s

×

H−r), that is,

[f, g] := ( f1, g1)+ ( f2, g2), f = ( f1, f2)
>

∈ H s
× H r, g = (g1, g2)

>
∈ H−s

× H−r.

Given ψh = (ψ−

h , ψ
+

h )
>

∈ Sh × Sh and ϕh = (ϕ−

h , ϕ
+

h )
>

∈ Sεh × Sh, we define

[Hψh,ϕh]h := {Vµψ−

h , ϕ
−

h } − {Vλψ+

h , ϕ
−

h } +

+ {
α
2 ψ

−

h , ϕ
+

h }h + (α Jµψ−

h , ϕ
+

h ) + {
β

2 ψ
+

h , ϕ
+

h }h − (β Jλψ+

h , ϕ
+

h ). (12)

With these notations and taking g := (g0, g1)
> we can also write Method (11) in a

more compact form: ∣∣∣∣∣ψh ∈ Sh × Sh,

[Hψh,ϕh]h = [g,ϕh], ∀ϕh ∈ Sεh × Sh.
(13)

4. Analysis of the principal part

Firstly, we are going to prove some stability and convergence properties of the
quadrature method proposed in the previous section applied not to the global
operator H but to its principal part. We begin by introducing the Bessel operator

V0ϕ := −
1

4π

∫ 1

0
log(4e−1 sin2 π( · − t)) ϕ(t)dt, (14)
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which is a bounded isomorphism from H s into H s+1 for all s ∈ R and elliptic from
H−1/2 into H1/2 (see [20, Chapter 5]).

The operator H defined in (8) can be decomposed as H = AP +K, where

A :=

[
V0 0

0 I

]
, P :=

[
I −I

α
2 I β

2 I

]
, K :=

[
Vµ

− V0 V0 − Vλ

α Jµ −β Jλ

]
. (15)

We also consider

H0 := AP =

[
V0 −V0
α
2 I β

2 I

]
.

For all s ∈ R, the operators A, H0 : H s
× H s

→ H s+1
× H s are bounded isomor-

phisms (see also [18]) and K : H s
× H s

→ H s+3
× H s+3 is bounded (see [20, Section

7.6.1]). For r, s ∈ R we denote by ‖ · ‖r,s to the norm in H r
× H s.

We summarize in the next result some properties related to the approximation
properties of the Dirac delta spaces Sh and Sεh in a wide range of Sobolev norms. A
natural operator onto Sh is Qh : Ht

→ Sh, t > 1/2, given by

Qhϕ := h
N∑

i=1

ϕ(ti) δi.

Related to the discrete space Sεh, we introduce the Fourier projection (see [1, 4]),
Dε

h : D′
→ Sεh, given by∣∣∣∣∣ Dε

hϕ ∈ Sεh,

D̂ε
hϕ(µ) = ϕ̂(µ), ∀µ ∈ 3N := {µ ∈ Z | − N/2 ≤ µ < N/2 }.

(16)

Note that this operator is also well-defined for ε = 0.

Lemma 1 ([4, Lemma 6]). The following approximation properties hold:

(a) for t > 1/2,

‖ϕ − Qhϕ‖−t ≤ Ct ht
‖ϕ‖t, ∀ϕ ∈ Ht,

(b) for s, t ∈ R such that s < −1/2, s ≤ t ≤ 0,

‖ϕ − Dε
hϕ‖s ≤ Cs,t ht−s

‖ϕ‖t, ∀ϕ ∈ Ht.

Keeping the notations of Section 3, we define for ψh = (ψ−

h , ψ
+

h )
>

∈ Sh × Sh and
ϕh = (ϕ−

h , ϕ
+

h )
>

∈ Sεh × Sh, the sesquilinear forms

[Aψh,ϕh]h := {V0ψ
−

h , ϕ
−

h } + {ψ+

h , ϕ
+

h }h, (17)

[H0ψh,ϕh]h := {V0ψ
−

h , ϕ
−

h } − {V0ψ
+

h , ϕ
−

h } + {
α
2 ψ

−

h , ϕ
+

h }h + {
β

2 ψ
+

h , ϕ
+

h }h. (18)

Theorem 2. There exists C > 0, independent of h, such that

sup
ϕh∈Sεh×Sh

| [H0ψh,ϕh]h|

‖ϕh‖−1,−1
≥ C‖ψh‖−1,−1, ∀ψh ∈ Sh × Sh.
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Proof. Since H0 = AP and P−1
|(Sh×Sh) : Sh × Sh → Sh × Sh is uniformly bounded in

H−1
× H−1, we can equivalently show that

sup
ϕh∈Sεh×Sh

| [Aψh,ϕh]h|

‖ϕh‖−1,−1
≥ C‖ψh‖−1,−1, ∀ψh ∈ Sh × Sh. (19)

On the one hand, by [4, Proposition 8],

sup
ψh∈Sh

|{V0ϕh, ψh}|

‖ψh‖−1
≥ α‖ϕh‖−1, ∀ϕh ∈ Sεh, (20)

with α > 0 independent of h. Since

|{V0ψh, ϕh}| = |{V0ϕh, ψh}|, ∀ψh ∈ Sh, ϕh ∈ Sεh,

and the spaces Sh and Sεh have the same finite dimension, we can reverse the inf-sup
condition (20), i.e., with the same constant α, we have

sup
ϕh∈Sεh

|{V0ψh, ϕh}|

‖ϕh‖−1
≥ α‖ψh‖−1, ∀ψh ∈ Sh. (21)

On the other hand, by [5, Lemma 9] there exists C > 0, independent of h, such that

‖ψh‖−1 ≤ C
N∑

i=1

|ψi|, ∀ψh =

N∑
i=1

ψi δi ∈ Sh.

Given 0 6= ψh =
∑N

i=1 ψi δi ∈ Sh, we take ϕh := h
∑

ψi 6=0(ψi/|ψi|) δi. Then, ‖ϕh‖−1 ≤ C
and

|{ψh, ϕh}h| =

N∑
i=1

|ψi| ≥
1

C
‖ψh‖−1.

Therefore,

1

C
‖ψh‖−1 ≤ |{ψh, ϕh}h| ≤ C

|{ψh, ϕh}h|

‖ϕh‖−1
≤ C sup

ϕh∈Sh

|{ψh, ϕh}h|

‖ϕh‖−1
. (22)

From this and Inequality (21) we trivially obtain (19). �

Theorem 3. Let ψ0
h ∈ Sh × Sh be the solution to the problem∣∣∣∣∣ψ

0
h ∈ Sh × Sh,

[H0ψ
0
h ,ϕh]h = [H0ψ,ϕh], ∀ϕh ∈ Sεh × Sh.

Then,

‖ψ − ψ0
h‖−1,−1 ≤ Ch‖ψ‖1,1, ∀ψ ∈ H1

× H1.

Proof. Set ξ 0
h := Pψ0

h and ξ := Pψ . Then,∣∣∣∣∣ ξ
0
h ∈ Sh × Sh,

[Aξ 0
h ,ϕh]h = [Aξ ,ϕh], ∀ϕh ∈ Sεh × Sh.

(23)
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Considering the separate components of ξ 0
h = (ξ−

h , ξ
+

h )
> and ξ = (ξ−, ξ+)>, (23) can

be written as

ξ+

h = Qhξ
+,

∣∣∣∣∣ ξ
−

h ∈ Sh,

{V0ξ
−

h , ϕh} = (V0ξ
−, ϕh), ∀ϕh ∈ Sεh.

By Lemma 1 (a),

‖ξ+
− ξ+

h ‖−1 ≤ Ch‖ξ+
‖1. (24)

If we show that

‖ξ−
− ξ−

h ‖−1 ≤ Ch‖ξ−
‖1, (25)

then using the relation between ψ and ξ and applying (24–25) we obtain

‖ψ − ψ0
h‖−1,−1 = ‖P−1(ξ − ξ 0

h )‖−1,−1 ≤ Ch‖ξ‖1,1 ≤ C′h‖ψ‖1,1,

which finishes the result.
Now we prove (25). By Lemma 1 (b),

‖ξ−
− ξ−

h ‖−1 ≤ Ch‖ξ−
‖0 + ‖D0

hξ
−

− ξ−

h ‖−1.

Applying now (21),

‖D0
hξ

−
− ξ−

h ‖−1 ≤ C sup
ϕh∈Sεh

|{V0(D0
hξ

−
− ξ−

h ), ϕh}|

‖ϕh‖−1
= C sup

ϕh∈Sεh

|{V0 D0
hξ

−, ϕh} − (V0ξ
−, ϕh)|

‖ϕh‖−1
.

Inequality (25) is then proven once we have

|{V0 D0
hψ, ϕh} − (V0ψ, ϕh)| ≤ Ch‖ψ‖1‖ϕh‖−1, ∀ψ ∈ H1, ϕh ∈ Sεh. (26)

We consider the traslation operator tεhφ := φ( · − εh), defined by transposition (t−εh is
the inverse traslation),

〈tεhϕ, φ〉D′×D = 〈ϕ, t−εh φ〉D′×D.

Obviously it is an isometric isomorphism in H s for all s ∈ R. It also satisfies the
following straightforward properties:

D0
h = tεh D−ε

h t−εh , (27)

(V0φ, ϕ) = (V0tεhφ, tεhϕ), ∀φ ∈ H0, ϕ ∈ H−1, (28)

{V0δx, δy} = {V0tεhδx, tεhδy}, if x − y 6∈ Z. (29)

Since by [4, Theorem 7]

|{V0 Dε
hϕ,ψh} − (V0ϕ,ψh)| ≤ Ch‖ϕ‖1‖ψh‖−1, ∀ϕ ∈ H1, ψh ∈ Sh, (30)

trivial computations using (27–29) show now that

|{V0 D0
hψ, ϕh} − (V0ψ, ϕh)| = |{V0 tεh D−ε

h t−εh ψ, tεh t−εh ϕh} − (V0 t−εh ψ, t−εh ϕh)|

= |{V0 D−ε
h t−εh ψ, t−εh ϕh} − (V0 t−εh ψ, t−εh ϕh)|

≤ Ch‖t−εh ψ‖1 ‖t−εh ϕh‖−1 = Ch‖ψ‖1‖ϕh‖−1,

i.e., (26) holds. �
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The theorems above imply that the operator G0
h : H1

× H1
→ Sh × Sh given by

[H0G0
hψ,ϕh]h = [H0ψ,ϕh], ∀ϕh ∈ Sεh × Sh, (31)

is well-defined and furthermore,

‖(I − G0
h)ψ‖−1,−1 ≤ Ch‖ψ‖1,1, ∀ψ ∈ H1

× H1. (32)

5. Convergence analysis

In this section we prove a uniform inf-sup condition for the global operator H. From
it, existence and uniqueness of solution to (13), and therefore to (9), follow readily.

Proposition 4. There exists C > 0, independent of h, such that for all h small enough

sup
ϕh∈Sεh×Sh

| [Hψh,ϕh]h|

‖ϕh‖−1,−1
≥ C‖ψh‖−1,−1, ∀ψh ∈ Sh × Sh.

Proof. Notice that by the mapping properties of the integral operators given at the
beginning of Section 4, the operator H−1

0 K : H−1
× H−1

→ H1
× H1 is bounded.

Thus, from (32),

‖(I − G0
h)H

−1
0 Kϕ‖−1,−1 ≤ Ch‖ϕ‖−1,−1, ∀ϕ ∈ H−1

× H−1,

and hence

‖(I +H−1
0 K)− (I + G0

hH
−1
0 K)‖L(H−1×H−1) → 0.

As I +H−1
0 K = H−1

0 H is invertible, by a classical operator approximation result (see
for instance [3, Theorem 11.1.2]), for h small enough I + G0

hH
−1
0 K is invertible, with

uniformly bounded inverse. Besides,

I + G0
hH

−1
0 K|(Sh×Sh) : Sh × Sh → Sh × Sh.

Therefore, applying now Theorem 2, the definition of the operator G0
h given in (31)

and the decomposition H = H0 +K, it follows that

‖ψh‖−1,−1 ≤ C‖(I + G0
hH

−1
0 K)ψh‖−1,−1

≤ C′ sup
ϕh∈Sεh×Sh

| [H0(I + G0
hH

−1
0 K)ψh,ϕh]h|

‖ϕh‖−1,−1
= C′ sup

ϕh∈Sεh×Sh

| [Hψh,ϕh]h|

‖ϕh‖−1,−1
,

and the result is proven. �

Theorem 5. The problem∣∣∣∣∣ψh ∈ Sh × Sh,

[Hψh,ϕh]h = [Hψ,ϕh], ∀ϕh ∈ Sεh × Sh,
(33)

is uniquely solvable for all h small enough. Moreover,

‖ψ − ψh‖−1,−1 ≤ Ch‖ψ‖1,1, ∀ψ ∈ H1
× H1.
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Proof. Proposition 4 implies unique solvability of (33) and by (32) it is enough to
show that

‖ψh − G0
hψ‖−1,−1 ≤ Ch‖ψ‖1,1, ∀ψ ∈ H1

× H1.

From the definitions of G0
hψ and ψh, we have for all ϕh ∈ Sεh × Sh,

[H(ψh − G0
hψ),ϕh]h = [Hψ,ϕh] − [HG0

hψ,ϕh]h = [K(ψ − G0
hψ),ϕh].

We can make use now of Proposition 4 to obtain that

‖ψh − G0
hψ‖−1,−1 ≤ C sup

ϕh∈Sεh×Sh

| [K(ψ − G0
hψ),ϕh] |

‖ϕh‖−1,−1

≤ C‖K(ψ − G0
hψ)‖1,1 ≤ C′

‖ψ − G0
hψ‖−1,−1 ≤ C′′h‖ψ‖1,1,

where we have applied once again (32) for the last inequality. �

The previous bounds also lead us to an estimation of the error in the approxima-
tion of u by the function uεh defined in (10).

Theorem 6. Let ψ be the solution to (8). If ψ ∈ H1
× H1, then,

|u(z)− uεh(z)| ≤ Ch‖ψ‖1,1, z ∈ R2
\ 0,

where C > 0 only depends on z.

Proof. Assume that z ∈ �−. In this case,

uεh(z) =
ı
4

N∑
j=1

H(1)
0 (µ|z − x(t j)|) ψ

−

j =

( ı
4

H(1)
0 (µ|z − x( · )|),

N∑
j=1

ψ−

j δ j

)
= Sµψ−

h (z).

Therefore, by Theorem 5,

|u(z)− uεh(z)| = |Sµψ−(z)− Sµψ−

h (z)|

≤ C‖H(1)
0 (µ|z − x( · )|)‖1‖ψ

−
− ψ−

h ‖−1 ≤ Czh‖ψ‖1,1.

Obviously, when z ∈ �+, the proof is exactly the same since uεh(z) = Sλψ+

h (z). �

Although the constant in the theorem above depends on the point, it only blows
up when we are very close to 0. Moreover, when λ 6∈ R it is uniformly bounded in
the exterior of any ball containing 0, whereas for λ ∈ R we can only assure uniform
boundness in compact sets.

6. Superconvergent methods

There are two special methods with better convergence properties belonging to the
family analyzed in the previous sections: those associated to the parameters ε =

±1/6. Notice that this special choice for logarithmic integral equations had already
been observed in [4, 19].
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Theorem 7. Let ψh ∈ Sh × Sh be the solution to any of the problems∣∣∣∣∣ψh ∈ Sh × Sh,

[Hψh,ϕh]h = [Hψ,ϕh], ∀ϕh ∈ S±1/6
h × Sh.

Then,

‖ψ − ψh‖−2,−2 ≤ Ch2
‖ψ‖2,2, ∀ψ ∈ H2

× H2.

Consequently, if ψ ∈ H2
× H2, then,

|u(z)− u±1/6
h (z)| ≤ Czh2

‖ψ‖2,2, z ∈ R2
\ 0.

Proof. As a direct consequence of [4, Theorem 7],

|{V0 D±1/6
h ϕ,ψh} − (V0ϕ,ψh)| ≤ Ch2

‖ϕ‖2‖ψh‖−1, ∀ϕ ∈ H2, ψh ∈ Sh, (34)

and following step by step the proof of Theorem 3 we prove the existence of C > 0,
independent of h, such that

‖ψ − ψ0
h‖−2,−2 ≤ Ch2

‖ψ‖2,2, ∀ψ ∈ H2
× H2,

where ψ0
h ∈ Sh × Sh is the solution to the problem∣∣∣∣∣ψ

0
h ∈ Sh × Sh,

[H0ψ
0
h ,ϕh]h = [H0ψ,ϕh], ∀ϕh ∈ S±1/6

h × Sh.
(35)

Thus,

‖ψ − ψh‖−2,−2 ≤ Ch2
‖ψ‖2,2 + ‖ψh − ψ0

h‖−2,−2,

and following the proof of Theorem 5 (recall that K : H s
× H s

→ H s+3
× H s+3 is

bounded),

‖ψh − ψ0
h‖−1,−1 ≤ C‖K(ψ − ψ0

h)‖1,1 ≤ C′
‖ψ − ψ0

h‖−2,−2 ≤ C"h2
‖ψ‖2,2.

The last assertion can be shown as in Theorem 6. �

Remark. To prove the theorem above it would be enough to have continuity of K :

H s
× H s

→ H s+3
× H s+2. We can also obtain the result by analyzing the transposed

method of Scheme (35) and using some techniques that will be used in Section 9. By
this way the proof is more involved.

7. Modified quadrature method

In the detailed convergence analysis of the quadrature methods, even in the super-
convergent cases with ε = ±1/6, we observe that the order of convergence in the
second group of equations in (9) can be increased by considering weaker norms
when we deal with regular solutions. This motivates the search of an improvement
in the test for the first N equations. We will replace the 1-periodic displaced Dirac
deltas by linear combinations of some of them. However, we will keep untouched the
remaining N equations in (9), which correspond to a Nyström method for equations
of the second kind.
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We introduce the weighted averages

Vρ

ij :=
5

6

(
Vρ(ti−1/6, t j)+ Vρ(ti+1/6, t j)

)
+

1

6

(
Vρ(ti−5/6, t j)+ Vρ(ti+5/6, t j)

)
,

following the ideas of qualocation methods (see [6, 21, 22, 23]). Again we are avoiding
the logarithmic singularity of the kernel of Vρ . For the right hand side we likewise
define

ĝ i
0 :=

5

6

(
g0(ti−1/6)+ g0(ti+1/6)

)
+

1

6

(
g0(ti−5/6)+ g0(ti+5/6)

)
.

The new method consists of solving the linear system of equations∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ±

h = (ψ±

1 , . . . , ψ
±

N)
>

∈ CN,

N∑
j=1

Vµ

ij ψ
−

j −

N∑
j=1

Vλ
ij ψ

+

j = ĝ i
0, i = 1, . . . , N,

α

2
ψ−

i +αh
N∑

j=1

Jµ(ti, t j) ψ
−

j +
β

2
ψ+

i −βh
N∑

j=1

Jλ(ti, t j) ψ
+

j = h g1(ti), i = 1, . . . , N.

(36)
From the solution to this problem we construct an approximation uh to the solution
of the original transmission problem as in (10).

We identify now (36) with a generalized Petrov–Galerkin method. With this
purpose, we introduce the 1-periodic distributions

δ∗

i :=
5

6
(δi−1/6 + δi+1/6) +

1

6
(δi−5/6 + δi+5/6),

and the space S∗

h := C〈 δ∗

i , i = 1, . . . , N 〉. It is simple to see that S∗

h is an N-
dimensional subspace of H s for all s < −1/2. Moreover, S∗

h ⊂ S1/6
h + S−1/6

h . There-
fore, we can define for ψh ∈ Sh × Sh and ϕh ∈ S∗

h × Sh the quantities

[Hψh,ϕh]h, [Aψh,ϕh]h, [H0ψh,ϕh]h,

as in (12), (17), and (18). With these notations, the modified quadrature method (36)
can be equivalently written as∣∣∣∣∣ψh ∈ Sh × Sh,

[Hψh,ϕh]h = [g,ϕh], ∀ϕh ∈ S∗

h × Sh,
(37)

in the sense that if we define ψ±

h :=
∑N

j=1 ψ
±

j δ j from a solution to (36), then ψh :=

(ψ−

h , ψ
+

h ) is a solution to (37) and vice versa.

8. Technical results

The starting point for the study of the quadrature methods was the independent
analysis of the corresponding numerical methods associated to the identity operator
and to V0. The only difference between the quadrature methods and the modified
quadrature method lies in the test for the first group of equations, related to the
logarithmic operator, where we have replaced the space Sεh by S∗

h. Thus, the aim of
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this section is to analyze the numerical scheme∣∣∣∣∣ψh ∈ Sh,

{V0ψh, ϕ
∗

h} = ( f, ϕ∗

h), ∀ϕ∗

h ∈ S∗

h,
(38)

for solving the logarithmic equation V0ψ = f . We will prove a uniform inf-sup
condition analogous to (21) and some convergence results. To do this we will deal
with qualocation methods (see [11, 21, 22, 23] and references therein). We introduce
the spaces of periodic smoothest splines of degrees zero and one,

S0
h := { vh ∈ H0

|vh|[ti,ti+1] ∈ P0,∀i }, S1
h := {µh ∈ C0

|µh|[ti,ti+1] ∈ P1,∀i },

and consider the usual basis {ηi}
N
i=1 of S1

h such that ηi(t j) = δij. We also define the
discrete sesquilinear form

〈 f, g〉h :=
h
2

N∑
i=1

(
f (ti−1/6) g(ti−1/6)+ f (ti+1/6) g(ti+1/6)

)
≈ ( f, g) =

∫ 1

0
f (t) g(t)dt.

Notice that the operator Th : S1
h → S∗

h given by Th(
∑N

i=1 µi ηi) :=
h
2

∑N
i=1 µi δ

∗

i ,
satisfies

〈u, µh〉h = (u,Thµh), ∀u ∈ H1, µh ∈ S1
h.

By the Riesz-Fréchet theorem, Thµh is the unique element in H−1 satisfying the
identity above. Moreover, by [11, Propositions 1 and 3], there exist C1, C2 > 0,
independent of h, such that

C1‖µh‖−1 ≤ ‖Thµh‖−1 ≤ C2‖µh‖−1, ∀µh ∈ S1
h. (39)

These notations allow us to write (38) in the equivalent form∣∣∣∣∣ψh ∈ Sh,

〈V0ψh, µh〉h = 〈 f, µh〉h, ∀µh ∈ S1
h.

From this point of view, (38) can be seen as a non-conforming qualocation method
with a discrete set of Dirac deltas as trial space, instead of the commonly used
periodic splines. The study of the properties of (38) will be carried out by analyzing a
standard qualocation method for a singular integral equation. With this purpose, we
consider the isomorphism D + J : H s

→ H s−1, where D is the differential operator
and Jv := v̂(0), and define A0 := V0(D + J). It can be easily verified that

A0v =
1

2
p.v.

∫ 1

0
cotπ( · − t) v(t)dt +

1

4π

∫ 1

0
v(t)dt,

(p.v. stands for the Cauchy principal value). A0 is a periodic pseudodifferential oper-
ator and is therefore pseudolocal. Hence, if vh ∈ S0

h, A0vh is indefinitely differentiable
in the intervals (ti, ti+1).

The solution to the following qualocation method with S0
h and S1

h as trial and test
spaces ∣∣∣∣∣ vh ∈ S0

h,

〈A0vh, µh〉h = 〈A0v, µh〉h, ∀µh ∈ S1
h,

(40)
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satisfies (see [6, Theorems 2 and 5]) for k ∈ {1, 2, 3},

‖v − vh‖−k+1 ≤ Chk
‖v‖k, ∀v ∈ Hk. (41)

Since

{A0vh,Thµh} = 〈A0vh, µh〉h, ∀µh ∈ S1
h, (42)

then (40) is equivalent to∣∣∣∣∣ vh ∈ S0
h,

{A0vh, ϕ
∗

h} = {A0v, ϕ
∗

h}, ∀ϕ∗

h ∈ S∗

h.

Proposition 8. There exists C > 0, independent of h, such that

sup
ϕ∗

h∈S∗

h

|{A0vh, ϕ
∗

h}|

‖ϕ∗

h‖−1
≥ C‖vh‖0, ∀vh ∈ S0

h.

Proof. The solution to (40) satisfies the inequality ‖vh‖0 ≤ C‖v‖1 (take k = 1 in (41)).
Using then the same techniques as in [11], it can be proven that there exists C > 0,
independent of h, such that

sup
µh∈S1

h

|〈A0vh, µh〉h|

‖µh‖−1
≥ C‖vh‖0, ∀vh ∈ S0

h. (43)

Applying now (39) and (42),

sup
ϕ∗

h∈S∗

h

|{A0vh, ϕ
∗

h}|

‖ϕ∗

h‖−1
= sup

µh∈S1
h

|{A0vh,Thµh}|

‖Thµh‖−1
≥ C sup

µh∈S1
h

|〈A0vh, µh〉h|

‖µh‖−1
, ∀vh ∈ S0

h,

and the result follows from (43). �

We introduce the element ξh := h
∑N

i=1 δi ∈ Sh. It is very easy to prove that

‖1 − ξh‖−s ≤ Cshs, s > 1/2. (44)

Lemma 9. For all ϕ∗

h ∈ S∗

h, {V0(ξh − 1), ϕ∗

h} = 0.

Proof. Straightforward calculations show that for all µ ∈ 3N and m ∈ Z, the Fourier
coefficients of ξh satisfy

ξ̂h(µ+ mN) =

{
1, if µ = 0,
0, otherwise.

Then, by using the Fourier expansion of the Bessel operator (see for instance [20,
Section 5.6])

4π V0u = û(0)+

∑
m6=0

1

|m|
û(m) em,

we obtain

4π V0(ξh − 1) =

∑
m6=0

1

|m|N
emN = −

1

N
log(4 sin2(πN·)).
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Thus,

{V0(ξh − 1), δi±1/6} = −(1/N) log(4 sin2(π/6)) = 0, i = 1, . . . , N,

which completes the proof. �

We consider now the discrete operator Jhu := û(0) ξh which can be understood as
an approximation of J. Furthermore, for all s < −1/2, the operator D + Jh : S0

h → Sh

satisfies (see the proof of [4, Proposition 16])

Cs‖(D + Jh)vh‖s ≤ ‖vh‖s+1 ≤ C′

s‖(D + Jh)vh‖s, ∀vh ∈ S0
h, (45)

where Cs, C′
s > 0 are independent of h. Note that Lemma 9 implies that

{V0(J − Jh)v, ϕ
∗

h} = 0, ∀v ∈ D′, ϕ∗

h ∈ S∗

h. (46)

Proposition 10. There exists C > 0, independent of h, such that

sup
ϕ∗

h∈S∗

h

|{V0ψh, ϕ
∗

h}|

‖ϕ∗

h‖−1
≥ C‖ψh‖−1, ∀ψh ∈ Sh.

Proof. Let ψh ∈ Sh and take vh := (D + Jh)
−1ψh ∈ S0

h. Notice that ψ̂h(0) = v̂h(0).
Then,

V0ψh = V0(D + J)vh + V0(Jh − J)vh.

We apply now Proposition 8 and (46) to deduce that

sup
ϕ∗

h∈S∗

h

|{V0ψh, ϕ
∗

h}|

‖ϕ∗

h‖−1
≥ C‖vh‖0 ≥ C′

‖ψh‖−1,

where we have used (45) for the last inequality. �

Proposition 11. Let ψ0
h ∈ Sh be the solution to the problem∣∣∣∣∣ψ

0
h ∈ Sh,

{V0ψ
0
h , ϕ

∗

h} = (V0ψ, ϕ
∗

h), ∀ϕh ∈ S∗

h.
(47)

Then, for k ∈ {1, 2, 3},

‖ψ − ψ0
h‖−k ≤ Chk

‖ψ‖k−1, ∀ψ ∈ Hk−1. (48)

Proof. Given ψ ∈ Hk−1 we define v := (D + J)−1ψ ∈ Hk and take the solution vh ∈

S0
h to (40). Then, by the definition of A0 and (46),

(V0ψ, ϕ
∗

h) = (A0v, ϕ
∗

h) = {A0vh, ϕ
∗

h} = {V0(D + Jh)vh, ϕ
∗

h}, ∀ϕ∗

h ∈ S∗

h.

Since (D + Jh)vh ∈ Sh, then ψ0
h = (D + Jh)vh. Finally, as

ψ − ψ0
h = (D + Jh)(v − vh)+ (J − Jh)v,

applying (44) and (41) we obtain that

‖ψ − ψ0
h‖−k ≤ C‖v − vh‖−k+1 + ‖1 − ξh‖−k |̂v(0)| ≤ C′hk

‖v‖k ≤ C′′hk
‖ψ‖k−1,

that is, (48) holds. �
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We finally need a result concerning the transposed method to (47).

Proposition 12. Let ϕ∗

h ∈ S∗

h be the solution to the problem∣∣∣∣∣ϕ
∗

h ∈ S∗

h,

{V0ϕ
∗

h, ψh} = (V0ϕ,ψh), ∀ψh ∈ Sh.
(49)

Then, for k ∈ {1, 2, 3},

‖ϕ − ϕ∗

h‖−k ≤ Chk
‖ϕ‖k−1, ∀ϕ ∈ Hk−1.

Proof. It is a simple transposition argument. Taking into account that V−1
0 : Hk

→

Hk−1 is bounded,

‖ϕ − ϕ∗

h‖−k = sup
φ∈Hk

|(φ, ϕ − ϕ∗

h)|

‖φ‖k
≤ C sup

ψ∈Hk−1

|(V0ψ, ϕ − ϕ∗

h)|

‖ψ‖k−1
. (50)

Taking now for ψ ∈ Hk−1 the solution ψh ∈ Sh to (47), we have that

(V0ψ, ϕ
∗

h) = {V0ψh, ϕ
∗

h} = (V0ψh, ϕ),

and by Proposition 11,

|(V0ψ, ϕ − ϕ∗

h)| = |(V0(ψ − ψh), ϕ)| ≤ ‖V0(ψ − ψh)‖−k+1‖ϕ‖k−1

≤ C‖ψ − ψh‖−k‖ϕ‖k−1 ≤ C′hk
‖ψ‖k−1‖ϕ‖k−1.

From (50) we deduce the result. �

9. Analysis of the modified quadrature method

In this section we proceed as in the study of the quadrature methods, beginning by
analyzing the numerical method applied to H0. From its properties we derive easily
the desired results for the modified quadrature method applied to the global operator
H.

Proposition 13. There exists C > 0, independent of h, such that

sup
ϕh∈S∗

h×Sh

| [H0ψh,ϕh]h|

‖ϕh‖−1,−1
≥ C‖ψh‖−1,−1, ∀ψh ∈ Sh × Sh. (51)

Moreover, if ψ0
h ∈ Sh × Sh is the solution to∣∣∣∣∣ψ

0
h ∈ Sh × Sh,

[H0ψ
0
h ,ϕh]h = [H0ψ,ϕh], ∀ϕh ∈ S∗

h × Sh,
(52)

then, for k ∈ {1, 2, 3},

‖ψ − ψ0
h‖−k,−k ≤ C hk

‖ψ‖k,k, ∀ψ ∈ Hk
× Hk, (53)

whereas if ϕ0
h ∈ S∗

h × Sh is the solution to∣∣∣∣∣ϕ
0
h ∈ S∗

h × Sh,

[H0ψh,ϕ
0
h]h = [H0ψh,ϕ], ∀ψh ∈ Sh × Sh,

(54)
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then, for k ∈ {1, 2, 3},

‖ϕ − ϕ0
h‖−k,−k ≤ Chk

‖ϕ‖k−1,k, ∀ϕ ∈ Hk−1
× Hk. (55)

Proof. From Proposition 10 and (22) we obtain (51). Notice that in particular this
implies that (52) and (54) are uniquely solvable. To show Estimate (53) we can
proceed as at the beginning of Theorem 3 and apply Lemma 1 (a), Proposition 11
and the fact that P : Sh × Sh → Sh × Sh is bounded in Hk

× Hk as well as P−1 in
H−k

× H−k.
Finally, by using again the invertibility of P we deduce that (54) is equivalent to∣∣∣∣∣ϕ

0
h ∈ S∗

h × Sh,

[Aψh,ϕ
0
h]h = [Aψh,ϕ], ∀ψh ∈ Sh × Sh.

Therefore, setting ϕ0
h = (ϕ−

h , ϕ
+

h )
> and ϕ = (ϕ−, ϕ+)>, these equations are also equiv-

alent to

ϕ+

h = Qhϕ
+,

∣∣∣∣∣ϕ
−

h ∈ S∗

h,

{V0ψh, ϕ
−

h } = (V0ψh, ϕ
−), ∀ψh ∈ Sh.

Now (55) is a consequence of Lemma 1 (a) and Proposition 12. �

Theorem 14. There exists C > 0, independent of h, such that for all h small enough

sup
ϕh∈S∗

h×Sh

| [Hψh,ϕh]h|

‖ϕh‖−1,−1
≥ C‖ψh‖−1,−1, ∀ψh ∈ Sh × Sh.

Proof. Since (51) holds, we can follow step by step the proof of Proposition 4. �

Theorem 15. The problem∣∣∣∣∣ψh ∈ Sh × Sh,

[Hψh,ϕh]h = [Hψ,ϕh], ∀ϕh ∈ S∗

h × Sh.

is uniquely solvable for all h small enough. Furthermore, for k ∈ {1, 2, 3},

‖ψ − ψh‖−k,−k ≤ Chk
‖ψ‖k,k, ∀ψ ∈ Hk

× Hk. (56)

Proof. The estimates for k = 1 and k = 2 given in (56) can be shown as in Theorems
5 and 7 applying (53). To prove the result for k = 3, we start by noticing that

‖ψ − ψh‖−3,−3 ≤ C sup
ϕ∈H2×H3

| [H(ψ − ψh),ϕ] |

‖ϕ‖2,3
, (57)

since (H∗)−1
: H3

× H3
→ H2

× H3 is bounded. Given ϕ ∈ H2
× H3, we take the

solution ϕ0
h ∈ S∗

h × Sh to (54). Then,

[Hψ,ϕ0
h] − [H0ψh,ϕ] = [Hψh,ϕ

0
h]h − [H0ψh,ϕ

0
h]h = [Kψh,ϕ

0
h].

Therefore, by easy manipulations we obtain the following equalities

[H(ψ − ψh),ϕ] = [H0ψ,ϕ] + [K(ψ − ψh),ϕ] + [Kψh,ϕ
0
h] − [Hψ,ϕ0

h]

= [H0ψ,ϕ − ϕ0
h] + [K(ψ − ψh),ϕ − ϕ0

h].
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From this, by (55) and the result for k = 1, we deduce that (recall the continuity of
H0 and K),

| [H(ψ − ψh),ϕ] | ≤ ‖H0ψ‖4,3‖ϕ − ϕ0
h‖−4,−3 + ‖K(ψ − ψh)‖2,2‖ϕ − ϕ0

h‖−2,−2

≤ Ch3
‖ψ‖3,3‖ϕ‖2,3 + C′

‖ψ − ψh‖−1,−1‖ϕ − ϕ0
h‖−2,−2

≤ Ch3
‖ψ‖3,3‖ϕ‖2,3 + C′′h3

‖ψ‖1,1‖ϕ‖1,2.

By the inequality given in (57) we prove (56). �

Pointwise error estimates of the form

|u(z)− uh(z)| ≤ Czhk
‖ψ‖k,k, z ∈ R2

\ 0,

follow readily from (56).

10. Numerical results

We test our numerical methods on a problem (1–5) whose exact solution is known
explicitly. Let 0 be given by the 1-periodic regular and smooth parameterization

x(t) := (r(t) cos(2π t), r(t) sin(2π t))>, r(t) := 7 + 4 cos(2π t)+ 2 sin(4π t).

In this case, �− (the bounded domain defined by 0) is non-convex.
We take the parameters

µ = 1, λ = (1 + ı)/100, α = 2, β = 1,

and choose the functions g0 and g1 for the right hand side such that the solution to
Problem (1–5) is

u(z) =

∣∣∣∣∣∣
eıµd·z, if z ∈ �−,

ı
4

H(1)
0 (λ|z0 − z|), if z ∈ �+,

where z0 := (5, 5)> and d := (
√

2/2,−
√

2/2)>.

Table 1 Pointwise errors and
estimated convergence rates. N E1/3 e.c.r. E1/6 e.c.r. E e.c.r.

64 3.22(-1) 6.26(-2) 1.27(-2)
96 2.16(-1) 0.986 2.63(-2) 2.140 3.60(-3) 3.122
144 1.45(-1) 0.975 1.13(-2) 2.073 1.04(-3) 3.059
216 9.78(-2) 0.981 4.96(-3) 2.041 3.05(-4) 3.024
324 6.55(-2) 0.986 2.18(-3) 2.023 9.02(-5) 3.010
486 4.38(-2) 0.990 9.65(-4) 2.014 2.66(-5) 3.004
729 2.93(-2) 0.993 4.27(-4) 2.008 7.90(-6) 3.002
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Figure 1 Pointwise errors.
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We consider the points z j := (−6 + 3.6( j − 1), 1)>, j = 1, . . . , 6, (three of them are
in �−) and compute for N = 64, 96, 144, 216, 324, 486 and 729 the pointwise error

6∑
j=1

|u(z j)− uh(z j)|, (58)

where uh is defined in (10). Notice that the ratio between two consecutive grids is 3/2.
Table 1 shows the error defined by the expression (58) when using the quadrature
method with ε = 1/3 (E1/3) and ε = 1/6 (E1/6) and with the modified quadrature
method (E). We also compute the estimated convergence rates (e.c.r.) by comparing
these errors on consecutive grids in the usual way.

In figure 1 we represent the errors in logarithmic scale, obtaining three lines whose
slopes give us the estimated convergence rates.
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