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In this paper we provide an extension of barycentric coordinates from simplices to

arbitrary convex sets. Barycentric coordinates over convex 2D polygons have found

numerous applications in various fields as they allow smooth interpolation of data located on

vertices. However, no explicit formulation valid for arbitrary convex polytopes has been

proposed to extend this interpolation in higher dimensions. Moreover, there has been no

attempt to extend these functions into the continuous domain, where barycentric coordinates

are related to Green’s functions and construct functions that satisfy a boundary value

problem. First, we review the properties and construction of barycentric coordinates in the

discrete domain for convex polytopes. Next, we show how these concepts extend into the

continuous domain to yield barycentric coordinates for continuous functions. We then

provide a proof that our functions satisfy all the desirable properties of barycentric

coordinates in arbitrary dimensions. Finally, we provide an example of constructing such

barycentric functions over regions bounded by parametric curves and show how they can be

used to perform freeform deformations.
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1. Introduction

Introduced by Möbius in 1827 as mass points to define a coordinate-free

geometry, barycentric coordinates over simplices are a very common tool in many

computations. In addition to their coordinate-free expressions, barycentric coordinates

are extremely helpful for interpolating discrete scalar fields, vector fields, or arbitrary

multidimensional fields over irregular tessellations: they naturally interpolate values at

vertices to the whole space via multilinear interpolation.

Since its inception, the graphics community has made extensive use of

barycentric coordinates. In early work barycentric coordinates were routinely used
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for triangles, with applications such as polygon rasterization, texture mapping, ray-

triangle intersection in raytracing, spline patches, interpolation, etc. More recently,

barycentric coordinates for tetrahedra have been used for interpolation of 3D fields

for volume rendering and isosurface extraction, as well as for simulation purposes

since they define convenient linear basis functions over simplices. More generally,

many applied fields such as computational physics and mechanics rely heavily on

barycentric coordinates since it corresponds to linear basis functions in the finite

element method. Note that even higher dimensional graphics-related data require

appropriate interpolation between discrete samples, such as for lightfield applications.

A natural question arises when interpolation is needed over more complex

shapes, such as polygons or polytopes: can we extend this notion of barycentric

coordinates to arbitrary polytopes? The common way to deal with irregular polygons

in 2D or general polyhedra in 3D is to triangulate them first, and apply barycentric

coordinates on each simplex. However this solution is unacceptable for many

applications: the results depend on the choice of triangulation, and contain unnec-

essary artifacts, mostly due to the restrictive C0 continuity across simplices.

Despite some recent work on generalized barycentric coordinates, valid for

arbitrary polytopes, no explicit formulation has been given for polytopes of arbitrary

dimension. Furthermore, there has been, to the best of our knowledge, no attempt at

extending these coordinates to smooth convex sets. This paper addresses these current

limitations, by providing geometric and computationally convenient explicit formu-

lations along with proofs of their validity.

1.1. Convex polytopes

Given a bounded, convex polytope P, our problem is to construct one coordinate

function bvðxÞ per vertex v of P for all x 2 P. These functions are barycentric
coordinates with respect to P if they satisfy three properties. First, the coordinate

functions are non-negative on P,

bvðxÞ � 0;

for all x 2 P. Second, the functions form a partition of unity,
X

v

bvðxÞ ¼ 1;

for all x. Finally, the functions act as coordinates in that, given a value of x, weighting

each vertex v by bvðxÞ returns back x; i.e.,

X

v

v bvðxÞ ¼ x: ð1Þ

This last property is also sometimes referred to as linear precision since the coordinate

functions can reproduce the linear function x.
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A typical application of barycentric coordinates is to interpolate any data (not

just positions) provided at the vertices of P. Given a set of values gv associated with

each v, we build a new function ĝgðxÞ defined over P by

^gðxÞ ¼
X

v

gvbvðxÞ: ð2Þ

The constructed function ĝgðxÞ satisfies the property that ĝgðvÞ ¼ gv.

1.2. Convex sets with smooth boundaries

Another goal of this paper is to provide an extension of barycentric coordinates

to smooth, convex regions. Given a convex region P whose boundary is a smooth

(d � 1)-dimensional manifold S ¼ @P, we define a smooth barycentric coordinate

function bðv; xÞ analogous to the discrete case. First, the continuous coordinate

function will also be non-negative on V,

bðv; xÞ � 0;

for all v 2 S and x 2 P. The partition of unity property for a continuous barycentric

function is stated as
Z

v2S

bðv; xÞdS ¼ 1:

Finally, these coordinate functions should also satisfy a linear precision property;

namely,
Z

v2S

v bðv; xÞdS ¼ x:

Similar to the discrete case, this coordinate function can be used to build a solution to

a boundary value problem on S. Given a function gðvÞ defined for v 2 S, we construct

a function ĝgðxÞ defined for x 2 P as

^gðxÞ ¼
Z

v2S

gðvÞbðv; xÞdS ð3Þ

where ĝgðvÞ interpolates gðvÞ on S.

1.3. Previous work

Most of the previous work on barycentric coordinates focuses on convex

polygons in the plane. For the case of regular polygons, Loop and De Rose [13],

Kuriyama [11] and Lodha [12] propose a simple construction that yields smooth basis

functions. Their expressions nicely extend the well-known area-based formula for
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barycentric coordinates in a triangle. Unfortunately, none of the proposed construc-

tions have linear precision when applied to irregular polygons.

Pinkall and Polthier [16], and later Eck et al. [1], present a conformal param-

eterization for triangulated surfaces that actually provides a natural extension of

barycentric coordinates to arbitrary polygons. However, the weights they define can be

negative even when the polygon is convex [15], which is often problematic for in-

terpolation applications.

Sibson [17] proposes a natural neighbor interpolant based on Voronoi diagram

that yields coordinate functions that are non-negative and have linear precision; note

also that Gotsman and colleagues proposed a minimization-driven barycentric co-

ordinates [8]. The drawback with these constructions is that the resulting coordinate

functions are not smooth.

Floater [3] gives an algorithmic construction coordinates over star-shaped

regions in 2D. However, this construction suffers from the drawback that the resulting

coordinate functions are not smooth within the polygon. In subsequent work, Floater

and colleagues [4,5] also present smooth coordinates for non-convex polygons based

on the mean value theorem. Another related approach was presented by Malsch [14],

allowing the design of barycentric coordinates for arbitrary 2D polygons, with or

without holes, and even with interior vertices. The idea of mean value coordinates was

recently extended to 3D and proven very convenient for shape deformation [6,9]. Alas,

this series of approaches do not end up providing multilinear interpolation when

applied to cartesian grids, a severe drawback for multiple computational tasks.

Finally, Warren [19] presents a construction for barycentric coordinates that

extends the results of Wachspress [18] to convex polytopes in arbitrary dimensions.

The functions Warren presents are smooth functions that have linear precision, are

positive on the interior of V, and coincide with the natural multilinear interpolation on

cartesian grids. These functions are also rational of minimal degree as proved in

Warren [20]. Unfortunately, no explicit formulation of these functions has been

provided for practical implementations.

1.4. Contributions

Despite much work in the discrete 2D case, no explicit formulation of

barycentric coordinates for convex polytopes valid in arbitrary dimension is currently

available. Additionally, there has been no generalization of these coordinate functions

to continuous domains that the authors are aware of. In this paper, we first review the

coordinate functions for arbitrary convex polytopes of Warren [19] and offer a simple,

computationally convenient expression of these functions; we then generalize this

formulation to smooth, convex regions of arbitrary dimension. In the process, we show

that our weight functions for both the polytope and the continuous case satisfy the

three properties of sections 1.1 and 1.2. Finally, we show how the weight function has

applications in defining (freeform) deformations over smooth, convex regions before

concluding.
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2. Defining coordinates for convex polytopes

2.1. Setup and notations

A convex polytope P in Rd is the convex hull of k affinely independent points

where k > d. The polytope P is bounded by a set of ðd � 1Þ dimensional facets with

outward unit normal vectors nj. Let indðvÞ denote the set of indices j such that the

facet normal to nj contains the vertex v.

Now, a vertex v of P is simple if jindðvÞj ¼ d. Similarly, P is simple if every

vertex of P is simple. Note that convex polygons are always simple while only a

subset of convex polyhedra are simple. For example, tetrahedra, cubes and triangular

prisms are simple while square pyramids and octahedra are not.

In [19], Warren shows that an appropriate extension of barycentric coordinate

functions bvðxÞ for simple polytopes can be defined using the concept of dual

polyhedral cones. In the remainder of this section, we will further formulate these

coordinate functions to allow practical computations.

2.2. An explicit formulation

We first define the weight function wvðxÞ at a simple vertex v as being:

wvðxÞ ¼
�ðvÞQ

j2 indðvÞðnj � ðv� xÞÞ ð4Þ

where �ðvÞ is the volume of the parallelepiped span by the normals to the d facets

incident on v, expressed via a determinant as:

�ðvÞ ¼ jDetðn indðvÞÞj ð5Þ

where nindðvÞ is a matrix whose rows are the vectors nj where j 2 indðvÞ.
Note that this weight function depends only on the facets incident on v. In

particular, the numerator corresponds to the volume of the parallelepiped spanned by

the outward normal vectors nj associated with the facets incident on v while the

denominator is the product of the distances between x and the d facets adjacent to v.

Figure 1 illustrates the different quantities for a parallelogram.

For non-simple vertices (where jindðvÞj > d), the weight functions are con-

structed by infinitesimally perturbing the facets touching v such that the non-simple

vertex is decomposed into simple vertices. The weight function is built by then

summing the weight function for the simple vertices together. Warren [19] provides a

more detailed description of non-simple vertices and a proof that the weight functions

are invariant under the decomposition of the non-simple vertex: So any pertubation

does the trick.
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Finally, we express the barycentric coordinate function bvðxÞ by dividing each

weight function wvðxÞ by the sum of all weight functions taken over P:

bvðxÞ ¼
wvðxÞP
v wvðxÞ

:

2.3. Equivalence to Warren’s coordinates

At this point, we make several observations concerning the structure of these

functions bvðxÞ that we just built. First, these functions are non-negative on P due to

the fact that the weight functions wvðxÞ are, by construction, non-negative on P.

Second, these functions trivially sum to one by construction. Third, these functions

have linear precision as shown in Appendix A. Finally, due to the uniqueness theorem

in [20], a simple argument on the degree of the resulting rational polynomial

coordinate functions confirms the equivalence between our newly introduced

expression and the original construction by Warren. Therefore our coordinates inherit

the other secondary qualities from Warren’s coordinates, such as smoothness and

reproduction of tensor product coordinate functions ([19]).

2.4. Application to interpolation

Functions that satisfy the three aforementioned properties can be used to

interpolate data values at the vertices of P. In other words,

bvðxÞ ¼ �vx

if x is restricted to the vertices of the polytope P where � is the Kronecker function. To

understand this phenomenon, first observe that the barycentric coordinate functions

reproduce all linear functions (linear precision yields reproduction of scalar values of x

Figure 1. An example calculation of wvðxÞ at a vertex for a trapezoid with normals labeled (n1, n2). The
areas of the shaded parallelograms formed by the normals correspond to the quantity jDetðniðvÞÞj.
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and the fact that the functions sum to 1 generates constant functions). Now, consider a

linear function lqðxÞ that is zero at a vertex q of P and strictly positive at all other

vertices of P. lqðxÞ then implicitly defines a supporting plane that touches P only at q.

Such a function always exists given P is convex. Therefore,

lqðxÞ ¼
X

v

lqðvÞbvðxÞ:

Since lqðqÞ ¼ 0, then

lqðqÞ ¼ 0 ¼
X

v 6¼ q

lqðvÞbvðqÞ

Now each lqðvÞ > 0 and bvðqÞ � 0. Therefore, bvðqÞ ¼ 0 for all v 6¼ q. Since the

coordinate functions sum to 1, bqðqÞ ¼ 1.

Using this result and equation (2), we can build a function ĝgðxÞ that interpolates

data values at the vertices of P. Figure 2 illustrates such an example of using discrete

2D barycentric coordinates to interpolate height and color data at the vertices of P.

Along the edges of the polygon, these weight functions reduce to linear interpolation.

Note that this last remark is a nice property already stressed in [19]: these barycentric

coordinates on a nD polytope reduce to their lower dimensional ðn� 1ÞD version on

any boundary face.

3. Coordinates for smooth convex sets

As we have seen above, barycentric coordinates on a convex polytope P blend

values gv assigned to the vertices of P to define a function ĝgðxÞ over all of P. In many

applications, we would like to perform a similar blending for arbitrary convex shapes.

In particular, given a function gðxÞ defined on the boundary S of P, we desire a method

for extending gðxÞ to the interior of P that generalizes barycentric coordinates from the

polytope case.

Figure 2. An example using barycentric coordinates to interpolate both the height and the color of the

vertices of the hexagon.
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3.1. A geometric expression

Our solution is to construct a continuous barycentric coordinate function defined

over all of P. The key to creating such a function bðv; xÞ that satisfies these properties

is to observe that equation (4) extends to smooth functions in a very natural, geometric

manner. In particular, the numerator �ðvÞ in the polytope case forms a discrete

approximation to the Gaussian curvature at the vertex v while the denominator is the

product of the distance of x to the d different facets incident on v.

Following the polytope case, we construct the continuous version of this weight

function as

wðv; xÞ ¼ �ðvÞ
ðnðvÞ � ðv� xÞÞd

ð6Þ

where �ðvÞ is the Gaussian curvature of S at v (i.e., the product of the d � 1 principal

curvatures at v) and nðvÞ is the outward unit normal to S at v. Figure 3 shows an

example calculation of the denominator of the weight function wðv; xÞ.
To complete the construction, we simply need to define a barycentric coordinate

function bðv; xÞ associated with wðv; xÞ to have the form

bðv; xÞ ¼ wðv; xÞR
v2 S wðv; xÞdS

: ð7Þ

After this normalization, these coordinate functions bðv; xÞ are non-negative and have

unit integral. As the central result of this paper, we show in the next section that this

function bðv; xÞ has linear precision.

For strictly convex shapes (those whose supporting half-spaces contact the shape

at a single point), a similar argument to the discrete case in section 2 allows us to

conclude that the barycentric coordinate function degenerates to the Dirac delta

function on S. That is,

bðv; xÞ ¼ �ðv� xÞ 8x 2 S: ð8Þ

Therefore, if we compute a new function ĝgðxÞ using equation (3) for this class of

shapes, ĝgðvÞ ¼ gðvÞ holds for all v 2 S.

Figure 3. Calculating the denominator of wðv; xÞ for continuous functions.
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3.2. Linear precision

We now prove that the continuous coordinate function bðv; xÞ defined in section

1.2 has linear precision, i.e;

Z

v2 S

v bðv; xÞdS ¼ x:

Substituting the definition of bðv; xÞ in terms of wðv; xÞ from equation (7) yields

x

Z

v2 S

wðv; xÞdS ¼
Z

v2 S

v wðv; xÞdS:

Combining the two integrals together generates

Z

v2 S

ðv� xÞwðv; xÞdS ¼ 0:

If we let hðv; xÞ denote ðv� xÞwðv; xÞ, applying equation (6) yields

hðv; xÞ ¼ ðv� xÞ �ðvÞ
ðnðvÞ � ðv� xÞÞd

: ð9Þ

Now, our task is to prove that
R

v2 S hðv; xÞdS ¼ 0 for all x. To prove that this integral is

zero, we proceed in three steps:

� We express S as an implicitly defined surface f ðxÞ ¼ 0 and apply the curvature

formula for implicit surfaces to express h in terms of f.

� We then manipulate this expression using several technical lemmas (proven in

Appendix B) and derive an equivalent expression for h in terms of cross products

and dot products.

� Finally, we convert this cross product into a differential form and apply Stoke’s

theorem to show that the integral of this differential form over S is zero.

In step one, we observe that the ðd � 1Þ dimensional manifold S can be expressed

as the solution to f ðxÞ ¼ 0 where f ðxÞ defines the signed Euclidean distance from the

point x to S. Observe that since f ðxÞ is a distance function, its gradient rf ðxÞ has unit

length on S.

In this implicit case, Goldman [7] provides a formula for Gaussian curvature. In

particular, the scalar �ðvÞ can be expressed as

�ðvÞ ¼ rf ðvÞH*ðvÞrf TðvÞ
jrf ðvÞjdþ 1
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where HðvÞ is the Hessian of f ðvÞ and ðÞ* denotes the adjoint of a square matrix.

Recall that in the context of this proof, jrf ðvÞj ¼ 1. Substituting this relation in the

left-hand side of equation (9) yields that

hðv; xÞ ¼ ðv� xÞ rf ðvÞH*ðvÞrf TðvÞ
ðrf ðvÞ � ðv� xÞÞd

: ð10Þ

In the second step of our proof, we consider the vector-valued function mðv; xÞ
defined via

mðv; xÞ ¼ rf ðvÞ
rf ðvÞ � ðv� xÞ :

In Appendix B, we show that hðv; xÞ can be equivalently expressed in terms of the

gradient of mðv; xÞ with respect to coordinates of v. (x is treated as constant.) In

particular, hðv; xÞ has the form

hðv; xÞ ¼ ðrmðv; xÞÞ*rf TðvÞ:

Now, let hkðv; xÞ denote the kth element of hðv; xÞ. Due to the properties of

adjoints, hkðv; xÞ can expressed as the cross-product of d � 1 rows of the matrix
rmðv; xÞ dotted with rf TðvÞ. In particular,

hkðv; xÞ ¼
O

i 6¼ k

rðmiðv; xÞÞ
 !

�rf TðvÞ ð11Þ

where miðv; xÞ is the ith component of mðv; xÞ.
In our final step of the proof, we apply a generalized version of Stoke’s theorem

[2, p.365] of the form:
Z

v2 S

!ðvÞ ¼
Z

v2P

dð!ðvÞÞ

where ! is a differential form and d is the differential operator. To construct !, we

observe that the cross product in equation (11) has an equivalent formulation as a

wedge product of differentials. In particular,

Z

v2 S

hkðv; xÞdS ¼
Z

v2 S

^

i 6¼ k

dðmiðv; xÞÞ: ð12Þ

(The dot product with rf TðvÞ in equation (11) is absorbed during the integration of the

differential form on the right-hand side of equation (12) [2, p.356].) Now, applying

Stoke’s theorem yields that

Z

v2 S

hkðv; xÞdS ¼
Z

v2P

d
^

i 6¼ k

dðmiðv; xÞÞ
 !

:
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Due to Lemma 3 from the Appendix, the integral on the right-hand side reduces

to zero, which completes the proof.
Z

v2S

ðv� xÞwðv; xÞdS ¼
Z

v2S

hkðv; xÞdS ¼ 0:

4. Applications to smooth convex sets

We next consider two novel applications of barycentric coordinates over smooth

convex sets: Boundary value interpolation and freeform deformations. To do so we

first specialize equation (6) to parametric functions since evaluating the resulting

integrals becomes much simpler.

4.1. Boundary value interpolation

Given a function gðvÞ defined over some manifold v 2 S of co-dimension one

where v 2 S, we desire a function ĝgðxÞ defined over the interior of S that interpolates
gðvÞ on S. This function ĝgðxÞ can be used to build a surface patch that interpolates a

given curve or even to extend functions such as heat distribution over a surface to the

interior of the volume.

Equation (3) already defines how to build such a function ĝgðxÞ to interpolate gðvÞ
on S. However, to make this construction practical, we show how to interpret this

barycentric coordinate function in a parametric form. In particular, we provide an

explicit example of specializing this formula for two-dimensional parametric curves.

Given a region P in two-dimensions bounded by a curve with parameterization
pðtÞ ¼ ðp1ðtÞ; p2ðtÞÞ, the curvature �ðtÞ is given by

�ðtÞ ¼ p1
0 ðtÞp2

00 ðtÞ � p2
0 ðtÞp1

00 ðtÞ
ðp1
0 ðtÞ2 þ p2

0 ðtÞ2Þ
3
2

:

Likewise, the unit normal nðtÞ is simply

nðtÞ ¼ 1

ðp1
0 ðtÞ2 þ p2

0 ðtÞ2Þ
1
2

ð�p2
00 ðtÞ; p1

0 ðtÞÞ:

Therefore, equation (6) for the weight function wðv; xÞ becomes

wðt; xÞ ¼ p1
0 ðtÞp2

00 ðtÞ � p2
0 ðtÞp1

00 ðtÞ
ðp1
0 ðtÞ2 þ p2

0 ðtÞ2Þ
1
2ð�p2

0 ðtÞðp1ðtÞ � x1Þ þ p1
0 ðtÞðp2ðtÞ � x2ÞÞ2

where x ¼ ðx1; x2Þ. Notice that when integrating a scalar function over a space curve,

we must include a factor of ðp1
0 ðtÞ2 þ p2

0 ðtÞ2Þ
1
2 to make the integral invariant under the
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parameterization of the boundary pðtÞ. For example, the normalization factor for the

basis function bðv; xÞ becomes:
Z

v2S

wðv; xÞdS ¼
Z

wðt; xÞðp1
0 ðtÞ2 þ p2

0 ðtÞ2Þ
1
2dt

¼
Z

p1
0 ðtÞp2

00 ðtÞ � p2
0 ðtÞp1

00 ðtÞ
ð�p2

0 ðtÞðp1ðtÞ � x1Þ þ p1
0 ðtÞðp2ðtÞ � x2ÞÞ2

dt:

When applying equation (3), a similar factor appears in the integral to account for the

parameterization of the boundary.

To illustrate this formula, consider the problem of interpolating the function x1x2

over a patch whose boundary consists of the unit circle. To parameterize the circle let
pðtÞ ¼ ðCosðtÞ; SinðtÞÞ. By construction, the weight function wðt; xÞ has the form

wðt; xÞ ¼ 1

ðx1 CosðtÞ þ x2 SinðtÞ � 1Þ2
:

The corresponding barycentric coordinate function bðt; xÞ is then

bðt; xÞ ¼ ð1� x2
1 � x2

2Þ
3
2

2�ðx1CosðtÞ þ x2SinðtÞ � 1Þ2
:

To construct a function ĝgðxÞ that interpolates the function x1x2 on the unit circle,

we must build a function gðtÞ parameterized over the boundary that interpolates x1x2.

Notice that gðtÞ ¼ CosðtÞSinðtÞ since ðx1; x2Þ ¼ ðCosðtÞ; SinðtÞÞ. Now equation (3) can

be computed analytically and has the form

^gðxÞ ¼
x1 x2 �2þ 3 x1

2 þ 3 x2
2 þ 2 1� x1

2 � x2
2ð Þ

3
2

� �

x1
2 þ x2

2
� �2

:

Figure 4. Barycentric interpolation of the function x1x2 on the unit circle: Notice how the values blend on
the interior of the circle in a smooth, natural manner.
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Figure 4 shows a plot of this function restricted to the unit circle. Observe that the

function ĝgðxÞ interpolates the function x1 x2 on the unit circle while blending these

values on the interior of the circle in a natural manner.

4.2. Freeform deformations

Continuous barycentric coordinates can be used to perform freeform deforma-

tions of images as well. Given a convex region P bounded by a smooth curve pðtÞ, we

wish to deform P into another region G bounded by the curve gðtÞ (see figure 5). If we

use the construction from equation (3) we obtain:

^gðxÞ ¼
Z

v

gðtÞbðt; xÞdt

where x 2 P. The resulting function ĝg : P! G smoothly maps points in P to points in

G. Furthermore, ĝgðxÞ maps points on pðtÞ to points on gðtÞ, that is, ĝgðpðtÞÞ ¼ gðtÞ.
Since bðv; xÞ has linear precision, if pðtÞ ¼ gðtÞ, then ĝgðxÞ becomes the identity func-

tion and generates no deformation.

In our example, we define P and G as the regions bounded by closed quadratic B-

splines pðtÞ and gðtÞ having k control points on the periodic interval 0 � t � k. Though

B-splines are only piecewise polynomial, equation (3) still applies. In fact, any B-

spline curve can be represented as a piecewise polynomial function of the form

pðtÞ ¼ piðt� iÞ
gðtÞ ¼ giðt� iÞ ; i � t � iþ 1

where piðtÞ, giðtÞ are the ith polynomial functions comprising the respective B-splines.

To compute equation (3) we construct wðt; xÞ, which is also a piecewise function,

and has the form

wðt; xÞ ¼ wiðt� i; xÞ; i � t � iþ 1

where wiðt; xÞ is formed using equation (6) for the function piðtÞ. With this result we

can calculate the normalization factor in equation (7) as

Z
wðt; xÞdt ¼

Xk�1

i¼0

Z 1

0

wiðt; xÞdt:

Figure 5. ĝgðx1; x2Þ provides a map between pðtÞ and gðtÞ. This map can be used to perform freeform
deformations.

J. Warren et al. / Barycentric coordinates for convex sets 331



Now we compute ĝgðxÞ using equation (3) as a piecewise integral that has the

form

^gðxÞ ¼ 1R
wðt; xÞdt

Z
gðtÞwðt; xÞdt

¼ 1R
wðt; xÞdt

Xk�1

i¼0

Z 1

0

giðtÞwiðt; xÞdt:

We can explicitly calculate the integrals above, using a symbolic software package

such as Mathematica, to obtain a closed form solution in terms of ðx1; x2Þ and the

control points of the B-splines forming pðtÞ and gðtÞ. Though each wiðt; xÞ is a rational

polynomial function, the resulting ĝgðxÞ is more complicated and is in terms of

functions such as Arctan. However, the function is still fast to evaluate (since no

integrals need be computed) and image deformation can be computed in realtime.

The user performs image deformation by first placing the control points of the

curve pðtÞ about the convex area that they wish to deform (see figure 6, left). Once the

user is satisfied, the control points are duplicated to form the curve gðtÞ. The user then

drags on the control points of gðtÞ to generate the desired deformation. Due to the fact

that barycentric coordinates interpolate the boundary (as shown in equation (8)), the

deformed image will follow the boundary of gðtÞ. Figure 6 (right) shows an example

deformation of the car from the left portion of the figure. The entire application and

source code for performing these deformations can be downloaded from http://

www.cs.rice.edu/~sschaefe/barywhite.zip.

5. Conclusion

In this paper, we have provided an extension of barycentric coordinates first to

convex polytopes, then to smooth convex sets in arbitrary dimension, both in the form

of explicit, geometric formulas. Furthermore, we provided a proof that the coordinate

functions are non-negative, have unit integral and reproduce linear functions. Finally,

Figure 6. Car before deformation and bounding quadratic B-spline curve defining pðtÞ (left). Deformed
car generated by altering the control points with bounding curve gðtÞ (right).
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we showed how this function could be used to build solutions to boundary value

problems and perform deformations as well.

Of special interest is the similarity that our barycentric coordinate function bears

towards Green’s functions. Green’s functions are typically used in a similar manner to

our barycentric coordinate functions to build solutions to (typically elliptical) partial

differential equations with boundary value constraints. While our function builds

solutions to boundary value problems, we know of no differential equation that the

functions satisfy. In the future, we would like to explore this connection further. A

potential approach could be to leverage the geometric interpretation of these

coordinates in terms of polar duals as recently introduced in [10].
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Appendix

A. Linear precision for convex polytopes

As observed in the paper, proving that the coordinate functions bvðxÞ have linear

precision reduces to showing that equation (1) holds; that is the weight functions wvðxÞ
satisfy:

X

v

ðv� xÞwvðxÞ ¼ 0:

To this end, we observe that at a simple vertex v of P, the following vector relationship

holds:

nindðvÞðv� xÞY

j2indðvÞ
ðnj � ðv� xÞÞ

¼
X

k2indðvÞ

ekY

q2indðvÞ
q6¼k

ðnq � ðv� xÞÞ

where ek is the kth canonical basis vector in d dimensions. Multiplying the numerator

of both sides of this equation by n�1
indðvÞ, the resulting equation has the form:

v� xY

j2indðvÞ
ðnj � ðv� xÞÞ

¼
X

k2indðvÞ

n�1
indðvÞekY

q2indðvÞ
q 6¼k

ðnq � ðv� xÞÞ
: ð13Þ

Now, recall that the kth column of n�1
indðvÞ corresponds to the cross product of the d � 1

rows of nindðvÞ�k (denoted CrossðnindðvÞ�kÞ below) divided by the determinant of nindðvÞ.
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Applying this observation and multiplying both sides of equation (13) by DetðnindðvÞÞ
yields that

ðv� xÞ
DetðnindðvÞÞY

j2indðvÞ
ðnj � ðv� xÞÞ

¼
X

k2indðvÞ

CrossðnindðvÞ�kÞY

q2indðvÞ
q6¼k

ðnq � ðv� xÞÞ
ð14Þ

Note that each of the cross products in this last equation corresponds to a vector lying

parallel to an edge of P incident to v. Taking the sum of both sides of equation (14)

over all v of P yields:

X

v2P

ðv� xÞDetðnindðvÞÞY

j2indðvÞ
ðnj � ðv� xÞÞ

¼
X

v2P

X

k2indðvÞ

Cross½nindðvÞ�k�Y

q2indðvÞ
q6¼k

ðnq � ðv� xÞÞ
: ð15Þ

Now, we assume (without loss of generality) that the indices in indðvÞ are ordered

such that the determinant of nindðvÞ is always positive. Since each edge of P is shared

by two vertices of P, the cross product on the right-hand side of equation (15) appears

twice in the double summation, once for each possible orientation of the edge. Since

these vector then cancel, the left-hand side of equation (15) must be identically zero.

Observing that the fraction on the left-hand side of this same equation is exactly the

weight function wvðxÞ defined by equation (4) completes the proof.

B. Linear precision for smooth convex sets

Recall that hðv; xÞ from section 3.2 is written as

hðv; xÞ ¼ ðv� xÞ rf ðvÞH*ðvÞrf TðvÞ
ðrf ðvÞ � ðv� xÞÞd

where HðxÞ is the Hessian of f ðxÞ, ðÞ* denotes the adjoint of a square matrix, rf ðvÞ is

a row vector and x; v are column vectors.

Theorem 1.

hðv; xÞ ¼ ðrmðv; xÞÞ*rf TðvÞ

where mðv; xÞ ¼ rf ðvÞ
rf ðvÞðv�xÞ.
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Proof.

ðrmðv; xÞÞ*rf TðvÞ ¼
�
r
� rf TðvÞ
rf ðvÞðv� xÞ

��
*rf TðvÞ;

we expand the gradient of our matrix using the product rule and obtain

HðvÞððrf ðvÞðv� xÞÞI � ðv� xÞrf ðvÞÞ � rf TðvÞrf ðvÞ
ðrf ðvÞðv� xÞÞ2

 !
*
rf TðvÞ:

Applying Lemma 1 reduces this expression to

HðvÞððrf ðvÞðv� xÞÞI � ðv� xÞrf ðvÞÞ
ðrf ðvÞðv� xÞÞ2

 !
*
rf TðvÞ:

Next, we use the product rule for adjoints to rewrite the adjoint as

1

ðrf ðvÞðv� xÞÞ2ðd�1Þ ðrf ðvÞðv� xÞÞI � ðv� xÞrf ðvÞð Þ*H*ðvÞrf TðvÞ:

Simplifying using Lemma 2 yields

1

ðrf ðvÞðv� xÞÞ2ðd�1Þ ðrf ðvÞðv� xÞÞd�2ðv� xÞrf ðvÞH*ðvÞrf TðvÞ:

Canceling the appropriate powers generates the final form and completes the proof

1

ðrf ðvÞðv� xÞÞdÞ
ðv� xÞrf ðvÞH*ðvÞrf TðvÞ:

Lemma 1. aB* ¼ aðBþ cTaÞ* where a; c are row vectors with n entries.

Proof. The proof follows by properties of the determinant and is simply and

application of Kramer’s rule. The ith entry in the vector aB* can be found as

determinant where the ith row in B is replaced by a. Therefore, if we consider the

vector aðBþ cTaÞ*Þ, the ith entry in this vector is given by the determinant of Bþ cTa
with the ith row replaced with a. Since cTa adds a scalar multiple of a to each row of

B, cTa is linearly dependent on a. Therefore, cTa will not contribute to the determinant

and aB* ¼ aðBþ cTaÞ*. Ì

Lemma 2. aTbðabTÞn�2 ¼ ððabTÞI � aTbÞ* where a; b are row vectors and B is a

matrix.

Ì
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Proof. The adjoint is a matrix of cofactors, each of which is a determinant of a sub-

piece of the matrix. Therefore, we instead prove a result about determinates of

matrices of the given form that trivially extends to yield the adjoint rule above. Ì

Claim. Detð�I � aTbÞ ¼ �n � �n�1TrðaTbÞ and Detð�I1 � aTbÞ ¼ ��n�1a1b1 where
� is a scalar, I is the identity matrix, Ii is the identity matrix with the ith row uniformly

zero.

Proof. The proof is inductive on the size of the vectors (n). Ì

Base case. n ¼ 1

Detð�� a1b1Þ ¼ �1 � �0a1b1 ¼ �� a1b1

Detð�I1 � a1b1Þ ¼ ��0a1b1 ¼ �a1b1

Inductive step. Starting with the first identity, we assume that a; b are vectors with n
entries and expand the determinant in terms of a sum of determinants of size n� 1.

Detð�I � aTbÞ ¼ ð�� a1b1ÞDetððaTbÞ1;1Þ �
Xn

i¼2

ð�1Þi�1a1biDetððaTbÞ1;iÞ

where Mi;j yields the matrix M with row i and column j deleted. Using the inductive

hypothesis and rearranging rows in the matrices we obtain

ð�� a1b1Þ �n�1 � �n�2
Xn

i¼2

aibi

 !
�
Xn

i¼2

ð�1Þi�1a1bið�n�2aib1ð�1Þi�1Þ:

Simplifying this expression yields the final result

�n � �n�1
Xn

i¼1

aibi:

The second recurrence follows in a similar manner. First, we rewrite the

determinant as a sum of determinants of size n� 1

Detð�I1 � aTbÞ ¼ �a1b1DetððaTbÞ1;1Þ �
Xn

i¼2

ð�1Þi�1a1biDetððaTbÞ1;iÞ:

Applying the inductive hypothesis generates

�a1b1 �n�1 � �n�2
Xn

i¼2

aibi

 !
�
Xn

i¼2

ð�1Þi�1a1bið�n�2aib1ð�1Þi�1Þ:
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Finally, simplifying this expression yields the desired result

��n�1a1b1:

Lemma 3. dð
V

i¼1::n dð fiÞÞ ¼ 0 for all f1 . . . fn. Ì

Proof. The proof is inductive on the number of entries n.

Base case. n ¼ 1. dðdð f1ÞÞ ¼ 0 since the derivative of the derivative of a differential

form is zero.

Inductive step. First, we use the product rule for wedge products [2, p.292Y293] to

expand out dðdð f1Þ ^ ð
V

i¼2::n dð fiÞÞÞ to

dðdð f1ÞÞ ^
^

i¼2::n

dð fiÞÞ
 !

� dð f1Þ ^ d
^

i¼2::n

dð fiÞÞ
 !

:

Using the fact that dðdð f1ÞÞ ¼ 0 and the inductive hypothesis, we simplify this

expression to

0 ^
^

i¼2::n

dð fiÞÞ
 !

� dð f1Þ ^ 0 ¼ 0:
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