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Error analysis of spectral method on a triangle
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In this paper, the orthogonal polynomial approximation on triangle, proposed by Dubiner,
is studied. Some approximation results are established in certain non-uniformly Jacobi-
weighted Sobolev space, which play important role in numerical analysis of spectral and
triangle spectral element methods for differential equations on complex geometries. As an
example, a model problem is considered.
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1. Introduction

Although spectral methods have gained increasingly popularity in scientific com-
putations during the last 30 years, its applications to problems on complex geometries
have been historically limited. Indeed, the standard spectral methods are traditionally
confined to problems on regular domains. However, in many areas, the underlying
problems are originally set on some complex domains, which usually require the use
of numerical methods on irregular meshes. Consequently, the low-order finite element
method and finite volume method are preferable in practice, since they allow geometric
flexibility. Recently, high-order methods have become popular in computational fluid
dynamics, for instance, the viscous flow equations around complex obstacles (cf. [16]).
The h − p finite element method and spectral element method are notable among the
high-order methods.
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Dubiner [7] considered a system of polynomials derived from Jacobi polynomials:

gl,m(x, y) := 2l+3/2(1−y)lJ
(0,0)
l (ξ)J (2l+1,0)

m (η), ξ = 2x + y − 1

1 − y
, η = 2y−1, (1.1)

which are L2(T )-orthogonal on the triangle

T := {
(x, y): 0 � x � 1, 0 � y � 1, 0 � x + y � 1

}
. (1.2)

Later, Cai [5] extended this basis to the basis functions on curve surface for numerical
simulation of electromagnetic scattering. The orthogonal polynomials (1.1) were also
used as effective basis functions in h − p finite element method and spectral finite ele-
ment method in [16,18,19], which exhibit geometric flexibility and spatial accuracy of
high order in actual computations. There have been also other families of orthogonal
polynomials on triangle. For instance, Appell and de Fériet [1] (also see [8]) proposed
some polynomials. Owens [17] constructed the orthogonal polynomials as the eigen-
functions of a singular Sturm–Liouville problem on triangle. However, the explicit ex-
pressions of such polynomials are not yet settled. We also refer to the interesting spectral
element method developed in [9,14,15].

As we know, the estimate of convergence rate of triangle spectral element method
essentially depends on the approximation results on the reference triangle T . Also, the
numerical analysis of most pseudospectral methods is closely related to the orthogonal
approximation on T . But so far, to our knowledge, there is nearly no result on the
convergence analysis of orthogonal polynomial approximation on triangle, especially
for the system (1.1). Thereby, we aim in this paper at the approximation properties of
this basis, which is the first step for investigating the convergence of triangle spectral
element method for partial differential equations on complex geometries.

There are two main difficulties in the error analysis. Firstly, the basis is not
formed by the standard tensor product of two one-dimensional basis functions. We
see from (1.1) that one of parameters of the second Jacobi polynomial is twice greater
than the degree of the first one, and tends to infinity as the mode l goes to infinity. As
a consequence, the usual results on one-dimensional Jacobi approximation established
in [2,4,10,11] cannot be applied directly, since they are of the form

‖v − πNv‖S1 � c(α, β)N−r‖v‖S2, (1.3)

where Si (i = 1, 2) are two weighted Sobolev spaces, πN is a certain orthogonal projec-
tion upon the set consisting of all polynomials with degree at most N , and α, β are fixed
parameters of Jacobi polynomials. In other words, we have to explore the explicit de-
pendence of approximation results on the parameters of Jacobi polynomials. Secondly,
the basis (1.1) comes from the Jacobi polynomials on the square Q := (−1, 1)2 by using
a singular mapping: (x, y) ∈ T → (ξ, η) ∈ Q (cf. (1.1)), which collapses one of edges
of the square into a vertex of the triangle. Accordingly, we need some special techniques
for dealing with this trouble.

The rest part of this paper is organized as follows. In section 2, we improve some
results on the Jacobi approximation. In particular, we present the precise expression
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of c(α, β) in (1.3), so that we can use it for the analysis of orthogonal approximation
on triangle. Also, we consider a special one-dimensional orthogonal approximation
in this section, which plays an important role in the forthcoming discussions. In sec-
tion 3, we use the results in section 2 to establish the main results on the orthogonal
approximation on triangle by using the basis (1.1). Some numerical results show the
efficiency of this approach. As an example of applications to partial differential equa-
tions on triangle, we consider a model problem on triangle and prove the convergence of
proposed spectral method in section 4. The final section is for some concluding discus-
sions.

2. Jacobi approximations in one dimension

In this section, we shall improve some results on the one-dimensional Jacobi
approximation, which describe the explicit dependence of approximation errors on the
parameters of Jacobi polynomials, and also consider a special orthogonal projection,
which will be used to derive the main results in the next section.

2.1. Improved results on Jacobi approximation

We first introduce some notations. Let ω(ξ) be a certain weight function defined in
I := (−1, 1). Denote by N the set of all non-negative integers. For any r ∈ N, we define
the weighted Sobolev space Hr

ω(I ) in the usual way, and denote its inner product, semi-
norm and norm by (u, v)r,ω,I , |v|r,ω,I and ‖v‖r,ω,I , respectively. In particular, L2

ω(I ) =
H 0

ω(I ), (u, v)ω,I = (u, v)0,ω,I and ‖v‖ω,I = ‖v‖0,ω,I . For any r > 0, H r
0,ω(I ) stands for

the closure in Hr
ω(I ) of the set D consisting of all infinitely differentiable functions with

compact support in I . When ω(ξ) ≡ 1, we omit ω in the notations for simplicity.
For any L ∈ N, let PL(I ) be the set of all algebraic polynomials of degree

at most L, and P0
L(I ) be the subset of PL(I ) involving all polynomials vanishing at

ξ = ±1.
Let χ(α,β)(ξ) = (1 − ξ)α(1 + ξ)β be the Jacobi weight function. The normal-

ized Jacobi polynomials J
(α,β)

l (ξ), l � 0, are the eigenfunctions of the Sturm–Liouville
problem

∂ξ

(
χ(α+1,β+1)(ξ)∂ξv(ξ)

) + λχ(α,β)(ξ)v(ξ) = 0, ξ ∈ I, (2.1)

with corresponding eigenvalue

λ
(α,β)

l = l(l + α + β + 1). (2.2)

The normalized Jacobi polynomials fulfill the recurrence relation (cf. [20]):

∂ξJ
(α,β)

l (ξ) = (
l(l + α + β + 1)

)1/2
J

(α+1,β+1)

l−1 (ξ), l � 1. (2.3)
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For α, β > −1, the set {J (α,β)

l (ξ)} is an L2
χ(α,β) (I )-orthonormal system, i.e.,

∫

I

J
(α,β)

l (ξ)J
(α,β)

l′ (ξ)χ(α,β)(ξ) dξ = δl,l′ (2.4)

where δl,l′ is the Kronecker symbol.
For any v ∈ L2

χ(α,β) (I ), we have that

v(ξ) =
∞∑

l=0

v̂
(α,β)

l J
(α,β)

l (ξ), v̂
(α,β)

l = (
v, J

(α,β)

l

)
χ(α,β),I

. (2.5)

We now consider the orthogonal projection PL,α,β : L2
χ(α,β) (I ) → PL(I ), defined by

(PL,α,βv − v, φ)χ(α,β),I = 0, ∀φ ∈ PL(I ). (2.6)

To describe approximation results precisely, we introduce the space

Hr
χ(α,β),A

(I ) := {
v: v is measurable and

∥∥∂k
ξ v

∥∥
χ(α+k,β+k),I

< ∞, 0 � k � r
}
, r ∈ N.

Lemma 2.1. For any v ∈ Hr
χ(α,β),A

(I ), r, k ∈ N and 0 � k � r ,

∥∥∂k
ξ (PL,α,βv − v)

∥∥
χ(α+k,β+k),I

�
(
λ

(α+r,β+r−1)

L−r+1

)(k−r)/2∥∥∂r
ξ v

∥∥
χ(α+r,β+r),I

(2.7)

where λ
(α+r,β+r−1)

L−r+1 is given by (2.2).

Proof. Let

J
(α,β)

l,k (ξ) := ∂k
ξ J

(α,β)

l (ξ). (2.8)

Then by (2.5),

∂k
ξ v(ξ) =

∞∑

l=0

v̂
(α,β)

l J
(α,β)

l,k (ξ). (2.9)

Moreover, by virtue of (2.3),

J
(α,β)

l,k (ξ) =
(

�(l + α + β + k + 1)�(l + 1)

�(l + α + β + 1)�(l − k + 1)

)1/2

J
(α+k,β+k)

l−k (ξ).

Hence, J
(α,β)

l,k (ξ) is the same as J
(α+k,β+k)

l−k (ξ), apart from a constant. Therefore, (2.1)
implies that

∂ξ

(
χ(α+k+1,β+k+1)(ξ)∂ξJ

(α,β)

l,k (ξ)
) + λ

(α+k,β+k)

l−k χ(α+k,β+k)(ξ)J
(α,β)

l,k (ξ) = 0, l � k.

Multiplying the above equality by J
(α,β)

l,k (ξ) and integrating the result by parts, we find
that

∥∥∂ξJ
(α,β)

l,k

∥∥2
χ(α+k+1,β+k+1),I

= λ
(α+k,β+k)

l−k

∥∥J
(α,β)

l,k

∥∥2
χ(α+k,β+k),I

. (2.10)
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Due to (2.8),

∂ξJ
(α,β)

l,k (ξ) = ∂k+1
ξ J

(α,β)

l (ξ) = J
(α,β)

l,k+1(ξ).

This with (2.10) leads to
∥∥J

(α,β)

l,k

∥∥2

χ(α+k,β+k),I
= λ

(α+k−1,β+k−1)

l−k+1

∥∥J
(α,β)

l,k−1

∥∥2

χ(α+k−1,β+k−1),I
= · · · = c

(α,β)

l,k , (2.11)

where

c
(α,β)

l,k =
k−1∏

j=0

λ
(α+j,β+j)

l−j =
k−1∏

j=0

(l − j)(l + j + α + β + 1). (2.12)

So we obtain from (2.9) and (2.11) that, for any k, r ∈ N and k � r ,

∥∥∂k
ξ (PL,α,βv − v)

∥∥2
χ(α+k,β+k),I

=
∞∑

l=L+1

(
v̂

(α,β)

l

)2∥∥J
(α,β)

l,k

∥∥2
χ(α+k,β+k),I

=
∞∑

l=L+1

(
v̂

(α,β)

l

)2
c

(α,β)

l,k =
∞∑

l=L+1

c
(α,β)

l,k

c
(α,β)

l,r

(
v̂

(α,β)

l

)2
c

(α,β)

l,r

=
∞∑

l=L+1

c
(α,β)

l,k

c
(α,β)

l,r

(
v̂

(α,β)

l

)2∥∥J
(α,β)

l,r

∥∥2
χ(α+r,β+r),I

. (2.13)

Further, for l � L + 1, we have from (2.2) and (2.12) that

c
(α,β)

l,k

c
(α,β)

l,r

=
r−1∏

j=k

(
λ

(α+j,β+j)

l−j

)−1 =
r−1∏

j=k

1

(l − j)(l + j + α + β + 1)

�
r−1∏

j=k

1

(L − j + 1)(L + j + α + β + 2)

�
r−1∏

j=k

1

(L − j)(L + j + α + β + 2)
=

r−1∏

j=k

1

λ
(α+j+1,β+j)

L−j

. (2.14)

Next, set

f (z) = (L − z)(L + α + β + 2 + z).

Since α, β > −1, we have

f ′(z) = −(α + β + 2) − 2z < 0, ∀z � 0.

This implies that for α, β > −1 and k � j � r − 1,

λ
(α+j+1,β+j)

L−j = f (j) � f (r − 1) = λ
(α+r,β+r−1)

L−r+1 . (2.15)

A combination of (2.9) and (2.13)–(2.15) leads to the desired result. �
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We can use lemma 2.1 to improve the corresponding result on the H 1(I )-
projection, which will be used in section 4. Basically, we consider the orthogonal pro-
jection P

1,0
L : H 1

0 (I ) → P0
L(I ), such that for any v ∈ H 1

0 (I ),

(
∂ξ (P

1,0
L v − v), ∂ξφ

)
I

= 0, ∀φ ∈ P0
L(I ). (2.16)

Hereafter, we denote by c a generic positive constant independent of L, α, β and any
function.

Lemma 2.2. If v ∈ H 1
0 (I ), ∂ξv ∈ Hr−1

χ(0,0),A
(I ) and r ∈ N, then for 0 � μ � 1 � r ,

∥∥P
1,0
L v − v

∥∥
μ,I

� cLμ−r
∥∥∂r

ξ v
∥∥

χ(r−1,r−1),I
. (2.17)

Proof. We can follow the standard procedure (cf. [6]) to obtain the desired result by
using lemma 2.1. To do this, let

φ∗(ξ) =
∫ ξ

−1
PL−1,0,0∂ζ v(ζ ) dζ, φ(ξ) = φ∗(ξ) − 1

2
φ∗(1)(1 + ξ).

Clearly φ ∈ P0
L(I ). Moreover

∣∣φ∗(1)
∣∣ =

∣∣∣∣

∫

I

(
PL−1,0,0∂ζ v(ζ ) − ∂ζ v(ζ )

)
dζ

∣∣∣∣ �
√

2‖PL−1,0,0∂ξv − ∂ξv‖I .

By projection theorem,
∣∣P 1,0

L v − v
∣∣
1,I

� |φ − v|1,I � ‖PL−1,0,0∂ξv − ∂ξv‖I + ∣∣φ∗(1)
∣∣

�
(√

2 + 1
)‖PL−1,0,0∂ξv − ∂ξv‖I

�
(√

2 + 1
)(

λ
(r,r−1)
L−r

)(1−r)/2∥∥∂r
ξ v

∥∥
χ(r−1,r−1),I

� cL1−r
∥∥∂r

ξ v
∥∥

χ(r−1,r−1),I
. (2.18)

By this fact and the Poincaré inequality, we obtain (2.17) with μ = 1. We next consider
the case μ = 0. Let g ∈ L2(I ), and consider the auxiliary problem

(∂ξw, ∂ξz)I = (g, z)I , ∀z ∈ H 1
0 (I ).

It has a unique solution and ‖w‖2,I � c‖g‖I . In view of this fact, we have from (2.18)
that

∣∣P 1,0
L w − w

∣∣
1,I

� cL−1
∥∥∂2

ξ w
∥∥

χ(1,1),I
� cL−1‖g‖I .

Finally, we can derive the desired result by a standard duality argument and space inter-
polation. �
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2.2. Spectral approximation by using orthogonal system {K(σ)
l }

In this subsection, we consider a special orthogonal approximation by using the
family of polynomials:

K
(σ)
l (η) := (1 − η)σJ

(2σ+1,0)
l (η), σ ∈ N, η ∈ I. (2.19)

This system possesses the following properties:

• According to (2.1),

(1 − η)−σ ∂η

(
(1 − η)2σ+2(1 + η)∂η

(
(1 − η)−σK

(σ)
l (η)

)) + γ
(σ)
l (1 − η)K

(σ)
l (η) = 0,

where

γ
(σ)
l = l(l + 2σ + 2).

• Thanks to (2.3),

∂η

(
(1 − η)−σK

(σ)
l (η)

) = (
l(l + 2σ + 2)

)1/2
J

(2σ+2,1)

l−1 (η), l � 1.

• Let χ(η) = 1 − η. By (2.4), the set {K(σ)
l (η)} is a normalized L2

χ(I )-orthogonal
system, i.e.,

∫

I

K
(σ)
l (η)K

(σ)

l′ (η)χ(η) dη =
∫

I

J
(2σ+1,0)
l (η)J

(2σ+1,0)

l′ (η)(1 − η)2σ+1 dη = δl,l′ .

(2.20)

Now, let

L̃2
χ(I ) := {

v: v = (1 − η)σu, u ∈ L2
χ(2σ+1,0) (I )

}
,

and

P̃M,σ (I ) := span
{
K

(σ)

0 , K
(σ)

1 , . . . , K
(σ)
M

}
.

Further, let 0P̃M,σ (I ) and P̃0
M,σ (I ) be the subsets of P̃M,σ (I ) consisting of all polynomi-

als vanishing at η = 1 and η = ±1, respectively.
The orthogonal projection P̃M,σ : L̃2

χ(I ) → P̃M,σ (I ) is defined by
(
P̃M,σ v − v, φ

)
χ,I

= 0, ∀φ ∈ P̃M,σ (I ). (2.21)

To describe approximation results more precisely, we introduce the weighted space

Ar
σ (I ) = {

v | v is measurable on I and ‖v‖Ar
σ (I ) < ∞}

, r ∈ N,

where

‖v‖Ar
σ (I ) =

(
r∑

k=0

(σ + r − k − 1)2r−2k
∥∥(1 − η)k−r/2(1 + η)r/2∂k

ηv
∥∥2

χ,I

)1/2

. (2.22)
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Lemma 2.3. For any v ∈ L̃2
χ(I ) ∩ Ar

σ (I ), r ∈ N and r � 0,
∥∥P̃M,σ v − v

∥∥
χ,I

� c
(
λ

(2σ+r+1,r−1)

M−r+1

)−r/2‖v‖Ar
σ (I ). (2.23)

Proof. Let PM,2σ+1,0 be the L2
χ(2σ+1,0) (I )-orthogonal projection as in (2.6), and

u(η) = v(η)χ(−σ,0)(η), φ(η) = χ(σ,0)(η)(PM,2σ+1,0u)(η).

Clearly, u ∈ L2
χ(2σ+1,0) (I ) and φ ∈ P̃M,σ (I ). By projection theorem and lemma 2.1,
∥∥P̃M,σ v − v

∥∥
χ,I

� ‖φ − v‖χ,I = ‖PM,2σ+1,0u − u‖χ(2σ+1,0),I

� c
(
λ

(2σ+r+1,r−1)
M−r+1

)−r/2‖∂r
ηu‖χ(r+2σ+1,r),I .

A direct calculation gives
∥∥∂r

ηu
∥∥

χ(r+2σ+1,r),I
� c‖v‖Ar

σ (I ).

Then the conclusion follows immediately. �

In lemma 2.3, we presented a basic approximation result. But for approximating
partial differential equations on triangle, we need to consider another orthogonal projec-
tion in the following non-uniformly weighted space:

H̃ 1
χ(I ) = {

v: v ∈ L2
χ−1(I ) ∩ L̃2

χ(I ) and ∂ηv ∈ L2
χ(I )

}

equipped with the norm

‖v‖1,χ,∼,I = (‖∂ηv‖2
χ,I + ‖v‖2

χ−1,I

)1/2
.

The spaces 0H̃ 1
χ(I ) and H̃ 1

0,χ (I ) are the subspaces of H̃ 1
χ(I ) consisting of all functions

vanishing at η = 1 and η = ±1, respectively.
As a preparation, we first consider the orthogonal projection 0P̃ 1

M,σ : 0H̃ 1
χ(I ) →

0P̃M,σ (I ), defined by
(
∂η

(
0P̃ 1

M,σ v − v
)
, ∂ηφ

)
χ,I

+ (
0P̃ 1

M,σ v − v, φ
)
χ−1,I

= 0, ∀φ ∈ 0P̃M,σ (I ). (2.24)

For better description of approximation errors, we introduce the space

Br
σ (I ) = {

v: v is measurable on I and ‖v‖Br
σ (I ) < ∞}

, r ∈ N,

where

‖v‖Br
σ (I ) =

(
r∑

k=0

(σ + r − k − 1)2r−2k
∥∥(1 − η)k−r/2−1/2(1 + η)r/2∂k

ηv
∥∥2

χ,I

)1/2

.

Lemma 2.4. If v ∈ 0H̃ 1
χ(I ), ∂ηv ∈ Br−1

σ−1(I ), r, σ ∈ N and r, σ � 1, then
∥∥0P̃ 1

M,σ v − v
∥∥

1,χ,∼,I
� c

(
λ

(2σ+r−3,r−2)

M−r+2

)(1−r)/2‖∂ηv‖Br−1
σ−1(I ). (2.25)
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Proof. By the Hardy inequality (cf. [13]), we know that for any measurable function ψ

and real number d < 1,
∫

I

(
1

1 − η

∫ 1

η

ψ(ζ ) dζ

)2

(1 − η)d dη � 4

1 − d

∫

I

ψ2(η)(1 − η)d dη.

Due to v(1) = 0, we can take ψ = ∂ηv in the above inequality, and so for α < 1,

‖v‖χ(α−2,0),I � c‖∂ηv‖χ(α,0),I . (2.26)

Hence, by projection theorem and (2.26), we have that for any φ ∈ 0P̃M,σ (I ),
∥∥0P̃ 1

M,σ v − v
∥∥

1,χ,∼,I
� ‖φ − v‖1,χ,∼,I � c

∥∥∂η(φ − v)
∥∥

I
. (2.27)

Let PM,2σ−2,0 be the projector as in (2.6), and take

φ(η) =
∫ 1

η

χ(σ−1,0)(ζ )
(
PM,2σ−2,0

(
χ(1−σ,0)∂ζ v

))
(ζ ) dζ.

Clearly, φ(1) = 0, ∂ηφ ∈ P̃M,σ−1(I ) and φ ∈ 0P̃M,σ (I ). Therefore by lemma 2.1
and (2.27),

∥∥0P̃ 1
M,σ v − v

∥∥
1,χ,∼,I

� c
∥∥χ(σ−1,0)

(
PM,2σ−2,0

(
χ(1−σ,0)∂ηv

) − χ(1−σ,0)∂ηv
)∥∥

I

� c
∥∥PM,2σ−2,0

(
χ(1−σ,0)∂ηv

) − χ(1−σ,0)∂ηv
∥∥

χ(2σ−2,0),I

� c
(
λ

(2σ+r−3,r−2)

M−r+2

)(1−r)/2∥∥∂r−1
η

(
χ(1−σ,0)∂ηv

)∥∥
χ(2σ+r−3,r−1),I

.

Moreover,
∥∥∂r−1

η

(
χ(1−σ,0)∂ηv

)∥∥2
χ(2σ+r−3,r−1),I

=
∫

I

(
r−1∑

k=0

(−1)r−k−1Ck
r−1∂

k+1
η v(1 − η)−σ−r+k+2

r−k−3∏

j=−1

(σ + j)

)2

χ(2σ+r−3,r−1)(η) dη

� c

r−1∑

k=0

(σ + r − k − 3)2(r−k−1)
∥∥(1 − η)k−r/2(1 + η)(r−1)/2∂k+1

η v
∥∥2

χ,I

� c‖∂ηv‖Br−1
σ−1(I ).

This ends the proof. �

In the end of this section, we introduce the orthogonal projection P̃
1,0
M,σ : H̃ 1

0,χ (I ) →
P̃0

M,σ (I ), which will be used in section 4. It is defined by

(
∂η

(
P̃

1,0
M,σ v − v

)
, ∂ηφ

)
χ,I

+ (
P̃

1,0
M,σ v − v, φ

)
χ−1,I

= 0, ∀φ ∈ P̃0
M,σ (I ). (2.28)
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Lemma 2.5. If v ∈ H̃ 1
0,χ (I ), ∂η((1 + η)−1v) ∈ Br−1

σ−1(I ), r, s ∈ N and r, σ � 1, then
∥∥P̃

1,0
M,σ v − v

∥∥
1,χ,∼,I

� c
(
λ

(2σ+r−3,r−2)

M−r+1

)(1−r)/2∥∥∂η

(
(1 + η)−1v

)∥∥
Br−1

σ−1(I )
. (2.29)

Proof. Take

φ(η) = (1 + η)0P̃ 1
M−1,σ

(
(1 + η)−1v

) ∈ P̃0
M,σ (I ).

We have from projection theorem, (2.26) and lemma 2.4 that
∥∥P̃

1,0
M,σ v − v

∥∥
1,χ,∼,I

� ‖φ − v‖1,χ,∼,I

= ∥∥(1 + η)
(

0P̃ 1
M−1,σ

(
(1 + η)−1v

) − (1 + η)−1v
)∥∥

1,χ,∼,I

� c
∥∥0P̃ 1

M−1,σ

(
(1 + η)−1v

) − (1 + η)−1v
∥∥

1,χ,∼,I

� c
(
λ

(2σ+r−3,r−2)

M−r+1

)(1−r)/2∥∥∂η

(
(1 + η)−1v

)∥∥
Br−1

σ−1(I )
.

This completes the proof. �

Remark 2.1. Lemmas 2.3–2.5 will play important role in derivation of the main results
of this paper. But the technique in this section is also useful for other problems. For
instance, if the derivatives of orders up to integer σ − 1 � 0 of solutions of differential
equations vanish at η = 1, then it seems reasonable to approximate it by using the basis
{K(σ)

l (η)}. On the other hand, if the solution belongs to L2
χ(λ,0) (I ) and has the corner

singularity like (1 − η)σ , σ < 0, then we may use the basis functions K̃
(σ,λ)
l (η) :=

(1 − η)σJ
(2σ+λ,0)
l (η).

3. Orthogonal approximation on a triangle

In this section, we establish the main results on the orthogonal approxima-
tion on the reference triangle T , given in (1.2). We shall use the notations L2(T ),
Hr(T ), H r

0 (T ), (u, v)T , ‖v‖T , |v|r,T and ‖v‖r,T , etc.
Let Iξ = {ξ | |ξ | < 1}, Iη = {η | |η| < 1} and Q = Iξ ×Iη be the reference square.

By the variable transformation

ξ = 2x + y − 1

1 − y
, η = 2y − 1, (3.1)

the triangle T becomes the square Q. The mapping (3.1) collapses the top edge of Q

into the vertex (0, 1) of T . The Jacobian of this mapping is

J = ∂(ξ, η)

∂(x, y)
= 4

1 − y
= 8

1 − η
. (3.2)

Its inverse

J−1 = ∂(x, y)

∂(ξ, η)
= 1

8
(1 − η) = 1

4
(1 − y). (3.3)
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The orthogonal polynomials on the triangle T (cf. [7,16,18,19]) are of the form

gl,m(x, y) = 2l+3/2(1 − y)lJ
(0,0)
l

(
2x + y − 1

1 − y

)
J (2l+1,0)

m (2y − 1),

0 � l � L, 0 � m � M, 0 � l + m � M, L � M. (3.4)

By (3.1) and (3.4),

gl,m(x, y) = g̃l,m(ξ, η) = 2
√

2(1 − η)lJ
(0,0)
l (ξ)J (2l+1,0)

m (η). (3.5)

Therefore, by (3.3) and (3.5),
∫∫

T
gl,m(x, y)gl′,m′(x, y) dx dy

= 1

8

∫

Q

g̃l,m(ξ, η)g̃l′,m′(ξ, η)(1 − η) dξ dη

=
∫

Iξ

J
(0,0)
l (ξ)J

(0,0)

l′ (ξ) dξ

∫

Iη

J (2l+1,0)
m (η)J

(2l′+1,0)

m′ (η)(1 − η)l+l′+1 dη = δl,l′δm,m′ .

Moreover, it can be checked by an argument as in the proof of lemma 2 of [5] that the
set {gl,m} is complete in L2(T ). Thus, for any v ∈ L2(T ), we can write

v(x, y) =
∞∑

l=0

∞∑

m=0

v̂l,mgl,m(x, y), (3.6)

where

v̂l,m =
∫∫

T
v(x, y)gl,m(x, y) dx dy. (3.7)

3.1. L2(T )-orthogonal projection

Now, let

PL,M(T ) = span
{
gl,m(x, y) | 0 � l � L, 0 � m � M

}
,

P0
L,M(T ) = {

v | v ∈ PL,M(T ) and v|∂T = 0
}
.

We consider the most important orthogonal projection PL,M : L2(T ) → PL,M(T ), de-
fined by

(PL,Mv − v, φ)T = 0, ∀φ ∈ PL,M(T ). (3.8)

For simplicity and clarity of description of the main approximation result, we introduce
the following non-isotropic weighted space:

Hr,s(T ) = {
v | v is measurable on T and ‖v‖Hr,s (T ) < ∞}

, r, s ∈ N,
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with the norm

‖v‖Hr,s (T ) =
(

r∑

k=0

k∑

j=0

∥∥xjyr/2(1 − y)k−j−r/2∂j
x ∂k−j

y v
∥∥2

L2(T )

+∥∥xs/2(1 − x − y)s/2∂s
xv

∥∥2
L2(T )

)1/2

. (3.9)

Theorem 3.1. For any v ∈ Hr,s(T ), r, s ∈ N and r, s � 0,

‖PL,Mv − v‖T � c

((
M(M + L)

L2

)−r

+ L−s

)
‖v‖Hr,s (T ). (3.10)

Proof. The set {g̃l,m(ξ, η)} is mutually orthogonal on the square Q, associated with the
weight χ(η) = 1 − η. Moreover ‖g̃l,m‖T = 2

√
2. Let

u(ξ, η) = v

(
1

4
(1 + ξ)(1 − η),

1

2
(1 + η)

)
. (3.11)

Then

v(x, y) = u(ξ, η) =
∞∑

l=0

∞∑

m=0

ûl,mg̃l,m(ξ, η) (3.12)

where

ûl,m = 1

8

∫∫

Q

u(ξ, η)g̃l,m(ξ, η)(1 − η) dξ dη. (3.13)

Define the L2
χ(Q)-orthogonal projection as

P ∗
L,Mu(ξ, η) =

L∑

l=0

M∑

m=0

ûl,mg̃l,m(ξ, η).

Thanks to (3.1), (3.3), (3.5) and (3.7),

PL,Mv(x, y) = P ∗
L,Mu(ξ, η),

whence

v(x, y) − PL,Mv(x, y) = u(ξ, η) − P ∗
L,Mu(ξ, η). (3.14)

Thus by (3.3),

‖PL,Mv − v‖2
T = ∥∥u − P ∗

L,Mu
∥∥2

L2(Iξ ;L2
χ (Iη))

. (3.15)
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We now estimate the right side of (3.15). To do this, let P̃M,l be the L̃2
χ(Iη)-

orthogonal projection as in (2.21), and let

ul(η) =
∫

Iξ

u(ξ, η)J
(0,0)
l (ξ) dξ, l � 0.

Then we use (3.5), (3.12), (3.13) and the definition of P̃M,l to reach that

P ∗
L,Mu(ξ, η) =

L∑

l=0

M∑

m=0

(∫

Iη

(∫

Iξ

u(ξ, η)(1 − η)l+1J
(0,0)
l (ξ)J (2l+1,0)

m (η) dξ

)
dη

)

× (1 − η)lJ
(0,0)
l (ξ)J (2l+1,0)

m (η)

=
L∑

l=0

(
M∑

m=0

(∫

Iη

ul(η)K(l)
m (η)(1 − η) dη

)
K(l)

m (η)

)

J
(0,0)
l (ξ)

=
L∑

l=0

P̃M,lul(η)J
(0,0)
l (ξ).

On the other hand,

u(ξ, η) =
∞∑

l=0

ul(η)J
(0,0)
l (ξ).

Let PL,0,0 be the L2(Iξ )-orthogonal projection as in (2.6), and P̃M,l be the orthogonal
projection as before. Then by the above equality, (2.4), and lemmas 2.1 and 2.3,

∥∥u − P ∗
L,Mu

∥∥2
L2(Iξ ;L2

χ (Iη))
�

L∑

l=0

∥∥ul − P̃M,lul

∥∥2
L2

χ (Iη)
+

∞∑

l=L+1

‖ul‖2
L2

χ (Iη)

� c

L∑

l=0

(
λ

(2l+r+1,r−1)

M−r+1

)−r‖ul‖2
Ar

l (Iη) + ‖PL,0,0u − u‖2
L2(Iξ ;L2

χ (Iη))
.

(3.16)

So it remains to estimate the terms at the right side of (3.16).
We have from (3.1) that

∂x

∂ξ
= 1

2
(1 − y),

∂x

∂η
= x

2(y − 1)
,

∂y

∂ξ
= 0,

∂y

∂η
= 1

2
(3.17)

from which and (3.11),

∂s
ξ u = 2−s(1 − y)s∂s

xv, ∂r
ηu =

r∑

j=0

(−1)j 2−rCj
r xj (1 − y)−j ∂j

x ∂r−j
y v. (3.18)

Also by (3.1),

1 − ξ 2 = 4x(1 − x − y)(1 − y)−2. (3.19)
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Using lemma 2.1, (3.18) and (3.19), we obtain that

‖PL,0,0u − u‖2
L2(Iξ ;L2

χ (Iη))
� cL−2s

∥∥∂s
ξ u

∥∥2

L2
χ(s,s)

(Iξ ;L2
χ (Iη))

� cL−2s
∥∥xs/2(1 − x − y)s/2∂s

xv
∥∥2

L2(T )
. (3.20)

Next, for l � L,

l2
(
λ

(2l+r+1,r−1)

M−r+1

)−1 = l2(M − r + 1)−1(M + r + 2l + 1)−1 � cL2

M(M + L)
. (3.21)

By the above and the definition of the norm of space Ar
l (Iη),

(
λ

(2l+r+1,r−1)

M−r+1

)−r‖ul‖2
Ar

l (Iη)

= (
λ

(2l+r+1,r−1)

M−r+1

)−r
r∑

k=0

∫

Iη

(l + r − k − 1)2r−2k(1 − η)2k−r+1(1 + η)r
(
∂k
ηul

)2
dη

� c
(
l2

(
λ

(2l+r+1,r−1)

M−r+1

)−1
)r

r∑

k=0

∫

Iη

(1 − η)2k−r+1(1 + η)r
(
∂k
ηul

)2
dη

� c

(
M(M + L)

L2

)−r r∑

k=0

∫

Iη

(1 − η)2k−r+1(1 + η)r
(
∂k
ηul

)2
dη.

Therefore, we use (3.1), (3.2), (3.18) and lemma 2.1 to obtain that

L∑

l=0

(
λ

(2l+r+1,r−1)

M−r+1

)−r‖ul‖2
Ar

l (Iη)

� c

(
M(M + L)

L2

)−r r∑

k=0

∫

Iη

(1 − η)2k−r+1(1 + η)r

L∑

l=0

(
∂k
ηul

)2
dη

= c

(
M(M + L)

L2

)−r r∑

k=0

∫

Iη

(1 − η)2k−r+1(1 + η)r
∥∥PL,0,0∂

k
ηu

∥∥2
L2(Iξ )

dη

� c

(
M(M + L)

L2

)−r r∑

k=0

∫

Iη

(1 − η)2k−r+1(1 + η)r
∥∥∂k

ηu
∥∥2

L2(Iξ )
dη

� c

(
M(M + L)

L2

)−r r∑

k=0

k∑

j=0

∫∫

T
x2j yr(1 − y)2k−r−2j

(
∂j
x ∂k−j

y v
)2

dx dy

= c

(
M(M + L)

L2

)−r r∑

k=0

k∑

j=0

∥∥xjyr/2(1 − y)k−j−r/2∂j
x ∂k−j

y v
∥∥2

L2(T )
. (3.22)

Finally, a combination of (3.15), (3.16), (3.20) and (3.22) leads to the desired result. �
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Remark 3.1. We can see from theorem 3.1 that the best approximation result is obtained
as long as M = O(L1+s/(2r)), and in this case,

‖PL,Mv − v‖T � cL−s‖v‖Hr,s (T ),

or equivalently,

‖PL,Mv − v‖T � cM−2rs/(2r+s)‖v‖Hr,s (T ).

In other words, for M = O(L1+α), α > 0, we have

‖PL,Mv − v‖T � cM−2αr/(α+1)‖v‖Hr,2αr (T ). (3.23)

Remark 3.2. The previous statements give some general approximation results. In prac-
tice, the convergence rate depends on the asymptotic behavior at the collapsed ver-
tex (0, 1), of the approximated function v. To show this, let

x = ρ cos θ, y = ρ sin θ + 1.

We consider ρσ -type function as in [3], i.e., v ∼ ρσ as ρ → 0. By the definition (3.9),
the norm ‖v‖Hr,2r (T ) is composed of two parts. A calculation shows that

xjyr/2(1 − y)k−j−r/2∂j
x ∂k−j

y v ∼ ρσ−r/2, xr(1 − x − y)r∂2r
x v ∼ ρσ .

If ‖v‖Hr,2r (T ) is finite, then ρ2σ−r+1 = o(1/ρ). In other words, r � 2σ + 2 − ε, ε being
any arbitrary positive constant. Therefore by (3.23), for ρσ -type function,

‖PL,Mv − v‖T � c∗M−r , r � 2σ + 2 − ε.

Obviously, this convergence rate is at least the same as the recent approximation result
on a square given in [3,12], for which the convergence rate is 2σ +1. This fact shows the
efficiency of the orthogonal approximation by using the basis functions defined by (3.4).

3.2. Numerical results

In the end of this section, we present some numerical results. We take the test
function

v(x, y) = (1 − y)β sin(aπx) cos(bπy), (x, y) ∈ T , (3.24)

where a, b and β are some constants specified below.
In order to compute PL,Mv, we need a quadrature formula on T . As sug-

gested in [16], in the square Q, we can use the Gauss–Legendre–Lobatto interpola-
tion nodes {ξl}Ll=0 in the ξ -direction, and the Gauss–Jacobi–Radau interpolation nodes
{ηm}Mm=0 (η0 = −1) in the η-direction, respectively, with respect to the Jacobi weight
function χ(1,0). Then we use (3.1) to transform them into the nodes in the triangle T , i.e.,

xlm = 1

4
(1 + ξl)(1 − ηm), ym = 1

2
(1 + ηm), 0 � l � L, 0 � m � M, L � M.

(3.25)
Accordingly, we can define the corresponding discrete L2-norm on T .
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Figure 1. The coefficients in terms of the basis (3.4).

Figure 2. Discrete L2-error vs. α.

As we know, the errors between PL,Mv and v are usually dominated by the leading
truncated coefficient v̂L+1,M+1 (see (3.7)). We now take β = 2, a = 5 and b = 6
in (3.24). We plot in figure 1 the coefficients v̂lm, 0 � l � 32, 0 � m � 64, in terms of
the basis (3.4). We see that v̂lm decay rapidly as l and m increase, which demonstrate that
very accurate approximation might be achieved by only using suitably small modes L

and M .
We now examine the convergence rate predicted in theorem 3.1. To do this, let L =

24 and M = Lα. We take a = b = β = 2 in (3.24), and plot in figure 2 the discrete L2-
errors between PL,Mv and v vs. the power α. It indicates that the better approximations
can be obtained with M = Lα, α > 1, which coincide well with the theoretical result
in theorem 3.1. In particular, β = 2 implies r = s = ∞ in remark 3.1. Thus the best
approximation is valid for α ∼ 1.5. The numerical results confirm this prediction.
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Figure 3. Discrete L2-error vs. L.

Finally, we use the basis (3.4) to approximate functions with corner singularities
on the triangle T . We take a = b = 1 and β = 0.5, 1.5, 2.5 in (3.24). In these cases,
the derivatives of v(x, y) have singularities when y → 1. According to remark 3.2,
the expected convergence rate is Lε−2β−2, which is somehow similar to the numerical
results (with M = L1.2) illustrated in figure 3.

4. Application to a model equation

As an example of applications, we now consider a model problem, and show how
to apply the Dubiner-type orthogonal approximation to partial differential equations on
a triangle. Indeed, it is of great interests to consider nonlinear problems on complex
geometries, which will be one of the main subjects in our forthcoming paper. Here we
focus on the Poisson equation on the reference triangle:

{−�U(x, y) = f (x, y), (x, y) ∈ T ,

U(x, y) = g(x, y), (x, y) ∈ ∂T ,
(4.1)

where f and g are given functions. For simplicity of statements, we assume that g ≡ 0.
Otherwise, we make the variable transformation

U(x, y) = V (x, y) + (1 − x − y)g(x, 0) + (1 − x − y)(1 − y)−1g(0, y)

+ x(1 − y)−1g(x, y) − (1 − x − y)g(0, 0).

Then V (x, y) = 0 on ∂T . Indeed, the convergence analysis is the same no mat-
ter U(x, y) vanishes on the boundary or not. A weak formulation of (4.1) with g ≡ 0 is
to find U(x, y) ∈ H 1

0 (T ) such that

(∇U, ∇v)T = (f, v)T , ∀v ∈ H 1
0 (T ). (4.2)

If f ∈ H−1(T ), then we know from the Lax–Milgram lemma that (4.2) has a unique
solution U ∈ H 1

0 (T ).
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The spectral scheme for (4.2) is to find uL,M(x, y) ∈ P0
L,M(T ) such that

(∇uL,M, ∇φ)T = (f, φ)T , ∀φ ∈ P0
L,M(T ). (4.3)

This approximate problem is also unisolvent, and we have the following result on its
convergence:

Theorem 4.1. If U ∈ H 1
0 (T ) ∩ Hr,s∗ (T ), r, s ∈ N and r, s � 1, then

‖uL,M − U‖1,T � c

((
M(M + L)

L2

)1−r

+ L1−s

)
‖v‖H

r,s∗ (T ). (4.4)

In particular, if M = O(L1+(s−1)/(2r−2)), then

‖uL,M − U‖1,T � cL1−s‖U‖H
r,s∗ (T ). (4.5)

Here, the space Hr,s∗ (T ) and its norm will be specified below.

To prove the above convergence result, we need some approximation results
in H 1(T ), which can be applied to numerical analysis of various problems on triangles
or on complex domains.

Firstly, we have the following Poincaré inequality on T :

Lemma 4.1. If v ∈ H 1(T ) and v(0, y) = 0 for all y ∈ (−1, 1), then

‖v‖L2(T ) � 2‖∇v‖L2(T ). (4.6)

Proof. Let u(ξ, η) be the same as in (3.11). Clearly, u(−1, η) = 0 for all η ∈ Iη, and

u2(ξ, η)(1 − ξ) =
∫ ξ

−1
∂ζ

(
u2(ζ, η)(1 − ζ )

)
dζ

= −
∫ ξ

−1
u2(ζ, η) dζ + 2

∫ ξ

−1
u(ζ, η)∂ζu(ζ, η)(1 − ζ ) dζ.

By the above equality and the Cauchy inequality,
∫ ξ

−1
u2(ζ, η) dζ � 2

(∫ ξ

−1
u2(ζ, η) dζ

)1/2(∫ ξ

−1

(
∂ζu(ζ, η)

)2
(1 − ζ )2 dζ

)1/2

.

This implies that
∫

Iξ

u2(ξ, η) dξ � 16
∫

Iξ

(
∂ξu(ξ, η)

)2
dξ. (4.7)

On the other hand, we use (3.1), (3.3) and (3.17) to verify that

‖∂xv‖2
L2(T )

=
∫∫

Q

(
∂ξu(ξ, η)

4

1 − η

)2 1 − η

8
dξ dη =

∫∫

Q

(
∂ξu(ξ, η)

)2 2

1 − η
dξ dη.

(4.8)
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Since

1 − η

2
� 2

1 − η
, ∀η ∈ Iη,

we use (3.2), (3.3), (4.7) and (4.8) to deduce that

‖v‖2
L2(T )

= 1

8

∫∫

Q

u2(ξ, η)(1 − η) dξ dη � 2
∫∫

Q

(
∂ξu(ξ, η)

)2
(1 − η) dξ dη

�
∫∫

Q

(
∂ξu(ξ, η)

)2 8

1 − η
dξ dη = 4‖∂xv‖2

L2(T )
� 4‖∇v‖2

L2(T )
.

This ends the proof. �

Remark 4.1. The same result as in lemma 4.1 holds, provided that v = 0 at least on one
of edges of the triangle T .

Next, we consider the orthogonal projection P
1,0
L,M : H 1

0 (T ) → P0
L,M(T ), such that

for any v ∈ H 1
0 (T ),

(∇(
P

1,0
L,Mv − v

)
, ∇φ

)
T = 0, ∀φ ∈ P0

L,M(T ). (4.9)

We specify the space used in theorem 4.1:

Hr,s
∗ (T ) = {

v | v is measurable on T and ‖v‖H
r,s∗ (T ) < ∞}

, r, s ∈ N,

equipped with the norm

‖v‖H
r,s∗ (T ) =

(
r∑

k=1

k∑

j=0

j∑

l=0

(∥∥xlyj−k+r/2−3/2(1 − y)k−l−r/2−1∂l
x∂

j−l
y v

∥∥2
L2(T )

+ ∥∥xl−1yj−k+r/2−3/2(1 − y)k−r−l(x∂x + 1)∂l
x∂

j−l
y v

∥∥2
L2(T )

)

+ ∥∥x(s−1)/2(1 − x − y)(s−1)/2(1 − y)1−s

(
x

y − 1
∂x + ∂y

)

× (
(1 − y)s−1∂s−1

x v
)∥∥2

L2(T )

+ ∥∥x(s−1)/2(1 − x − y)(s−1)/2∂s
xv

∥∥2
L2(T )

)1/2

. (4.10)

Lemma 4.2. For any v ∈ H 1
0 (T ) ∩ Hr,s∗ (T ) r, s ∈ N and r, s � 1,

∥∥P
1,0
L,Mv − v

∥∥
1,T � c

((
M(M + L)

L2

)1−r

+ L1−s

)
‖v‖H

r,s∗ (T ). (4.11)
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Proof. By lemma 4.1 and projection theorem, for any φ ∈ P0
L,M(T ),

∥∥P
1,0
L,Mv − v

∥∥
1,T �

√
5
∥∥∇(

P
1,0
L,Mv − v

)∥∥
T �

√
5
∥∥∇(φ − v)

∥∥
T . (4.12)

Let u(ξ, η) be the same as in (3.11), and

ψ(ξ, η) = φ

(
1

4
(1 + ξ)(1 − η),

1

2
(1 + η)

)
.

By virtue of (3.1) and (3.17),

∂x(φ − v) = 4

1 − η
∂ξ (ψ − u).

Using (3.1) again yields

∂y(φ − v) = 2(1 + ξ)

1 − η
∂ξ (ψ − u) + 2∂η(ψ − u).

So a direct calculation with (3.3) gives

∥∥∇(φ − v)
∥∥2
T = 1

2

∫∫

Q

(
∂ξ

(
ψ(ξ, η) − u(ξ, η)

))2 4 + (1 + ξ)2

1 − η
dξ dη

+ 1

2

∫∫

Q

(
∂η

(
ψ(ξ, η) − u(ξ, η)

))2
(1 − η) dξ dη

+
∫∫

Q

∂ξ

(
ψ(ξ, η) − u(ξ, η)

)
∂η

(
ψ(ξ, η) − u(ξ, η)

)
(1 + ξ) dξ dη

� c
(∥∥∂ξ (ψ − u)

∥∥2
L2(Iξ ;L2

χ−1 (Iη))
+ ∥∥∂η(ψ − u)

∥∥2
L2(Iξ ;L2

χ (Iη))

)
. (4.13)

We now choose ψ . Let P
1,0
L be the H 1

0 (Iξ )-orthogonal projection as in (2.16), and P̃
1,0
M,L

be the orthogonal projection as in (2.28). Take

ψ(ξ, η) = (
P

1,0
L ◦ P̃

1,0
M,Lu

)
(ξ, η).

We obtain from lemmas 2.2 and 2.5 that
∥∥∂ξ (ψ − u)

∥∥2
L2(Iξ ;L2

χ−1 (Iη))

= ∥∥∂ξ

(
P

1,0
L ◦ P̃

1,0
M,Lu − u

)∥∥
L2(Iξ ;L2

χ−1 (Iη))

�
∥∥∂ξ

(
P

1,0
L u − u

)∥∥
L2(Iξ ;L2

χ−1 (Iη))
+ ∥∥∂ξP

1,0
L

(
P̃

1,0
M,Lu − u

)∥∥
L2(Iξ ;L2

χ−1 (Iη))

� c
(
L1−s

∥∥∂s
ξ u

∥∥
L2

χ(s−1,s−1)
(Iξ ;L2

χ−1 (Iη))
+ ∥∥∂ξ

(
P̃

1,0
M,Lu − u

)∥∥
L2(Iξ ;L2

χ−1 (Iη))

)

� c
(
L1−s

∥∥∂s
ξ u

∥∥
L2

χ(s−1,s−1)
(Iξ ;L2

χ−1 (Iη))

+ (
λ

(2L+r−3,r−2)
M−r+1

)(1−r)/2∥∥∂ξ∂η

(
(1 + η)−1u

)∥∥
L2(Iξ ;Br−1

L−1(Iη))

)
. (4.14)
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Similarly, by lemmas 2.2 and 2.5,

∥∥∂η(ψ − u)
∥∥2

L2(Iξ ;L2
χ (Iη))

= ∥∥∂η

(
P

1,0
L ◦ P̃

1,0
M,Lu − u

)∥∥
L2(Iξ ;L2

χ (Iη))

�
∥∥∂η

(
P̃

1,0
M,Lu − u

)∥∥
L2(Iξ ;L2

χ (Iη))
+ ∥∥∂ηP̃

1,0
M,L

(
P

1,0
L u − u

)∥∥
L2(Iξ ;L2

χ (Iη))

� c
((

λ
(2L+r−3,r−2)

M−r+1

)(1−r)/2∥∥∂η

(
(1 + η)−1u

)∥∥
L2(Iξ ;Br−1

L−1(Iη))

+∥∥∂η

(
P

1,0
L,0,0u − u

)∥∥
L2(Iξ ;L2

χ (Iη))

)

� c
((

λ
(2L+r−3,r−2)

M−r+1

)(1−r)/2∥∥∂η

(
(1 + η)−1u

)∥∥
L2(Iξ ;Br−1

L−1(Iη))

+ L1−s
∥∥∂s−1

ξ ∂ηu
∥∥

L2
χ(s−1,s−1)

(Iξ ;L2
χ (Iη))

)
. (4.15)

Thus it remains to estimate the upper-bounds of the terms at the right sides of (4.14)
and (4.15). To this end, we first use (3.2), (3.18) and (3.19) to obtain that

∥∥∂s
ξ u

∥∥2
L2

χ(s−1,s−1)
(Iξ ;L2

χ−1 (Iη))
= 1

2

∫∫

T
xs−1(1 − x − y)s−1

(
∂s
xv

)2
dx dy. (4.16)

Next, (3.17) and (3.18) imply that

∂s−1
ξ ∂ηu = 1

2

(
x

y − 1
∂x + ∂y

)(
∂s−1
ξ u

) = 1

2s

(
x

y − 1
∂x + ∂y

)(
(1 − y)s−1∂s−1

x v
)
.

The above with (3.2) and (3.18) leads to

∥∥∂s−1
ξ ∂ηu

∥∥2
L2

χ(s−1,s−1)
(Iξ ;L2

χ (Iη))

= 2
∫∫

T
xs−1(1 − x − y)s−1(1 − y)2−2s

((
x

y − 1
∂x + ∂y

)

×(
(1 − y)s−1∂s−1

x v
))2

dx dy. (4.17)

Further, by the definition of Br−1
L−1(Iη),

∥∥∂η

(
(1 + η)−1u

)∥∥2
L2(Iξ ;Br−1

L−1(Iη))

=
r∑

k=1

∫∫

Q

(L + r − k − 2)2r−2k(1 − η)2k−r−1(1 + η)r−1

×(
∂k
η

(
(1 + η)−1u

))2
dξ dη. (4.18)
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We can use (3.18) to check that

∂k
η

(
(1 + η)−1u

) =
k∑

j=0

(−1)k−jC
j

k (1 + η)−k+j−1∂j
η u

=
k∑

j=0

j∑

l=0

(−1)k−j+l2−k−1Cl
kC

l
jy

j−k−1(1 − y)−lxl∂l
x∂

j−l
y v. (4.19)

On use of (3.2), (4.18) and (4.19), we assert that
∥∥∂k

η

(
(1 + η)−1u

)∥∥2
L2(Iξ ;Br−1

L−1(Iη))

� cL2r−2
r∑

k=1

k∑

j=0

j∑

l=0

∫∫

T
x2ly2j−2k+r−3(1 − y)2k−r−2l−2

(
∂l
x∂

j−l
y v

)2
dx dy.

(4.20)

Thanks to ∂ξ∂
k
η ((1 + η)−1u) = 1

2(1 − y)∂x∂
k
η ((1 + η)−1u), we follow the same line as in

the previous paragraph to reach that
∥∥∂ξ∂

k
η

(
(1 + η)−1u

)∥∥2
L2(Iξ ;Br−1

L−1(Iη))

� cL2r−2
r∑

k=1

k∑

j=0

j∑

l=0

∫∫

T
x2l−2y2j−2k+r−3(1 − y)2k−r−l

(
(x∂x + 1)∂l

x∂
j−l
y v

)2
dx dy.

(4.21)

In addition,

L2
(
λ

(2L+r−3,r−2)

M−r+1

)−1 � cL2

M(M + L)
. (4.22)

Finally, substituting (4.16), (4.17) and (4.20)–(4.22) into (4.14) and (4.15), we use (4.12)
and (4.13) to reach the desired result. �

Proof of theorem 4.1. We have from (4.2), (4.3) and (4.9) that
(∇(uL,M − U), ∇φ

)
T = (∇(

uL,M − P
1,0
L,MU

)
, ∇φ

)
T = 0, ∀φ ∈ P0

L,M,

which implies uL,M = P
1,0
L,MU . Then the conclusion of theorem 4.1 follows from

lemma 4.2 immediately. �

Numerical results

We next present some numerical results for (4.1), by using the scheme (4.3). We
take the test solution

U(x, y) = xy
(
ex+y − e

)
, (x, y) ∈ T .

In figure 4, we plot the maximum errors and L2-errors (in log scale) against various L

(with M = L1.2), which indicates an exponential decay of the errors, as predicted by our
theoretical analysis.



B.-y. Guo, L.-L. Wang / Spectral method on a triangle 495

Figure 4. Maximum and L2-errors vs. L.

5. Concluding discussions

In this work, we considered the orthogonal approximation on a triangle by using
the base functions (3.4). We derived some basic results on the convergence rate, which
showed the efficiency of this approximation, and played an important role in the numer-
ical analysis of spectral methods on a triangle. A more interesting problem is how to
analyze the corresponding interpolation on triangles, which are related to the analysis of
p-version finite element method and triangle spectral element method (see [16,18,19]).
The main difficulty of that work is how to build up some approximation results on the
interpolation on a triangle.

Another important problem is the spectral element method using orthogonal ap-
proximations on triangles. The key point is how to match boundary conditions between
elements. It is possible to modify the construction, by building a new basis, includ-
ing vertex functions, edge functions and internal functions (bubbles), see [5]. But the
convergence analysis of such approach is still open.
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