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bounds of errors in the h–p version of boundary element solutions on quasiuniform meshes
for elliptic problems on polygons. Both lower bound and upper bound are optimal in h and
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1. Introduction

In this paper we prove asymptotically exact upper and lower bounds for the ap-
proximation error of the h–p version of the boundary element method (BEM) with qua-
siuniform meshes in two dimensions. More precisely, we analyze elliptic problems on
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polygonal domains whose solutions exhibit typical corner singularities. Our analysis is
done within the framework of the Jacobi-weighted Besov spaces which has been already
proved the appropriate tool to obtain optimal estimates for the p version of the BEM
for this type of problems, see [15]. Here we incorporate the mesh dependence into the
analysis and provide optimal estimates for any combination of mesh size and polynomial
degree, for the case of quasiuniform meshes and uniform polynomial degrees.

The p version of the Galerkin method (finite elements for differential equations
and boundary elements for boundary integral equations) uses a fixed mesh and improves
the approximation of the solution by considering piecewise polynomial functions of in-
creasing degrees. The h version is based on mesh refinement and piecewise polynomials
of low, fixed degrees. The h–p version combines mesh refinement with increase of
degrees. Let us recall the main theoretical achievements for the h–p version since its
beginning. For details specific to the p version we refer to [15].

A thorough analysis of the p and h–p versions started with the series of publi-
cations by Gui and Babuška [10–12], for the finite element method (FEM) in one di-
mension. They considered the approximation of typical singularities xγ , and proved
optimal upper and lower bounds of error in the finite element solutions in H 1 and L2

norms. Problems in two dimensions and their approximations by the h–p version of
FEM with quasiuniform meshes are analyzed by Babuška and Suri [6] after improving
the approximation results of the p version of FEM [7]. They gave an upper bound of
error in FE approximation for elliptic problems with singularities |x|γ logν |x| (|x| = r

is the distance to the origin), which is actually of order O(h−γ p−2γ logν(p/h)). This
upper bound is optimal for noninteger γ , and it can be sharper for integer γ and ν > 0.
The argument was brought to the h–p version of BEM with quasiuniform meshes by
Stephan and Suri after introducing the p version of BEM [21], but the estimate on the
upper bound of error in the BE solution, measured in H̃ 1/2 norm, is not as sharp as in
the FE solution, and a rate of O(h−γ p−2γ+ε), ε > 0 arbitrary was claimed for ν = 0
in [22]. Since then, no further improvement on the upper bound for BEM has been seen.
Meanwhile, the lower bounds of the error in the h–p FE and BE solutions for elliptic
problems with the singularities of |x|γ logν |x|-type has not been addressed up to now.
Consequently, the optimal convergence of the h–p version of BEM as well as FEM has
not been mathematically established.

The h–p version with quasiuniform meshes is, from methodology and approxima-
tion theory, the p version on scaled meshes. The approach of the p version gives the
p dependence in the approximation errors, and a proper scaling argument will reveal
fully the information of the h dependence. Hence, the analysis for the best approxi-
mation of the h–p version with quasiuniform meshes is not feasible unless the optimal
convergence of the p version is established. Fortunately, the best a-priori error estima-
tion for the p version has been recently established, we are now ready to pursue the
best a-priori error estimation for the h–p version. In the last few years, with a series
of papers by Babuška and Guo [2–5], a new analysis of the p version has started in the
framework of the Jacobi-weighted Besov spaces. The approximation theory of FEM in
two dimensions in this new mathematical framework is systematically developed in these
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papers, which demonstrates that Jacobi-weighted Besov spaces is the most appropriate
tool to obtain optimal upper and lower bounds when dealing with singular solutions
on polygons. This framework has been generalized to the p version of FEM in three
dimensions [13] and the p and h–p version of BEM. In [15] we showed that the Jacobi-
weighted Besov spaces serve equally well for the analysis of polynomial approximations
of singular functions in the spaces H̃ 1/2 and H̃−1/2, the energy spaces of hypersingular
and weakly singular integral operators, respectively. The Jacobi projection and interpo-
lation have been developed recently in the spectral methods as well, see, e.g., [16–18]
and references therein. In this paper we will further generalize the results and method-
ology to the h–p version with quasiuniform meshes. The generalization for singular
problems without logarithmic terms can be easily done by a simple scaling argument,
but the generalization for those with logarithmic terms are not trivial, in particular, for
the lower bounds of the approximation error of the Jacobi projection.

The h–p version of FEM and BEM with quasiuniform meshes is quite different
from the one with geometric meshes, in the methodology and approximation theory.
We will not elaborate numerous progresses on the h–p version of FEM and BEM with
geometric meshes in the past two decades.

The rest of the paper is organized as follows. In section 2 we shall present the
Jacobi-weighted Besov and Sobolev spaces and recall results on the p version of BEM,
which we have derived in [15] and will be used later. In section 3, we carry out asymp-
totic error analysis for the Jacobi projection of singular function xγ logν x on Pp(Jh),
where Pp(Jh) is a set of polynomials of degree p on a scaled interval Jh = (0, h), γ > 0
and integer ν � 0. In section 4, the approximation results to these singular functions are
applied to the h–p version BE solution on quasiuniform meshes for elliptic problems
on polygonal domains, which leads to the optimal lower and upper bounds of approxi-
mation error in the h–p version BE solution with quasiuniform meshes, and proves the
optimal convergence. In the last section, we will make some concluding remarks.

2. Jacobi-weighted Besov spaces and preliminary results

In the following I denotes the interval (−1, 1). Let α � 0 be an integer and
β > −1 a real number. We introduce a weight function with parameters α and β by

Wα,β(x) = (
1 − x2

)α+β

and define the spaces Hk,β(I ) for integers k � 0 as the closure of C∞ functions with
respect to the weighted norm

‖u‖Hk,β(I ) =
(

k∑

α=0

∫

I

∣
∣u(α)

∣
∣2

Wα,β(x) dx

)1/2

=
(

k∑

α=0

∫

I

∣
∣u(α)

∣
∣2(

1 − x2
)α+β

dx

)1/2

.

The semi-norm involving only the highest derivative u(k) is denoted by |u|Hk,β (I ).
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For real s > 0 the space Hs,β(I ) is defined by interpolation: Let l and k be two
integers with l < k and s = (1 − θ)l + θk for θ ∈ (0, 1). Then

Hs,β(I ) = (
Hl,β(I ), Hk,β(I )

)

θ,2

with norm

‖u‖Hs,β(I ) =
(∫ ∞

0

(
t−θK(t, u)

)2 dt

t

)1/2

, (2.1)

where

K(t, u) = inf
u=v+w

(‖v‖Hl,β (I ) + t‖w‖Hk,β (I )

)
. (2.2)

The spaces Hs,β(I ) are referred to as Jacobi-weighted Sobolev spaces. Interpolating
differently we obtain the so-called Jacobi-weighted Besov spaces,

Bs,β(I ) = (
Hl,β(I ), Hk,β(I )

)

θ,∞
with norm

‖u‖Bs,β (I ) = sup
t>0

t−θK(t, u),

where the functor K(t, u) is defined in (2.2). To analyze the best approximability of the
singular function of xγ logν x-type, we need to introduce the modified Jacobi-weighted
Besov spaces,

Bs,β
ν (I ) = (

Hl,β(I ), Hk,β(I )
)

θ,∞,ν

with norm

‖u‖
B

s,β
ν (I )

= sup
t>0

t−θ

(1 + |log t |)ν
K(t, u).

For ν = 0 we also write

Bs,β
ν (I ) = Bs,β(I ).

The definitions of the above Jacobi-weighted spaces in one dimension are quoted
directly from [15]. It is worth indicating that the spaces Hs,β(I ) and Bs,β(I ) are exact
interpolation spaces and that the spaces Bs,β

ν (I ) with ν > 0 are not exact, but only
uniform. For the substantial difference between two types of interpolation spaces we
refer to [2] and [8].

In the boundary element analysis, the approximation errors are measured in the
norms of H̃ 1/2(I ) and H 1/2(I ),

H 1/2(I ) = (
L2(I ), H 1(I )

)

1/2,2, H̃ 1/2(I ) = (
L2(I ), H 1

0 (I )
)

1/2,2.

Here H̃ 1/2(I ) is the energy space for hypersingular operators, H̃−1/2(I ) and H−1/2(I )

are the dual spaces of H 1/2(I ) and H̃ 1/2(I ), in which one analyzes the error for weakly
singular operators. Hence, it is essential to explore the relation between these spaces and
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the corresponding Chebyshev-weighted spaces, which are Jacob-weighted Besov spaces
with β = −1/2. To this end, we introduce the space

H
1,−1/2
0 (I ) = {

u ∈ H 1,−1/2(I ) | u(±1) = 0
}
,

and the interpolation space

H̃ 1/2,−1/2(I ) = (
H 0,−1/2(I ), H

1,−1/2
0 (I )

)

1/2,2

with norm analogously to (2.1) for

K(t, u) = inf
u=v+w,v∈H 0,−1/2(I ),w∈H

1,−1/2
0 (I )

(‖v‖H 0,−1/2(I ) + t‖w‖H 1,−1/2(I )

)
.

The following two propositions indicate the equivalence between the usual Sobolev
spaces and the Chebyshev-weighted spaces.

Proposition 2.1 ([15, Theorem 2.2]).

H 1/2,−1/2(I ) ∼= H 1/2(I ), H̃ 1/2,−1/2(I ) ∼= H̃ 1/2(I ),

i.e. there exist constants c1, c2 > 0 such that

c1‖u‖H 1/2(I ) � ‖u‖H 1/2,−1/2(I ) � c2‖u‖H 1/2(I ) (2.3)

and

c1‖u‖H̃ 1/2(I ) � ‖u‖H̃ 1/2,−1/2(I ) � c2‖u‖H̃ 1/2(I ). (2.4)

Let us consider a function û(ξ) = u(cos ξ) with cosine expansion

û(ξ) =
∞∑

k=0

ak cos(kξ). (2.5)

This leads to the Chebyshev expansion of u ∈ H 0,−1/2(I ),

u(x) =
∞∑

k=0

akTk(x) (2.6)

with Tk(x) = cos(k arccos x). By Corollary 2.1 in [15] there holds

‖u‖2
H 1/2(I )

∼= ‖u‖2
H 1/2,−1/2(I )

∼=
∞∑

k=0

a2
k

(
1 + k2

)1/2
. (2.7)

Finally let us recall the technical and approximation results for singular functions of the
type

u(x) = xγ logν(x)χ(x), x ∈ J := (0, 1), (2.8)

with γ > 0 and integer ν � 0. Here, χ ∈ C∞(J ) with χ(x) = 1 for 0 < x < δ0/2 and
χ(x) = 0 for δ0 < x < 1 where δ0 < 1 is a positive constant.
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In the case ν = 0 we have the following Chebyshev expansion of u.

Proposition 2.2 ([15, Lemma 5.1]). For the function u(x) = (1 + x)γ with γ > 0, let
∑∞

k=0 ak(γ )Tk be its Chebyshev expansion. Then there holds for k > 0

ak(γ ) = 2γ+1

π
�(1/2)�(γ + 1/2)

γ (γ − 1) · · · (γ − k + 1)

�(γ + k + 1)
, (2.9)

and for noninteger γ

∣
∣ak(γ )

∣
∣ ∼ k−2γ−1

(

1 + O

(
1

k

))

(k → ∞).

In the case ν > 0 we have the following Chebyshev expansion.

Proposition 2.3 ([15, Lemma 5.1]). For the function u(x) = (1 + x)γ logν(1 + x) with
γ > 0 and ν > 0, let

∑∞
k=0 bk(γ )Tk be its Chebyshev expansion. Then there holds for

k > 0

bk = a
(ν)
k (γ )Tk,

where a
(ν)
k (γ ) denotes the νth derivative of ak(γ ) with respect to γ . For noninteger γ ,

∣
∣bk(γ )

∣
∣ ∼ k−2γ−1 logν k

(
1 + O

(
log−1 k

))
,

and for integer γ > 0 and ν � 1
∣
∣bk(γ )

∣
∣ ∼ k−2γ−1 logν−1 k

(
1 + O

(
log−1 k

))
.

One of the main results of [15] are the following optimal upper and lower bounds
for polynomial approximation of singular functions.

Proposition 2.4. (i) Let u be given by (2.8). Then, for p > 0, there exists a polynomial
ψ of degree p such that

‖u − ψ‖H̃ 1/2(J ) � Cp−2γ .

(ii) Let v = (1 + x)γ logν(1 + x) with γ > 0, ν > 0. Then, for any polynomial φ

of degree p there holds

‖v − φ‖H 1/2(J ) � cp−2γ (1 + log p)ν∗
.

Here, the positive constants C and c are independent of p, and ν∗ = ν if γ is noninteger
or ν = 0 and ν∗ = ν − 1 if γ is integer and ν � 1.

Proof. For the existence of a polynomial ψ satisfying the upper bound see theorem 4.4
in [15]. The lower bound for the approximation of v is given by [15, Theorem 5.2]. �
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3. Asymptotic error analysis for Jacobi projection of singular functions of
xγ logν x on a scaled interval

Let

u = xγ logν x, x ∈ Jh = (0, h),

with real γ > 0 and integer ν � 0, and let Pp(Jh) be a set of polynomials of degree � p

on Jh, let uh,p denote its Jacobi projection on Pp(Jh) with the weight β = −1/2, which
is called the Chebyshev projection as well. Then we have the following asymptotics of
the approximation error of Jacobi projections.

Theorem 3.1. Let u = xγ , and let uh,p be its Chebyshev projection on Pp(Jh). Then
for noninteger γ > 0

‖u − uh,p‖H 1/2(Jh)
∼= (h/2)γ p−2γ . (3.1)

Hereafter ∼= means equivalence with constant independent of h and p.

Proof. Introducing a linear mapping

x = (1 + ξ)h

2
, ξ ∈ (−1, 1), (3.2)

we define a function ũ(ξ) = u(
h(1+ξ)

2 ) = (h/2)γ (1 + ξ)γ . Due to proposition 2.2, ũ(ξ)

has a Chebyshev expansion

ũ(ξ) =
∞∑

k=0

ck(γ )Tk(ξ)

with ck(γ ) = (h/2)γ ak(γ ), where the coefficients ak(γ ) are given in (2.9), and

∣
∣ck(γ )

∣
∣ ∼ (h/2)γ k−2γ−1

(

1 + O

(
1

k

))

(k → ∞).

Therefore,

u = xγ =
∞∑

k=0

ck(γ )Tk

(
2

h
x − 1

)

is the Jacobi expansion of u(x) on Jh, and

uh,p =
p∑

k=0

ck(γ )Tk

(
2

h
x − 1

)

is the Chebyshev projection of u(x) on Pp(Jh). Note that
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‖u − uh,p‖2
H 1/2(Jh)

∼= h

2

∥
∥ũ − ũh,p

∥
∥2

L2(−1,1)
+ ∣

∣ũ − ũh,p

∣
∣2
H 1/2(−1,1)

∼= h

2

∞∑

k=p+1

∣
∣ck(γ )

∣
∣2 +

∞∑

k=p+1

∣
∣ck(γ )

∣
∣2

k ∼=
∞∑

k=p+1

∣
∣ck(γ )

∣
∣2

k, (3.3)

and (3.1) follows immediately. �

Theorem 3.2. Let u = xγ logν x with integer ν � 1, and let uh,p be its Chebyshev
projection on Pp(Jh). Then for noninteger γ > 0

‖u − uh,p‖H 1/2(Jh)
∼= (h/2)γ p−2γ logν 2p2

h
, (3.4)

and for integer γ > 0 and ν > 0

‖u − uh,p‖H 1/2(Jh)
∼= (h/2)γ p−2γ logν−1 2p2

h
. (3.5)

Proof. By the mapping (3.2), we have a function on I = (−1, 1)

ũ(ξ) = u

(
h(1 + ξ)

2

)

= hγ

(
(1 + ξ)

2

)γ

logν h(1 + ξ)

2

= hγ

(
(1 + ξ)

2

)γ ν∑

m=0

(
ν

m

)

logν−m(h/2) logm(1 + ξ) = dν

dγ ν

(
h(1 + ξ)

2

)γ

.

By Proposition 2.2

ũ(ξ) =
∞∑

k=0

dν

dγ ν

(
ck(γ )

)
Tk(ξ) =

∞∑

k=0

dν

dγ ν

(
(h/2)γ ak(γ )

)
Tk(ξ),

where ck = (h/2)γ ak(γ ) is the coefficient of the Chebyshev expansion of the function
uh

0(ξ) = (
h(1+ξ)

2 )γ , and ak is given in (2.9). For 0 � � � ν, let

ũh
� (ξ) = dν

dνγ

(
h(1 + ξ)

2

)γ

.

First we consider the case ν = 1. There holds

ũh
1(ξ) =

∞∑

k=0

d

dγ

(
(h/2)γ ak(γ )

)
Tk(ξ).

By (2.9) the coefficients ak can be written like

ak(γ ) = (−1)k−k∗
C̃0(γ )

�(k − γ )

�(γ + k + 1)
(k > γ )
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with

C̃0(γ ) = 2γ+1

π
�(1/2)�(γ + 1/2)γ (γ − 1) · · · (γ − k∗).

Here, k∗ is the maximum integer less than or equal to γ . For k > γ , C̃0 does not depend
on k, and C̃0 �= 0 for noninteger γ .

We obtain

(−1)k−k∗ d

dγ

(
(h/2)γ ak(γ )

) = (h/2)γ

(

log(h/2)C̃0(γ )
�(k − γ )

�(γ + k + 1)

+ C̃ ′
0(γ )

�(k − γ )

�(γ + k + 1)
− C̃0(γ )

�′(k − γ )

�(γ + k + 1)

− C̃0(γ )
�(k − γ )�′(γ + k + 1)

�(γ + k + 1)2

)

.

Using

�(k + α)

�(k + β)
= kα−β

(
1 + O(1/k)

)
(k → ∞)

(see [1, formula 6.1.46]), and the relation �′(z) = �(z)(log z + O(z−1)) for z > 1 (see
[1, Formula in 6.3.1 and 6.3.18], we obtain

(−1)k−k∗+1 d

dγ

(
(h/2)γ ak(γ )

)

= (h/2)γ
(
log(2/h)C̃0(γ )k−2γ−1

(
1 + O

(
k−1

)))

− C̃ ′
0(γ )k−2γ−1

(
1 + O

(
k−1

)) + 2C̃0(γ )k−2γ−1 log(k)
(
1 + O

(
k−1

))

= (h/2)γ k−2γ−1
(
C̃0(γ ) log(2/h) − C̃ ′

0(γ ) + 2C̃0(γ ) log(k)
)(

1 + O
(
k−1

))

= (h/2)γ k−2γ−1

(

C̃0(γ ) log

(
2k2

h

)

− C̃ ′
0(γ )

)
(
1 + O

(
k−1

))
. (3.6)

For noninteger γ , there holds

C̃0(γ ) log

(
2k2

h

)

− C̃ ′
0(γ ) = C̃0(γ ) log

(
2k2

h

)(

1 + O

(

log−1 2k2

h

)) (
2k2

h
→ ∞

)

which together with (3.6) yields

(−1)k−k∗ d

dγ

(
hγ ak(γ )

)

= −(h/2)γ k−2γ−1C̃0(γ ) log

(
2k2

h

)(

1 + O

(

log−1 2k2

h

))

. (3.7)
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The Chebyshev projection of ũh
1(ξ) on Pp(I ),

ψp(ξ) =
p∑

k=0

d

dγ

(
(h/2)γ ak(γ )

)
Tk(ξ)

satisfies

∣
∣ũh

1 − ψp

∣
∣2
H 1/2(I )

∼=
∞∑

k=p+1

(
d

dγ

(
(h/2)γ ak

)
)2

k

= C̃2
0(γ )(h/2)2γ

∞∑

k=p+1

k−4γ−1 log2ν

(
2k2

h

)(

1 + O

(

log−1 2k2

h

))2

which leads to the assertion (3.4) for ν = 1.
In general, for integer ν � 1 and noninteger γ > 0, we have

(−1)k−k∗ dν

dγ ν

(
(h/2)γ ak(γ )

)

= (−1)νC̃0(γ )(h/2)γ k−2γ−1 logν

(
2k2

h

)(

1 + O

(

log−1 2k2

h

))

. (3.8)

For the details of the induction, we refer to [14]. Therefore, the Chebyshev projection of
ũh

ν(ξ) on Pp(I ), denoted again by ψp(ξ),

ψp =
p∑

k=0

dν

dγ ν

(
(h/2)γ ak(γ )

)
Tk(ξ)

has the asymptotic error estimation

∣
∣ũh

ν − ψp

∣
∣2
H 1/2(−1,1)

∼=
∞∑

k=p+1

(
dν

dγ ν
((h/2)γ ak)

)2

k

= C̃2
0(γ )(h/2)2γ

∞∑

k=p+1

k−4γ−1 log2ν

(
2k2

h

)(

1 + O

(

log−1 2k2

h

))2

which tends to zero uniformly with respect to γ for γ � γ0 > 0. Therefore,

u(x) = ũh
ν

(
2

h
x − 1

)

=
∞∑

k=0

dν

dγ ν

(
(h/2)γ ak(γ )

)
Tk

(
2

h
x − 1

)

,

and its Jacobi projection on Pp(Jh)

uhp =
p∑

k=0

dν

dγ ν

(
(h/2)γ ak(γ )

)
Tk

(
2

h
x − 1

)

.

Then, due to the relation (3.3), the assertion (3.4) in general follows easily.
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Note that C̃(γ ) = 0 and C̃ ′(γ ) �= 0 for integer γ > 0. We have instead of (3.7)

(−1)k−k∗ d

dγ

(
(h/2)γ ak(γ )

) = (h/2)γ C̃ ′
0(γ )

�(k − γ )

�(γ + k + 1)

= C̃ ′
0(γ )(h/2)γ k−2γ−1

(
1 + O

(
k−1

))
(3.9)

which leads to the assertion (3.5) for ν = 1. In general for integer γ > 0 and ν � 1, we
have, instead of (3.8)

(−1)k−k∗ dν

dγ ν

(
(h/2)γ ak(γ )

)

= (−1)νC̃ ′
0(γ )(h/2)γ k−2γ−1 logν−1

(
2k2

h

)(

1 + O

(

log−1 2k2

h

))

(3.10)

which gives the assertion (3.5) in general for integer γ and ν � 1. �

4. Optimal rate of convergence of the h–p version with quasiuniform meshes

In this section we demonstrate how the optimal approximation results obtained in
the previous section lead to optimal a priori upper and lower error estimates for the
h–p version of BEM with quasiuniform meshes. We follow the presentation in
[15, section 6] where we analyzed the p version.

For a polygonal domain � with boundary � we study the h–p Galerkin approxi-
mation of the integral equations

V ψ =
(

1

2
I + K

)

f on �, (4.1)

Wv =
(

1

2
I − K ′

)

g on �. (4.2)

The operators V , K are the single layer and double layer potential operators and K ′, W

are obtained by taking the normal derivatives of V and −K , respectively. The equation
(4.1) models the Dirichlet problem for the Laplacian with Dirichlet datum f on � and
unknown function ψ , the normal derivative of the solution of the Dirichlet problem. The
integral equation (4.2) with hypersingular operator W is the corresponding equation for
the Neumann problem, with unknown function v being the trace on � of the solution.

It is also well-known that there exist a unique solution ψ ∈ H−1/2(�) of (4.1) if
the conformal radius of � is less than one (which can be obtained by a scaling). The
operator W has a kernel which consists of constant functions. In the space

H
1/2
0 (�) =

{

w ∈ H 1/2(�);
∫

�

w ds = 0

}

(4.2) is uniquely solvable.
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In order to study the convergence of the h–p version of the boundary element
method for solving (4.1) and (4.2) we recall some regularity results. In the following we
consider for simplicity piecewise analytic given data (f for (4.1) and g for (4.2)).

Let us denote the vertices of � by tj (1 � j � J , tJ+1 = t1) and let �j be the
open edge connecting tj and tj+1. The internal angle at tj is ωj . We consider a partition
of unity (χ1, . . . , χJ ) where χj is the restriction of a C∞

0 (R2) function to � such that
χj = 1 in a neighborhood of the vertex tj and supp(χj ) ⊂ �j−1 ∪ {tj } ∪ �j (�0 = �J ).
In this way we may write any function ϕ on � like

ϕ =
J∑

j=1

(ϕ−, ϕ+)χj ,

where a pair (ϕ−, ϕ+) corresponds to ϕ on �j−1 ∪ {tj } ∪ �j with

ϕ− = ϕ|�j−1 and ϕ+ = ϕ|�j .

Then we have the following regularity result.

Proposition 4.1 ([20]). Let αjk := k π
ωj

(integer k � 1, j = 1, . . . , J ) and, for t � 1/2,

let n be an integer with n + 1 >
ωj

π
(t − 1/2) � n.

(i) If f is a piecewise analytic function, then there exists a function ψ0 with ψ0|�j ∈
Ht−1(�j ) such that, for the solution ψ of (4.1), there holds

ψ =
J∑

j=1

n∑

k=1

(
(ψjk)−, (ψjk)+

)
χj + ψ0.

Here

(ψjk)±(x) = c|x − tj |αjk−1 (αjk is not an integer),

(ψjk)±(x) = c1|x − tj |αjk−1 + c2|x − tj |αjk−1 log |x − tj | (αjk is an integer).

(ii) If g is a piecewise analytic function, then there exists a function v0 with v0|�j ∈
Ht(�j ) such that, for the solution v of (4.2), there holds

v =
J∑

j=1

n∑

k=1

(
(vjk)−, (vjk)+

)
χj + v0.

Here

(vjk)±(x) = c|x − tj |αjk (αjk is not an integer),

(vjk)±(x) = c1|x − tj |αjk + c2|x − tj |αjk log |x − tj | (αjk is an integer).

The constants c, c1 and c2 above are generic.

Now we define and analyze the h–p Galerkin method for the approximate solution
of (4.1) and (4.2). To this end we introduce piecewise polynomial spaces. Let � be
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decomposed into straight line pieces �j , j = 1, . . . , n, such that the corners of the
polygon � coincide with endpoints of some elements. We assume that the length h of
the longest element is bounded by a constant times the length of the smallest element.
This is the so-called quasiuniformity of the mesh �h := {�1, . . . , �n} (the number of
elements n is proportional to h−1). For a given integer p > 0 we define

S1
h,p(�) := {

v ∈ C0(�); v|�j
∈ Pp(�j ), j = 1, . . . , n

}

and

S0
h,p−1(�) := {

v; v|�j
∈ Pp−1(�j ), j = 1, . . . , n

}
.

Here, Pp(�j ) denotes the set of polynomials on �j (with respect to the arc length) up to
degree p. There holds S1

h,p(�) ⊂ H 1/2(�) and S0
h,p−1(�) ⊂ H−1/2(�). However, the

condition of integral mean zero is not satisfied by the functions in S1
h,p(�). This con-

dition can be incorporated by a Lagrangian multiplier, see, e.g., [9]. The h–p Galerkin
schemes then are as follows.

For a given mesh �h and p � 0, find ψh,p ∈ S0
h,p(�) satisfying

〈V ψh,p, φ〉L2(�) =
〈(

1

2
I + K

)

f, φ

〉

L2(�)

∀φ ∈ S0
h,p(�), (4.3)

and, for p � 1, find vh,p ∈ S1
h,p(�) and a real number a satisfying

〈Wvh,p, w〉L2(�) + 〈w, a〉L2(�) =
〈(

1

2
I − K ′

)

g, w

〉

L2(�)

∀w ∈ S1
h,p(�), (4.4)

〈vh,p, 1〉L2(�) = 0.

Before analyzing the convergence of the Galerkin schemes let us present sharp
approximations results in H̃ 1/2(J ) for smooth and singular functions over one edge
J = �j by piecewise polynomials of Sh,p(J ) = Sh,p(�)|J .

Proposition 4.2 ([22, theorem 3.1]). Let r > 1/2 and p � 1. Then for v ∈ Hr(J ) there
exists vhp ∈ Sh,p(J ) such that

‖v − vhp‖H̃ 1/2(J ) � chµ−1/2p−(r−1/2)(1 + log p)1/2‖v‖Hr(J ).

Here, µ = min{r, p + 1} and the constant c > 0 is independent of h, p and v, but
depends on r .

Now let us consider the approximation of a singular function of the type

u(x) = xγ logν(x)χ(x), x ∈ J := (0, 1) (4.5)

(γ > 0 and integer ν � 0). Here, χ ∈ C∞(J ) with χ(x) = 1 for 0 < x < δ0/2 and
χ(x) = 0 for δ0 < x < 1 where δ0 < 1 is a positive constant.
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Theorem 4.1. Let u be given by (4.5) with noninteger γ . Then, there exists uhp ∈
Sh,p(J ) with p > 2γ − 1/2 such that

‖u − uhp‖H̃ 1/2(J ) � Chγ p−2γ

(

1 + logν

(
p

h

))

, (4.6)

where the constant C is independent of h and p. If γ is an integer, there holds

‖u − uhp‖H̃ 1/2(J ) � Chγ p−2γ

(

1 + logν−1

(
p

h

))

. (4.7)

Proof. We adapt the proof of the optimal estimates for the p version from [15] by
incorporating a proper scaling argument. Let us assume without loss of generality that
all the elements are of the same size h and h < δ0/2. We represent the singular function
u like u = u1 + u2 with

u1(x) = u(x)χ(x/h), u2(x) = u(x)
(
1 − χ(x/h)

)
.

For simplicity we have taken the same cut-off function χ as in the representation of u in
(4.5). There holds supp(u1) ⊂ Ī1 = [0, h]. Defining v1(ξ) := u1(hξ) we obtain

v1(ξ) = u1(hξ)χ(ξ) = hγ ξγ logν(hξ)χ(ξ) = hγ ξγ

ν∑

k=0

(
ν

k

)

logk(h) logν−k(ξ)χ̃(ξ)

for ξ ∈ J = (0, 1), χ(ξ) = 1 for ξ ∈ (0, 1/2), and χ(ξ) = 0 for ξ > 1. By
proposition 2.4 there exists, for l = 0, . . . , ν, a polynomial ψl

1,p(ξ) ∈ Pp(J ) satisfying
for noninteger γ > 0

∥
∥ξγ logl(ξ )χ̃(ξ) − ψl

1,p(ξ)
∥
∥

H̃ 1/2(J )
� Cp−2γ (1 + log p)l. (4.8)

Letting

ψ(ξ) := hγ

ν∑

k=0

(
ν

k

)

logk(h)ψν−k
1,p (ξ)

we have the estimate

‖v1 − ψ‖H̃ 1/2(J ) =
∥
∥
∥
∥
∥
v1 − hγ

ν∑

k=0

(ν

k

)

logk(h)ψν−k
1,p

∥
∥
∥
∥
∥

H̃ 1/2(0,1)

� hγ

ν∑

k=0

(ν

k

)

logk

(
1

h

)
∥
∥ξγ logν−k(ξ)χ̃(ξ) − ψν−k

1,p (ξ)
∥
∥

H̃ 1/2(J )

� hγ

ν∑

k=0

(ν

k

)

C(k) logk

(
1

h

)

p−2γ (1 + log p)(ν−k)

� C(ν)hγ p−2γ

(

1 + log

(
p

h

))ν

.
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Let φ1(x) = ψ(x/h). Due to the scalability of the H̃ 1/2-norm (see, e.g., [22,
lemma 3.1]), there holds

∥
∥u1(x) − φ1(x)

∥
∥

H̃ 1/2(I1)
∼= ∥

∥v1(ξ) − ψ(ξ)
∥
∥

H̃ 1/2(J )

� C(ν)hγ p−2γ

(

1 + log

(
p

h

))ν

. (4.9)

Due to proposition 4.2, the function u2 ∈ C∞(J ) with support in [h/2, 1] can be
approximated by a piecewise polynomial φ2 ∈ Shp(J ) satisfying

‖u2 − φ2‖H̃ 1/2(J ) � C(r)hµ−1/2p−(r−1/2)(1 + log p)1/2‖u2‖Hr(J ), r > 1/2,

with µ = min{r, p + 1}. It is trivial that

‖u2‖Hr(J ) �






C(r)hγ+1/2−r logν

(
1

h

)

, r > γ + 1/2,

C logν+1/2

(
1

h

)

, r = γ + 1/2,

C, r < γ + 1/2

which implies for r > γ + 1/2

‖u2 − φ2‖H̃ 1/2(J ) � C(r)hµ−r+γ logν

(
1

h

)

p−(r−1/2)(1 + log p)1/2. (4.10)

Extending φ1 onto J by a zero extension outside of I1 and defining uhp := φ1 +φ2,
combination of (4.9) and (4.10) gives for any r > γ + 1/2

‖u − uhp‖H̃ 1/2(J )

� C
(‖u1 − φ1‖H̃ 1/2(I1)

+ ‖u2 − φ2‖H̃ 1/2(J )

)

� C max
{
hγ p−2γ , C(r) hµ−r+γ p−(r−1/2)(1 + log p)1/2

}
(

1 + log

(
p

h

))ν

� C max
{
hγ p−2γ , p−(r−1/2)(1 + log p)1/2 max

{
C(r) hγ , C(r) hp+γ+1−r

}}

×
(

1 + log

(
p

h

))ν

.

Since p > 2γ − 1/2, selecting an integer r ∈ (2γ + 1/2, p + 1], we have

max
{
hγ p−2γ , p−(r−1/2)(1 + log p)1/2 max

{
C(r) hγ , C(r) hp+γ+1−r

}}
� C(γ ) hγ p−2γ

which leads immediately to (4.6).
If γ is an integer, we introduce a linear mapping x = h

1+ξ

2 before separating the
function into smooth and singular parts. Let

ũ(ξ) = u(hξ) = hγ ξγ logν(hξ) = hγ ξγ

(

logν h +
ν−1∑

k=0

(
ν

k

)

logk h logν−k ξ

)

.
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Note that the first term hγ ξγ logν h is a polynomial of degree γ in Pp(J ) with p >

2γ − 1/2, for which there is no approximation error. Then we separate the func-
tion ũ(ξ) − hγ ξγ logν h into smooth and singular parts by a cut-off function χ̃(ξ),
and apply the approximation result of proposition 2.4 with integer γ for each term
hγ ξγ logk h logν−k ξχ(ξ), 0 � k � ν − 1, as before. We have (4.7) instead of (4.6). �

Now we are ready to give a sharp upper bound for the approximation error con-
cerning the hypersingular integral equation on polygonal domains.

Theorem 4.2. Let v be the exact solution of (4.2) with piecewise analytic g, and let vh,p

be the BE approximation defined by (4.4) with p > 2π/ω∗ − 1/2. There holds

‖v − vh,p‖H̃ 1/2(�) � Chπ/ω∗
p−2π/ω∗

. (4.11)

Here, ω∗ = max{ωj ; j = 1, . . . , J } and the constant C does not depend on h and p.

Proof. The Galerkin scheme (4.4) converges quasioptimally in H̃ 1/2(�)×R [9]. There-
fore, we only need to find an element w ∈ S1

h,p(�) such that ‖v − w‖H̃ 1/2(�) satisfies the
bound stated by the theorem. We will define this approximation piecewise on the edges
�j by functions wj ∈ Sh,p(�j ) := Sh,p(�)|�j .

By proposition 4.1(ii), on �j we can represent the solution v of (4.2) like

v = v1 + v2, (4.12)

where v1 contains the singularities at the corner tj and v2 contains the singularities at
tj+1. More precisely, we can find a representation

v1 = v11 + v12 + v10 (4.13)

with v10 ∈ Hs1(�j ), s1 = 3π/ωj + 1/2 − ε (ε > 0) and singularities

v11(x) := c11|x − tj |π/ωj χj + c12|x − tj |π/ωj log |x − tj |χj ,

v12(x) := c13|x − tj |2π/ωj χj + c14|x − tj |2π/ωj log |x − tj |χj .

The constant c12 vanishes for noninteger αj1 = π/ωj , and c14 vanishes for noninteger
αj2 = 2π/ωj . χj is the C∞ cut-off function. Accordingly, for v2 in (4.12) we find a
representation

v2 = v21 + v22 + v20

with v20 ∈ Hs2(�j ), s2 = 3π/ωj+1 + 1/2 − ε (ε > 0) and singularities

v21(x) := c21|x − tj+1|π/ωj+1 χj+1 + c22|x − tj+1|π/ωj+1 log |x − tj+1|χj+1,

v22(x) := c23|x − tj+1|2π/ωj+1 χj+1 + c24|x − tj+1|2π/ωj+1 log |x − tj+1|χj+1.

By theorem 4.1 there exist w11, w12 ∈ Sh,p(�j ) with p > 2π/ωj − 1/2 such that

‖v11 − w11‖H̃ 1/2(�j ) � chπ/ωj p−2π/ωj , (4.14)

‖v12 − w12‖H̃ 1/2(�j ) � ch2π/ωj p−4π/ωj . (4.15)
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Note that c12 in the representation of v11 is nonzero only for integer π/ωj , and
Theorem 4.1 tells us that the logarithmic term does not appear in the estimates (4.14)
and (4.15).

For the smooth remainder v10 of v1 we find by Proposition 4.2 a piecewise polyno-
mial w10 ∈ Sh,p(�j ) which satisfies

‖v10 − w10‖H̃ 1/2(�j ) � chµ−1/2p−s1+1/2(1 + log p)1/2,

where µ = min{s1, p + 1}. Noting that s1 = 3π/ωj + 1/2 − ε > 2π/ωj + 1/2 for
ε < π/ωj , e.g., ε = 1

2π/ωj , and p + 1 > 2π/ωj + 1/2, we have

‖v10 − w10‖H̃ 1/2(�j ) � ch2π/ωj p− 5
2 π/ωj (1 + log p)1/2 � ch2π/ωj p−2π/ωj . (4.16)

Analogously for v2 we find piecewise polynomials w21, w22 ∈ Sh,p(�j ) with

‖v21 − w21‖H̃ 1/2(�j ) � chπ/ωj+1p−2π/ωj+1 (4.17)

and

‖v22 − w22‖H̃ 1/2(�j ) � ch2π/ωj+1p−4π/ωj+1 . (4.18)

Also, there exists w20 ∈ Sh,p(�j ) such that

‖v20 − w20‖H̃ 1/2(�j ) � ch2π/ωj+1p−2π/ωj+1 . (4.19)

The approximation wj ∈ S1
h,p(�j ) of v on �j is constructed by the pieces defined above:

wj := w11 + w12 + w10 + w21 + w22 + w20.

Combining (4.14)–(4.19) we obtain

∥
∥v − wj

∥
∥

H̃ 1/2(�j )
�

2∑

i=1

2∑

j=0

‖vij − wij‖H̃ 1/2(�j ) � max
{
hπ/ωip−2π/ωi ; i = j, j + 1

}
.

Now, proceeding in the same way an all the edges �j of �, we define w := wj on �j

and conclude that there holds

‖v − w‖H̃ 1/2(�) � c

(
J∑

j=1

∥
∥v − wj

∥
∥2

H̃ 1/2(�j )

)1/2

� c max
{
hπ/ωip−2π/ωi ; i = 1, . . . , J

}

which proves the theorem. �

Now we analyze a lower bound for the error of the Galerkin approximation of the
hypersingular integral equation (4.2).

Theorem 4.3. Let v be the exact solution of (4.2) with piecewise analytic g, and let vh,p

be the BE approximation defined by (4.4) with p > 2π/ω∗ − 1/2. Suppose that the
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strongest singularity |x − tj0 |π/ωj0 or |x − tj0 |π/ωj0 log |x − tj0 | occurs at some vertex tj0

of � with ωj0 = ω∗ = max{ωj ; j = 1, . . . , J }. Then there holds

‖v − vh,p‖H̃ 1/2(�) � chπ/ω∗
p−2π/ω∗

(4.20)

with c > 0 independent of h and p.

Proof. We may assume that j0 = 1, ω1 = ω∗ and that �1
1 = Jh = (0, h) is the corner

element connected to the vertex t1 located at x = 0. There holds

‖v − vh,p‖H̃ 1/2(�)
∼= ‖v − vh,p‖H 1/2(�) � ‖v − vh,p‖H 1/2(�1

1).

By proposition 4.1, v = v1 + v2 + v0 on �1
1 with

v1(x) = c1x
π/ω1 + c2x

π/ω1 log x,

v2(x) = c3x
2π/ω1 + c4x

2π/ω1 log x,

and

v0(r) ∈ Ht
(
�1

1

) ∀t = 3π/ω1 + 1/2 − ε.

Here, ε > 0 is arbitrary, c2 and c4 are not zero if π/ω1 and 2π/ω1 are integers, respec-
tively. Note that in Proposition 4.1 the singular functions v11 and v12 are associated with
cut-off functions, but v1 and v2 are plain singular functions. However, both representa-
tions differ only by C∞-perturbations which become a part of v0. Now we assume that
the assertion of the theorem does not hold. Therefore, there exists a piecewise polyno-
mial w ∈ S1

p(�h) and a function δ(p, h) such that

‖v − vh,p‖H 1/2(�1
1) � ‖v − vh,p‖H 1/2(�) � chπ/ω1p−2π/ω1δ(p, h),

δ(p, h) → 0 (p → ∞, or h → 0). (4.21)

By Theorem 4.1, there exists a polynomial w2 of degree p such that

‖v2 − w2‖H 1/2(�1
1) � ch2π/ω1p−4π/ω1 .

Moreover, by a standard approximation argument, there exists a polynomial w0 of degree
p such that

‖v0 − w0‖H 1/2(�1
1) � chµ−1/2p−(t−1/2),

where µ = min{t, p + 1}. Noting that p + 1 > 2π/ω1 + 1/2 and t = 5
2π/ω1 + 1/2 for

ε = 1
2π/ω1, there holds

‖v0 − w0‖H 1/2(�1
1) � ch2π/ω1p− 5

2 π/ω1 .

Therefore, combining the last two estimates and the assumption (4.21) we obtain
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∥
∥v1 − (vh,p − w2 − w0)

∥
∥

H 1/2(�1
1)

� ‖v − vh,p‖H 1/2(�1
1) + ‖v2 − w2‖H 1/2(�1

1) + ‖v0 − w0‖H 1/2(�1
1)

� chπ/ω1p−2π/ω1
(
δ(p, h) + hπ/ω1p−2π/ω1 + hπ/ω1p− 1

2 π/ω1
)
.

Note that in either case π/ω1 is an integer or not, by theorems 3.2
∥
∥v1 − (vh,p − w2 − w0)

∥
∥

H 1/2(�1
1)

� ‖v1 − �v1‖H 1/2(Jh)
∼= hπ/ω1p−2π/ω1,

where �v1 is the Chebyshev projection of v1 on Pp(Jh), which leads to a contradiction.
Thus we complete the proof. �

Corollary 4.1. Let v be the exact solution of (4.2) with piecewise analytic g, and let vp

be the BE approximation defined by (4.4) with p > 2π/ω∗ − 1/2. Suppose that the
most severe singularity |x − tj0 |π/ωj0 or |x − tj0 |π/ωj0 log |x − tj0 | occurs at some vertex
tj0 of � with ωj0 = ω∗ = max{ωj ; j = 1, . . . , J }. Then there holds the optimal error
estimate

chπ/ω∗
p−2π/ω∗ � ‖v − vh,p‖H̃ 1/2(�) � Chπ/ω∗

p−2π/ω∗
, (4.22)

with C > 0 and c > 0 independent of h and p.

Making use of the approximation results for the hypersingular integral equation we
prove analogous results for the weakly singular integral equation (4.1).

Theorem 4.4. Let ψ be the exact solution of (4.1) with piecewise analytic f , and let
ψh,p be the BE approximation defined by (4.3) with p > 2π/ω∗ − 1/2. Suppose that
the strongest singularity |x − tj0 |π/ωj0−1 or |x − tj0 |π/ωj0−1 log |x − tj0 | occurs at some
vertex tj0 of � with ωj0 = ω∗ = max{ωj ; j = 1, . . . , J }. Then there holds

chπ/ω∗
p−2π/ω∗ � ‖ψ − ψh,p‖H̃−1/2(�) � Chπ/ω∗

p−2π/ω∗
(4.23)

with C > 0 and c > 0 independent of h and p.

Proof. We apply the results of Theorems 4.2 and 4.3 by considering antiderivatives of
ψ , which have singularities like the solution v of (4.2). This technique has been used
previously by Stephan and Suri [21] and in our paper on the p version [15].

First we prove the upper bound for ‖ψ − ψh,p‖H̃−1/2(�). By the quasi-optimality
of the Galerkin scheme (4.3) we only need to define an element φ ∈ S0

h,p(�) such that
‖ψ − φ‖H̃−1/2(�) satisfies the upper bound stated by the theorem.

We consider an edge �j which we identify with interval J = (0, a), a = |�j |.
We define

u(x) =
∫ x

0

(
ψ − ψ̄

)
(t) dt (x ∈ J ), (4.24)
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where ψ̄ = 1
a

∫ a

0 ψ(t) dt . Then u vanishes at the endpoints of J and u ∈ H̃ 1/2(J ).
By Proposition 4.1(i) and standard calculation

u(x) =
∫ x

0

(
ψ − ψ̄

)
(t) dt

= c11x
αj1 + c12x

αj1 log(x) + c13x
αj2 + c14x

αj2 log(x)

+ c21|x − a|αj+1,1 + c22|x − a|αj+1,1 log |x − a|
+ c23|x − a|αj+1,2 + c24|x − a|αj+1,2 log |x − a| + u0(x)

with αji = iπ/ωj and a function u0 ∈ Hs(J ), s = min{3π/ωj + 1/2, 3π/ωj+1 +
1/2}−ε, ε > 0. As in the proof of Theorem 4.2, e.g., by using Theorem 4.1, there exists
a piecewise polynomial wj ∈ Sh,p+1(J ) such that (now writing �j instead of J )

∥
∥u − wj

∥
∥

H̃ 1/2(�j )
� ch

π/ω∗
j p

−2π/ω∗
j (4.25)

with ω∗
j = max{ωj , ωj+1}. By [22, lemma 3.4] differentiation is a mapping

H̃ 1/2(J ) → H̃−1/2(J ).

Therefore, defining φj = (wj )′ + ψ̄ ∈ Sh,p(�j ) (differentiation with respect to the arc
length) we obtain

∥
∥ψ − φj

∥
∥

H̃−1/2(�j )
� c

∥
∥u − wj

∥
∥

H̃ 1/2(�j )
.

Estimate (4.25) gives the needed approximation result on an edge �j . We define a piece-
wise polynomial φ ∈ Sh,p(�) by piecing together the local constructions φj and the
stated upper bound for ‖ψ − φ‖H̃−1/2(�) follows.

We prove the lower bound in (4.23) indirectly. To this end assume that there exists
a piecewise polynomial φ ∈ S0

p(�h) and a function δ(h, p) such that

‖ψ − φ‖H̃−1/2(�) � chπ/ω∗
p−2π/ω∗

δ(h, p), δ(h, p) → 0 as p → ∞, or h → 0.

(4.26)
We define with ψ̄ = 1

|�|
∫

�
ψ ds the function

u(s) =
∫ s

0
(ψ − ψ̄)(t) dt,

s being the arc length of �, e.g. starting at the vertex t1. By [19, Lemma 3] the anti-
derivative operator is continuous as a mapping from H

−1/2
0 (�) to H 1/2(�) (H−1/2

0 (�)

is the space of H−1/2(�)-functions with integral mean zero). Therefore, defining the
piecewise polynomial w(s) = ∫ s

0 (φ(t) − φ̄) dt ∈ S1
p+1(�h) (with φ̄ = 1

|�|
∫

�
φ ds),
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we obtain

‖u − w‖H̃ 1/2(�) � c
∥
∥ψ − ψ̄ − (

φ − φ̄
)∥
∥

H̃−1/2(�)

� c‖ψ − φ‖H̃−1/2(�) + c
1

|�|
∣
∣
∣
∣

∫

�

(ψ − φ) ds

∣
∣
∣
∣‖1‖H̃−1/2(�)

� c

(

1 + ‖1‖H̃−1/2(�)

‖1‖H̃ 1/2(�)

|�|
)

‖ψ − φ‖H̃−1/2(�).

Since u is an antiderivative of ψ it possesses corner singularities which are exactly of
the type given in Proposition 4.1(ii). Without loss of generality we may assume that the
most severe singularity |x − t1|π/ω∗

or |x − t1|π/ω∗
log |x − t1| occurs at the vertex t1 of

� with ω1 = ω∗ = max{ωj ; j = 1, . . . , J }. Further we assume that �1
1 is the corner

element at this vertex. Repeating the arguments of Theorem 4.3 we have

‖u − w‖H 1/2(�1
1) � chπ/ω1p−2π/ω1δ(h, p)

which contradicts Theorem 3.2 (if the singularity contains a logarithmic term) or
Theorem 3.1 (otherwise). Thus, the assumption (4.26) does not hold and the proof of the
theorem is finished. �

5. Concluding remarks

Based on the analysis of the optimal convergence for the p version of BEM in
the framework of the Jacobi-weighted Besov and Sobolev spaces, we prove, by incor-
porating a properly designed scaling argument, the optimal rate of convergence of the
h–p version with quasiuniform meshes for the hypersingular and weakly singular inte-
gral equations on polygonal domains where singularity of |x|γ -type and |x|γ log |x|-type
occur. The results include the h and p versions of BEM as two special cases. For fixed h,
it coincides with the optimal convergence of the p version of BEM [15], and for fixed p,
it gives the optimal convergence of the h version. Also it is parallel to the results of the
h–p version of FEM with quasiuniform meshes [14].

The concepts, methods and techniques in analysis can be generalized to three di-
mensional problems, but such a generalization will be substantial, and will be feasible
only when the analysis for optimal convergence of the p version of BEM in three di-
mensions is available, which, unfortunately, is an open problem now.
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