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We consider the approximate solution of axisymmetric biharmonic problems using a
boundary-type meshless method, the Method of Fundamental Solutions (MFS) with fixed sin-
gularities and boundary collocation. For such problems, the coefficient matrix of the linear
system defining the approximate solution has a block circulant structure. This structure is
exploited to formulate a matrix decomposition method employing fast Fourier transforms for
the efficient solution of the system. The results of several numerical examples are presented.
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1. Introduction

In this paper, we investigate the application of the Method of Fundamental Solu-
tions (MFS) to axisymmetric biharmonic problems. In the MFS, the approximate so-
lution is expressed as a linear combination of fundamental solutions of the governing
differential equation, with singularities placed outside the domain of the problem. The
coefficients of the fundamental solutions are determined so that the MFS solution ap-
proximates the boundary conditions either by collocation (boundary collocation) or by
a least squares fit of the boundary data. The locations of the singularities are either fixed,
that is, preassigned, or moving in which case their locations are determined during the
solution process which is then nonlinear. A description of various versions of the MFS
and related methods as well as a wide range of applications is given in [7,8,10].

The MFS with fixed or moving singularities has been used for the solution of var-
ious second order axisymmetric problems [13–15,19]. In these applications, the MFS
was applied to the axisymmetric version of the governing equations, for which the funda-
mental solutions involve complete elliptic integrals and are rather complicated. Further,
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when the boundary conditions of the problem under consideration are not axisymmet-
ric, this approach requires the solution of a sequence of problems in order to evaluate a
finite Fourier sum. A direct MFS approach for the solution of axisymmetric harmonic
problems which avoids these complications is discussed in [24]. It involves fixed singu-
larities and boundary collocation, and leads to a linear system whose coefficient matrix
has a block circulant structure. This structure is exploited via a matrix decomposition
algorithm involving fast Fourier transforms (FFTs) (see, for example, [4]) to obtain an
efficient method for determining the approximate solution. In the present study, these
ideas are extended to the solution of axisymmetric biharmonic problems.

In three-dimensional elasticity, the so-called Galerkin vector satisfies the three-
dimensional biharmonic equation (see [5,11]). This equation also arises in the solution
of three-dimensional viscous incompressible flows. In such problems, one can transform
the coupled biharmonic system for the vector potential into a sequence of scalar bihar-
monic problems as was done in [22], where finite element methods were considered for
their solution. The numerical solution of three-dimensional biharmonic problems has
been the subject of other studies, for example, on finite differences [1,20], finite element
methods [16,21], and spectral methods [3].

This paper is organized as follows. In section 2, we describe the MFS for the
axisymmetric biharmonic problem, and set up the system of linear equations to which it
leads. In section 3, we formulate a matrix decomposition method employing FFTs for
the solution of the system which exploits the block circulant structure of its coefficient
matrix. In section 4, we present examples of three axisymmetric regions and, for each,
specify the choice of singularities and boundary collocation points used in the MFS.
In section 5, we describe how the singularities may be rotated, a process which often
improves the accuracy of the MFS procedure. The results of numerical experiments
are described in section 6 and, in the final section, section 7, we state some concluding
remarks.

2. MFS formulation

We consider the boundary value problem

�2u(P ) = 0, P ∈ � ⊂ R
3,

u(P ) = f (P ),
∂u

∂nP

(P ) = g(P ), P ∈ ∂�,
(2.1)

where � denotes the Laplace operator, ∂/∂nP is the outward normal derivative at P , and
f and g are sufficiently smooth given functions. The region � is axisymmetric, that is,
it is formed by rotating a region �′ ∈ R

2 about the z-axis. The boundaries of � and
�′ are denoted by ∂� and ∂�′, respectively. The boundary ∂�′ is also assumed to be
sufficiently smooth.
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As in the biharmonic MFS considered in [12], which is based on the simple layer
potential representation of [11,17], we approximate the solution u of (2.1) by

uMN(c, d, Q;P) =
M∑

m=1

N∑

n=1

[
cm,nk1(P, Qm,n) + dm,nk2(P, Qm,n)

]
, P ∈ �, (2.2)

where

c = (c11, c12, . . . , c1N, . . . , cM1, . . . , cMN)T,

d = (d11, d12, . . . , d1N, . . . , dM1, . . . , dMN)T,

and Q is a 3MN-vector containing the coordinates of the singularities {Qm,n}M,N
m=1,n=1,

which lie outside �, the closure of �. The function k1(P, Q) is the fundamental solution
of Laplace’s equation in R

3 given by

k1(P, Q) = 1

4π |P − Q| , (2.3)

where |P − Q| denotes the distance between the points P and Q, and

k2(P, Q) = 1

8π
|P − Q|, (2.4)

the fundamental solution of the biharmonic equation in R
3 given in [5]. In the axisym-

metric case considered in the present paper, the MN singularities {Qm,n}M,N
m=1,n=1 are

fixed on the boundary ∂�̃ of a solid �̃ surrounding � which is generated by rotating
about the z-axis a planar domain �̃′ which is similar to �′. These singularities are
chosen in the following way. Let {Qn}Nn=1 be N points on the boundary ∂�̃′ of �̃′, with
Qn = (rQn

, zQn
) in polar coordinates. Then we take Qm,n = (xQm,n

, yQm,n
, zQm,n

), where

xQm,n
= rQn

cos ϕm, yQm,n
= rQn

sin ϕm, zQm,n
= zQn

, (2.5)

with

ϕm = 2(m − 1)π

M
, m = 1, . . . , M. (2.6)

We choose a set of MN collocation points {Pi,j }M,N
i=1,j=1 on ∂� by first specifying N

points {Pj }Nj=1 on ∂�′ with Pj = (rPj
, zPj

). Then Pi,j = (xPi,j
, yPi,j

, zPi,j
), where

xPi,j
= rPj

cos ϕi, yPi,j
= rPj

sin ϕi, zPi,j
= zPj

.

In the MFS, the coefficient vectors c and d are determined so that the boundary condi-
tions are satisfied at the collocation points {Pi,j }M,N

i=1,j=1:

uN(c, d, Q;Pi,j ) = f (Pi,j ),

∂uN

∂nP

(c, d, Q;Pi,j ) = g(Pi,j ), i = 1, . . . , M, j = 1, . . . , N.
(2.7)
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Since the problem is axisymmetric, these equations yield a 2MN × 2MN linear system
of the form

(
A B

C D

)(
c

d

)
=

(
f

g

)
, (2.8)

where the MN × MN matrices A, B, C, D have a block circulant structure (cf. [6,24]).
Specifically,

A =





A1 A2 · · · AM

AM A1 · · · AM−1

...
...

...

A2 A3 · · · A1




≡ circ(A1, A2, . . . , AM), (2.9)

where the N × N submatrices A� = ((A�)j,n), � = 1, . . . , M , are defined by

(A�)j,n = 1

4π |P1,j − Q�,n| , j, n = 1, . . . , N, (2.10)

and

B = circ(B1, B2, . . . , BM), C = circ(C1, C2, . . . , CM),

D = circ(D1, D2, . . . , DM),

where, for � = 1, . . . , M , j, n = 1, . . . , N,

(B�)j,n = 1

8π
|P1,j − Q�,n|,

(C�)j,n = 1

4π

∂

∂n

[
1

|P1,j − Q�,n|
]

= − 1

4π

[
xP1,j

− xQ�,n

|P1,j − Q�,n|3 nx + yP1,j
− yQ�,n

|P1,j − Q�,n|3 ny + zP1,j
− zQ�,n

|P1,j − Q�,n|3 nz

]
,

(D�)j,n = 1

8π

[
∂

∂n
|P1,j − Q�,n|

]

= 1

8π

[
xP1,j

− xQ�,n

|P1,j − Q�,n|nx + yP1,j
− yQ�,n

|P1,j − Q�,n|ny + zP1,j
− zQ�,n

|P1,j − Q�,n|nz

]
,

where nx , ny and nz denote the components of the outward normal vector to ∂� in the
x, y and z directions, respectively, at the point P1,j . The above equations only involve
P1,j because of the circulant symmetry of the problem.
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3. Matrix decomposition algorithm

Let P denote the M × M permutation matrix P = circ(0, 1, 0, . . . , 0) and ⊗ the
matrix tensor product. Then, with P0 = IM ,

(
A B

C D

)
=

(∑M
k=1Pk−1 ⊗ Ak

∑M
k=1Pk−1 ⊗ Bk

∑M
k=1Pk−1 ⊗ Ck

∑M
k=1Pk−1 ⊗ Dk

)

=
M∑

k=1

(Pk−1 ⊗ Ak Pk−1 ⊗ Bk

Pk−1 ⊗ Ck Pk−1 ⊗ Dk

)

=
M∑

k=1

[(
Pk−1 0

0 0

)
⊗ Ak +

(
0 Pk−1

0 0

)
⊗ Bk

+
(

0 0

Pk−1 0

)
⊗ Ck +

(
0 0

0 Pk−1

)
⊗ Dk

]
. (3.1)

Following [6], we denote by U the unitary M × M Fourier matrix which is the
conjugate of the matrix

U ∗ = 1

M1/2





1 1 1 . . . 1

1 ω ω2 . . . ωM−1

1 ω2 ω4 . . . ω2(M−1)

...
...

...
...

1 ωM−1 ω2(M−1) . . . ω(M−1)(M−1)




,

where ω = e2πι/M with ι = √−1. Then

Pk−1U ∗ = U ∗Ek−1, k = 1, . . . , M, (3.2)

where E = diag(e1, e2, . . . , eM) with ej = ωj−1. Now, premultiplying system (2.8) by

(
U 0
0 U

)
⊗ IN

and judiciously introducing the MN × MN identity matrix yields

[(
U 0
0 U

)
⊗ IN

](
A B

C D

)[(
U ∗ 0
0 U ∗

)
⊗ IN

][(
U 0
0 U

)
⊗ IN

] (
c

d

)

=
[(

U 0
0 U

)
⊗ IN

] (
f

g

)
. (3.3)
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Using (3.1), (3.2) and the properties of ⊗ (i.e., (S1 ⊗ S2)(T1 ⊗ T2) = (S1T1) ⊗ (S2T2)),
(3.3) becomes

M∑

k=1

[(
Ek−1 0

0 0

)
⊗ Ak +

(
0 Ek−1

0 0

)
⊗ Bk

+
(

0 0

Ek−1 0

)
⊗ Ck +

(
0 0

0 Ek−1

)
⊗ Dk

](
c̃

d̃

)
=

(
f̃

g̃

)
, (3.4)

where
(

c̃

d̃

)
=

[(
U 0
0 U

)
⊗ IN

](
c

d

)
,

(
f̃

g̃

)
=

[(
U 0
0 U

)
⊗ IN

](
f

g

)
.

System (3.4) can then be written as

M∑

k=1

(
Ek−1 ⊗ Ak Ek−1 ⊗ Bk

Ek−1 ⊗ Ck Ek−1 ⊗ Dk

)(
c̃

d̃

)
=

(
f̃

g̃

)
,

or
(∑M

k=1E
k−1 ⊗ Ak

∑M
k=1E

k−1 ⊗ Bk
∑M

k=1E
k−1 ⊗ Ck

∑M
k=1E

k−1 ⊗ Dk

) (
c̃

d̃

)
=

(
f̃

g̃

)
.

Note that the coefficient matrix consists of four diagonal blocks and therefore the system
reduces to the M independent 2N × 2N linear systems

(
Ãm B̃m

C̃m D̃m

)(
c̃m

d̃m

)
=

(
f̃ m

g̃m

)
, m = 1, 2, . . . , M, (3.5)

where

Ãm =
M∑

i=1

ei−1
m Ai, (3.6)

with B̃m, C̃m and D̃m defined similarly, and

c̃m = [c̃m1, c̃m2, . . . , c̃mN ]T,

with d̃m, f̃ m and g̃m defined similarly. We thus have the following matrix decomposition
algorithm for solving (2.8):

Algorithm.

Step 1. Compute f̃ = (U ⊗ IN)f and g̃ = (U ⊗ IN)g.

Step 2. For m = 1, . . . , M, construct the matrices Ãm, B̃m, C̃m, D̃m, as
in (3.6).
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Step 3. Solve the systems (3.5).

Step 4. Compute c = (U ∗ ⊗ IN)c̃ and d = (U ∗ ⊗ IN)d̃.

Remarks.

(i) In step 1, because of the form of the matrix U , each of the two matrix–vector
multiplications is equivalent to performing N FFTs of length M . This step can be
done at a cost of O(NM log M) operations using the FFT routine C06FPF from
the NAG Library [18]. Similarly, in step 4, because of the form of the matrix U ∗,
each of the two matrix–vector multiplications can be carried out via inverse FFTs
at a cost of O(NM log M) operations using the NAG routine C06FRF.

(ii) In step 2, to compute an entry of any of the N × N matrices Ãm, B̃m, C̃m, D̃m,
m = 1, 2, . . . , M , requires an M-point inverse FFT, because em = ωm−1. The total
cost of computing these matrices is then O(N2M log M) operations using C06FRF.

(iii) Step 3 involves the solution of M complex linear systems of order 2N . This is done
at a cost of O(MN3) operations using the NAG routine F04ADF, which employs
Gauss elimination with partial pivoting.

4. Examples of axisymmetric solids

4.1. Case I: spherical domains

Consider the case where � ⊂ R
3 is the sphere of radius �:

� =
{
(x, y, z) ∈ R

3:
√

x2 + y2 + z2 < �
}
. (4.1)

The singularities {Qm,n}M,N
m=1,n=1 are fixed on the boundary ∂�̃ of the sphere

�̃ =
{
(x, y, z) ∈ R

3:
√

x2 + y2 + z2 < R
}
,

where R > �, and Qm,n = (xQm,n
, yQm,n

, zQm,n
) with

xQm,n
= R sin ϑn cos ϕm, yQm,n

= R sin ϑn sin ϕm, zQm,n
= R cos ϑn,

where ϕm is given in (2.6) and

ϑn = nπ

N + 1
, j = 1, . . . , N.

The MN collocation points {Pi,j }M,N
i=1,j=1 on ∂� are given by

xPi,j
= � sin ϑj cos ϕi, yPi,j

= � sin ϑj sin ϕi, zPi,j
= � cos ϑj .

Note that we avoid the points corresponding to ϑj = 0 and ϑj = π as they remain
invariant under rotation in the ϕ-direction and would lead to singular matrices.
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4.2. Case II: cylindrical domains

For the cylindrical domain

� = {
(x, y, z) ∈ R

3:
√

x2 + y2 < �, −h < z < h
}
, (4.2)

the MN singularities {Qm,n}M,N
m=1,n=1 are given by

xQm,n
= rQn

cos ϕm, yQm,n
= rQn

sin ϕm, zQm,n
= zQn

,

with ϕm as in (2.6) and (rQn
, zQn

), n = 1, . . . , N , the polar coordinates of N points on
the boundary of the rectangle [0, R]×[−H, H ] with R > � and H > h. The collocation
points {Pi,j }M,N

i=1,j=1 are taken to be

xPi,j
= rPj

cos ϕi, yPi,j
= rPj

sin ϕi, zPi,j
= zPj

,

with (rPj
, zPj

), j = 1, . . . , N, the polar coordinates of N points on the boundary of the
rectangle [0, �] × [−h, h].
4.3. Case III: toroidal domains

Consider the torus of radii �1, �2 with �2 > �1:

� = {
(x, y, z) ∈ R

3:
(√

x2 + y2 − �2
)2 + z2 < �2

1

}
, (4.3)

whose boundary ∂� is given by the parametric equations

x = �2 cos ϕ + �1 cos ϕ cos θ, y = �2 sin ϕ + �1 sin ϕ cos θ, z = �1 sin θ,

0 � ϕ, θ � 2π. (4.4)

In this case, �̃ is a torus which is similar to �, and has boundary ∂�̃ defined by the
parametric equations

x = ρ2 cos ϕ + R1 cos ϕ cos θ, y = ρ2 sin ϕ + R1 sin ϕ cos θ, z = R1 sin θ,

�1 < R1 < �2, 0 � ϕ, θ � 2π. (4.5)

The singularities {Qm,n}M,N
m=1,n=1 on ∂�̃ have coordinates

xQm,n
= ρ2 cos ϕn + R1 cos ϕn cos θm,

yQm,n
= ρ2 sin ϕn + R1 sin ϕn cos θm, zQm,n

= R1 sin θm,

where ϕn is as in (2.6) with M = N , and

θm = 2(m − 1)π

M
, m = 1, . . . , M.

The MN collocation points {Pi,j }M,N
i=1,j=1 on ∂� have coordinates

xPi,j
= �2 cos ϕj + �1 cos ϕj cos θi,

yPi,j
= �2 sin ϕj + �1 sin ϕj cos θi, zPi,j

= �1 sin θi.
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Figure 1. Results for varying distance R and various values of N in the case of the sphere for example 1.

5. Rotation of singularities

Often, improved results can be obtained by rotating the singularities in the ϕ direc-
tion (see [23–25]). In particular, we can place the MN singularities {Qm,n}M,N

m=1,n=1 on
∂�̃ by taking Qm,n = (xQm,n

, yQm,n
, zQm,n

) with

xQm,n
= rQn

cos φm, yQm,n
= rQn

sin φm, zQm,n
= zQn

,

where

φm = 2(α + m − 1)π

M
, m = 1, . . . , M, α ∈

(
−1

2
,

1

2

)
. (5.1)

With this rotation defined by α, the block circulant structure of each of the four matrices
Aα, Bα, Cα and Dα corresponding to the matrices A (≡A0), B (≡ B0), C (≡ C0) and
D (≡ D0), respectively, of section 2, is preserved. In particular, we have

Gα =
(

Aα Bα

Cα Dα

)
,
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Figure 2. Results for varying distance R and various values of N in the case of the sphere for example 2.

where, for example,

Aα =





Aα
1 Aα

2 . . . Aα
M

Aα
M Aα

1 . . . Aα
M−1

...
...

...

Aα
2 Aα

3 . . . Aα
1




, (5.2)

with N × N submatrices Aα
� , � = 1, . . . , M . Thus the matrix decomposition algorithm

described in section 3 is also applicable in this case.
Note that, when M is even, the matrix G1/2 is singular. The proof of this is similar

to that of the corresponding result in [24], and is based on the fact that each of the
matrices A1/2, B1/2, C1/2 and D1/2 has a special block circulant structure. For example,
if M = 2µ with µ a positive integer, then

A1/2 = circ
(
A

1/2
1 , A

1/2
2 , . . . , A

1/2
µ−1, A

1/2
µ , A1/2

µ , A
1/2
µ−1, . . . , A

1/2
2 , A

1/2
1

)
.
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Figure 3. Results for varying parameter α and various values of ε in the case of the sphere for example 1.

6. Numerical results

We consider two test problems of the form (2.1) with � a sphere, a cylinder and a
torus, and the functions f and g corresponding to the following exact solutions:

• Problem 1. u = (x2 + y2 + z2) cosh(0.3x) cosh(0.4y) cos(0.5z).

• Problem 2. u = x4 − 2y4 + z4.

In each of the numerical examples, we take N = M = 24, 32, 48, 64, and cal-
culate E, the maximum relative error at the nodes of a partition of �. In the case of a
sphere, this partition is

xi,j,k = �k sin ϑ̂j cos ϕ̂i, yi,j,k = �k sin ϑ̂j sin ϕ̂i, zi,j,k = �k cos ϑ̂j ,

i, j, k = 1, . . . , L,

where

ϕ̂i = 2(i − 1)π

L
, ϑ̂j = jπ

L + 1
, �k = k�

L
;
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Figure 4. Results for varying parameter α and various values of ε in the case of the sphere for example 2.

for a cylinder,

xi,j,k = rj cos ϕ̂i , yi,j,k = rj sin ϕ̂i, zi,j,k = zk,

i, j = 1, . . . , L, k = 1, . . . , L + 1,

where

rj = j�

L
, zk = −h + 2(k − 1)

L
h,

and for a torus,

xi,j,k = �2 cos ϕ̂i + �j cos ϕ̂i cos θ̂k, yi,j,k = �2 sin ϕ̂i + �j sin ϕ̂i cos θ̂k,

zi,j,k = �j sin θ̂k,

where i, j, k = 1, . . . , L, and

�j = j�

L
�1, θ̂k = 2(k − 1)π

L
.

In the numerical experiments, we took L = 16.
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Figure 5. Results for varying distance R and various values of N in the case of the cylinder for example 1.

In the following figures, the plots of E versus R are on a log–log scale and those
of E versus α on a semi-log scale.

6.1. Case I

For problem 1 with the unit sphere, that is, � = 1, we present in figure 1 plots of
E versus R when α = 0. This figure reveals that the MFS approximation is poor when
ε = R − � is either very small or very large. Similar results are obtained for problem 2;
see figure 2.

For problem 1, plots of E versus α are given in figure 3. Because of the symme-
try of the problem about α = 0, we choose α ∈ [0, 1/2). We consider three cases,
ε = R − � = 1, 0.1, 0.05. For ε = 0.05 (and smaller as was observed from numerical
experiments) and ε = 0.1, as N increases, the error E is optimized for α ≈ 1/4 whereas
for ε = 1 (and larger values of ε as was observed from numerical experiments) E be-
comes independent of α as N increases. Again the results for problem 2 are similar; see
figure 4. In order to give an indication of the computing time required, in table 1 we
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Figure 6. Results for varying parameter α and various values of ε in the case of the sphere for example 1.

Table 1
CPU times (in seconds) for case I.

M = N 16 24 32 48 64 96

Secs 0.09 0.27 0.66 2.48 8.28 34.84

present the CPU times for the solution of case I. These times were recorded on an IBM
RS6000 (375 MHz).

6.2. Case II

For the cylinder with h = 1, � = 1, we present results for example 1 only as
those for example 2 are similar. In figure 5, we plot E versus R for α = 0, and, as in
the case of the sphere, the MFS approximation is poor when ε = R − � (= H − h)

is either very small or very large. In figure 6 are plots of E versus α, α ∈ [0, 1/2) for
ε = R − � = H − h = 1, 0.1, 0.05. We observe that the behaviour of the error as α

varies is rather erratic. For ε = 0.1 and 0.05, as N increases the error E is optimized
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Figure 7. Results for varying parameter α and various values of ε in the case of the torus for example 1.

for α ≈ 1/4. For ε = 1 (and larger values of ε), E becomes independent of α as N

increases. In particular, the larger the distance ε, the less dependent E is on α.

6.3. Case III

For the torus with �1 = 1/2, �2 = 1, we again present results for example 1 only.
In figure 7, we plot E versus α for α ∈ [0, 1/2), and ε = R1 − �1 = 0.4, 0.1, 0.02. Note
that, in this case, we require that ε ∈ (0, 1/2). For ε = 0.1 and 0.02, as N increases, the
error E is optimized for α ≈ 1/4 whereas, for ε = 0.4, E again becomes independent
of α as N increases.

The optimal value of α ≈ 1/4 was also observed for the case of the two-
dimensional harmonic problem on a disk (see [23,25]) and for three-dimensional ax-
isymmetric harmonic problems (see [24]). This indicates that the error is minimized
around that value of α when ∂�̃ is close to the boundary ∂�.

The poor accuracy when using either small or large ε has been observed in other
applications of the MFS (see [2,9,23]).
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7. Concluding remarks

An efficient MFS algorithm is formulated for the solution of biharmonic problems
in axisymmetric domains. The algorithm exploits the circulant structure of the matrices
resulting from the MFS discretization. The ideas developed in this work can also be
used when boundary element methods (BEMs) are applied to axisymmetric problems,
as the structure of the matrices arising in these methods is similar to that of the MFS dis-
cretization matrices. It is worth noting that the MFS has several advantages over BEMs.
The MFS is easy to implement and requires little data preparation. Moreover, it does
not require an elaborate discretization of the boundary, nor does it involve potentially
troublesome integrations such as are present in BEMs. By using the method of partic-
ular solutions (see [9]), the proposed algorithm could also be used to solve problems
governed by inhomogeneous equations.
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