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Abstract
An analytical approach is established to analyze the mechanical behavior of a unidirec-
tional (UD) composite subjected to an in-plane shear. The effects of the interface debond-
ing on the in-plane shear strength and plasticity of the composite are evaluated respectively. 
The volume-averaged internal stresses of the fiber and matrix are calculated through Bridg-
ing Model. Owing to the stress fluctuation in the matrix caused by other phases (such as the 
imbedded fiber and interface crack), the homogenized matrix stresses must be converted 
into true values based on a stress concentration factor (SCF). A new in-plane shear SCF 
of a composite with debonded interface is derived and applied to the predictions of strain 
and strength in this paper. Moreover, the contribution of the relative slippage between fiber 
and matrix to the non-linear shear deformation of the composite is analyzed. Finally, the 
efficiency and accuracy of our theory are verified with a series of examples. The approach 
is very efficient because the calculation can be achieved with explicit expressions mainly 
based on the constituent material properties. The comparisons between predicted strength 
and deformation with the experimental results show that our analytical approach can give 
out reliable underlying data for multi-scale analysis. Moreover, this theoretical method can 
tell if and how much the interface of a composite needs to be modified for a given load 
environment.

Keywords In-plane shear · Interface debonding · Stress concentration factor · Relative 
slippage · Bridging model

1 Introduction

In-plane shear stress components widely exist in the application scenarios of modern 
advanced composite materials. Engineering constructional elements subjected to torsion 
or lateral loads, such as wing skins, bolted joints, spar caps and bonded joints, are typi-
cal such examples. Moreover, some key mechanical problems such as kinking failure are 
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closely related to in-plane shear property of a composite. Test methods [1–4] for obtaining 
the in-plane shear behavior of a composite have various shortcomings [3, 5–8], e.g., dis-
persed measured data and high costs. As described by Purslow [9], there are many doubts 
about the mechanism and regularity of the shear-induced deformation and failure. There-
fore, researchers attempt to develop analytical models to predict the composite properties 
under in-plane shear. Until recently, there are still meaningful continuous efforts made to 
study the mechanical response under in-plane shear [10–15].

In engineering applications, most formulae used for predicting the in-plane shear 
strength based on properties of constituent materials are empirical or semi-empirical 
[16–18]. Researchers admitted that it is still quite hard to accurately predict the mechanical 
behavior of a composite subjected to in-plane shear loading [19–21]. In summary, stud-
ying the regular and principal failure and deformation of a composite under in-plane shear 
and then building a corresponding mechanical prediction model is challenging but has 
great theoretical and practical significance. The main objective of this paper is to put for-
ward a micro-mechanical method for predicting the debonding moment, ultimate strength 
and strain response of a composite subjected to an arbitrary loading dominated by in-plane 
shear, mainly using the original properties of the constituent materials. The other important 
objective is to understand interface behavior simply and accurately, by telling a discount in 
a composite strength and rigidity due to the interfacial debonding.

In this work, the objectives above will be achieved by analyzing the stresses and strains 
in the constituents with a micro-mechanical method. It must be noted that the volume-
averaged stresses given by any micro-mechanical theory cannot be directly used for deter-
mining the mechanical behavior of a composite. This obstacle has been overcome by 
applying a stress concentration factor (SCF) theory [22–24]. It is well known that a plate 
with a hole suffers stress concentration under in-plane tension. When the hole is filled 
by a fiber, or other filler with different properties, a stress concentration occurs as well 
[25–28]. Multiplied by the corresponding stress concentration factors (SCFs), the homog-
enized stresses of the matrix can be converted into the true values, which can be directly 
used in a failure detection or plasticity evaluation.

The definition and application of the SCFs are mostly based on a perfect interface bond-
ing assumption, which is often not consistent with the practical situation. Interfacial cracks 
caused by in-plane shear widely exist among composites in engineering applications [9, 
29–35], playing an important role in the mechanical behavior of the composite [25, 35, 36]. 
In fact, perhaps the most widely used test methods to characterize an interface behavior, 
such as single fiber pull out or push in test [37], were designed based on an assumption that 
a shear load will cause the interface debonding to occur. For a composite with an initial 
perfect and later debonded interface, as the common case being, the stress distribution and 
fluctuation will change after the interface debonding. Therefore, two SCFs of a composite, 
with and without interfacial crack, are both needed in a mechanical analysis.

To definite a SCF, two necessary conditions are required. The first is the stress field of 
the matrix in a representative volume element (RVE) of the composite material, which can 
be obtained using an elasticity approach. A traditional SCF is defined as a ratio of the max-
imum point-wise stress and the averaged stress on a surface. Similarly, our SCF is a ratio 
of averaged stress on a line and that of the whole volume of the representative volume ele-
ment. The volume-averaged stress is given by Bridging Model and the line-averaged stress 
is calculated through line integral of the stress filed function. Therefore, the second condi-
tion is determination of the integration path, which is perpendicular to the fracture surface 
of the composite [22–24]. For the composite under an in-plane shear, the feature of the 
shear cracks and fracture surface of the composite can be shown better on a longitudinal 
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section [19, 20, 29, 38], while the stress fields are generally represented in a transversal 
cross-section [39–41]. Therefore, stereoscopic physical models of a composite with and 
without an interfacial crack are built in this work to gain comprehensive information.

The SCF thus derived is to be used for calculation of the matrix true stresses to quantify 
the effect of an interface debonding. An analytical approach will be carried out to pre-
dict the interface debonding, deformation and ultimate strength of a composite subjected 
to an in- plane shear, mainly using the original properties of the constituent materials. The 
homogenized stresses of the constituents are calculated through Bridging Model [42], and 
the true stresses are obtained accordingly by virtue of the SCFs. As the values of SCFs 
before and after an interface debonding are different, an incremental solution strategy is 
generally employed. Moreover, when estimating a deformation, not only the elastic–plastic 
response of a constituent but also a strain fluctuation and a relative sliding displacement 
between the fiber and matrix after their interface debonding should be taken into consid-
eration. With the improved SCF theory and the interface slippage model, a more accurate 
prediction of the in-plane shear strength and the deformation can be achieved. To illustrate 
our theory, a variety of UD composites are chosen as examples. Only the constituent prop-
erties and the transverse tensile strengths are needed for input. The influence of the stress 
fluctuations due to the embedded fiber and the interface debonding on the matrix SCFs is 
discussed. The loading level corresponding to an interfacial crack initiation is estimated, 
and the nonlinear stress–strain response of the composite under in-plane shear up to the 
ultimate failure is predicted. The accuracy and predictability of our theory has been veri-
fied by comparing the predictions with the available experimental data.

2  Internal Stresses in Constituents

To achieve the goal of calculating the properties of a composite using only the fiber and 
matrix data, the internal stresses of its constituents are obtained with a micromechanical 
method. A homogenization treatment leads to

In Eq. (1), �i and �̃�i are the volume-averaged and point-wise stresses of the composite, 
respectively. The subscript i represents the direction of the stress component. In this paper, 
i equals to 1, 2 or 3 indicates a normal stress along the fiber axial, transverse, or thick-
ness direction of a laminate, whereas to 4, 5, or 6 represents the corresponding shear stress 
component. V stands for volume content and V’ is an infinitesimal volume. f or m located at 
superscript or subscript indicates that the volume or stress is related to the fiber or matrix. 
For example, �f

1
 represents the matrix stress in the fiber axial direction and �m

2
 indicates the 

matrix stress in transversal direction.
Correlating the internal stresses in the fiber and matrix with a bridging equation [38], 
{
�m
i

}
=
[
Aij

]{
�
f

i

}
 , and combining it with Eq. (1), the internal stresses can be expressed 

as
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With the bridging tensor, 
[
Aij

]
 , defined by Bridging Model [42], the non-zero internal 

stresses in a UD composite under in-plane shear, σ12, are given as follows.

In the above formula, �f

12
 and �m

12
 are in plane shear stress of fiber and matrix. Gf

12
 and 

Gm are the longitudinal shear moduli of the fiber and matrix, respectively. a66 is an element 
in bridging tensor, 

[
Aij

]
 , related to the in-plane shear stress component. The parameter α in  

Eq.  (4) has a value of 0.3. The expressions of elements in bridging tensor and volume- 
averaged stresses of the constituents under an arbitrary load are summarized in Appendix 
A.

3  Derivation of In‑Plane Shear SCF after Interface Debonding

3.1  Definition of SCF and True Stress

Different from a classical approach, a SCF of the matrix in a composite is defined as the 
ratio of a line-averaged stress of the matrix over the corresponding volume-averaged quan-
tity of it. The integration line for the line averaging is along the outward normal to the 
failure surface of the composite within the RVE, starting from the inner surface and ending 
at the outside one of the matrix cylinders [22–24]. The stress distribution of the matrix is 
obtained based on a concentric cylinder assemblage (CCA) model. The SCF expressions 
already available [22–24] are given in Appendix B.

Due to the stress fluctuation in the matrix caused by the embedded fiber, the homog-
enized internal stresses of the constituent materials cannot be directly used for a failure 
prediction. Instead, the homogenized stresses of the matrix must be converted into the true 
values to represent the effect of the stress fluctuation [22–24]. In our model, x1 and x3 axes 
are along fiber axial and plate thickness directions, respectively. Accordingly, the direc- 
tion of stress can be read from the subscript of a symbol. For example, �f

11
 represents the  

axial stress in the fiber and �m
12

  represents the in-plane shear stress in the matrix. Let the  
homogenized stresses of the matrix be 

{
�m
11
, �m

22
, �m

12

}
,which can be calculated using 

Eq. (3). The corresponding true stresses 
{
�
m

11
, �

m

22
, �

m

12

}
 are obtained from

(3)
{
�m
i

}
=
[
Aij

](
Vf [I] + Vm

[
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])−1{
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}
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(6)K22 =

⎧
⎪
⎨
⎪
⎩

Kt
22
, if 𝜎m

22
> 0 and with perfect interface

K̂t
22
, if 𝜎m

22
> 0 and with debonded interface

Kc
22
, if 𝜎m

22
> 0
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 Kt
22

 and K̂t
22

 are, respectively, the transverse tensile SCFs of the matrix before and after 
the interface debonding. Kc

12
 and K12 are the transverse compressive and longitudinal shear 

SCFs of the matrix with a perfect interface. It is noted that under a longitudinal tension or 
compression, the stresses in the matrix are uniform [43], thus non SCF is applied in front 
of �m

11
 in Eq. (5).

3.2  Stress Field of a Composite with Debonded Interface Under Longitudinal Shear

The in-plane shear SCF given in Appendix B is derived based on an assumption that the 
interface keeps perfect bonding until the ultimate failure [44, 45]. In this case, the stress 
transfer of a RVE under in-plane shear loading is indicated by Fig. 1. a is the radius of the 
fiber and b is the radius of RVE volume. b and a are correlated as b =

a
√
Vf

 . The schematic 
and actual drawing of inclined cracks in the matrix caused by shear-resulting maximum 
principal stress are shown in Fig. 1(a) and Fig. 1(c). From the transversal cross section, the 
matrix in the region singed by the vertical line is responsible for transferring the applied 
stress to the fiber. Therefore, the fracture of the composite generally occurs when the stress 
of this part of matrix reaches ultimate failure strength. Based on the defining method of a 
SCF, the integral line see Fig. 1(a) and (b) must be perpendicular to the matrix crack, locat-
ing in the region with the vertical lines in Fig. 1(b).

Fig. 1  Schematic of stress transfer and matrix cracks under in-plane shear in the (a) longitudinal and (b) 
transversal sections of a RVE of a composite with complete interface (c) matrix cracks in actual compos-
ites[25]
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In reality, interface debonding often occurs during the loading process and affects the 
mechanical properties of the composite. This influence is often attributed to the hinder-
ing effect of an interfacial crack on the stress transfer between fiber and matrix. As shown 
in Fig. 2(b), the stress cannot be transferred smoothly because of the free surface on the 
interface crack. In fact, an increase of the stress fluctuation after interface debonding also 
plays a role in the change of mechanical properties, which will be quantified by virtue of a 
new in-plane shear SCF in this paper. Moreover, the slippage between fiber and matrix will 
produce an extra in-plane shear deformation, � int

12
 , which constitutes the final composite’s 

deformation ( �comp
12

 ), with the deformation of matrix and fiber ( �mf
12

 ), as shown in Fig. 2.

Fig. 2  Schematic of interface cracks and the resulting extra deformation under in-plane shear in the longitu-
dinal and transversal sections of a RVE of a composite

Fig. 3  Stress nephogram around a single fiber of a composite under unit in-plane shear (a) before and (b) 
after interface debonding
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As mentioned earlier, the corresponding stress field is the foundation of deriving a 
SCF. As shown in Fig.  1, there is a curved crack on the fiber/matrix interface. Ideally, 
the debonding can be supposed to occur symmetrically with respect to, e.g., x3 coordinate, 
producing two interfacial cracks. However, the interface debonding rarely occurs on both 
sides simultaneously in reality for following reasons. Considering the minute differences 
between the interfaces of two sides, the interface debonding crack is very likely to initi-
ate on the weaker side. Once the interface crack initiates on one side, the matrix around 
the crack loses its bearing capacity and the stress on the opposite side also decreases (as 
shown by stress nephogram in Fig. 3), reducing the possibility of appearance of symmetri-
cal cracks.

Let us employ the central angle of an interfacial crack to evaluate the size of the 
debonding part and use a parameter, 2ψ, to stand for it. In a CCA model, Zhang and 
Hasebe obtained the stress fields of the fiber and matrix in Fig. 1 under an applied in-plane 
shear, �0

12
 [46]. After simplification, the expression of stress distribution in the matrix, �̃m

12
 , 

is given as:

Fig. 4  Stereo model of a composite with perfectly bonded interface under a longitudinal shear (a) initiation 
of matrix cracks (b) the matrix cracks close to final failure

Fig. 5  Fracture surface of a composite under a longitudinal shear [47] (load direction is shown for ease of 
understanding)
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In Eq. (7), a is the fiber radius and z = x2 + ix3 is the coordinate of the matrix point under 
consideration. The corresponding stress concentration gradients around a fiber of the RVE 
under an in-plane shear before and after the interface debonding are represented by stress 
nephogram in Fig. 3, from which the stress inhomogeneity of the transversal section under 
a unit shear stress can be seen clearly.

3.3  Determination of Integration Path

Except for obtaining the stress field, the other key requirement for derivation of a SCF 
is to determine the integration path. According to the universal definition for a SCF, this 
path should be perpendicular to the failure surface of the composite within the RVE. 
Existing observational experiments have reported that the micro-cracks in the matrix of a 

(7)

�̃m
12

= �0

12
Re

{
Gm

Gm + G
f

12

(

1 −
�2

z2

)

+
G

f

12

Gm + G
f

12

×
(
z − aei�

)−0.5
(

z − a cos (�) −
a3

z2
+

cos (�)a2

z2

)}

Fig. 6  (a) (b) Stereo model of a composite with interface crack under in-plane shear and (c) corresponding 
enlarged drawing [48] (the arrows denote the crack propagation)
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composite under in-plane shear are along a direction approximately in 45° with the fiber 
axis [9, 20, 26, 30]. Accordingly, one can use Fig. 4 to describe the development of the 
matrix cracks in a composite under the in-plane shear, where the interface between the 
fiber and matrix of a composite is supposed to be perfectly bonded during the whole load-
ing process. However, there are some other phenomena widely observed in composites 
after an in-plane shear failure [9, 29–35]: the fiber with little matrix covering on it, fiber-
like imprints on the matrix, bare fiber pulled out, etc. as shown in Fig. 5. These phenom-
ena are signs of fiber/matrix interface debonding. Thus, a new model containing interfa-
cial crack is needed.

Let us assume that x1 is in the fiber axial direction and the shear stress is applied in 
x1-x2 plane. Based on the observations in Fig. 5, a stereoscopic model can be built as indi-
cated in Fig. 6 and Fig. 7. In the x1-x2 plane, both of the initial matrix cracks in Fig. 4 and 
Fig. 6 are approximately in 45° with the fiber axis, perpendicular to the direction of the 
principal tensile stress. Different from the micro-crack distribution in a composite with 
the perfect interface (Fig. 4(a)), the matrix cracks caused by the interface debonding are 

Fig. 7  (a) Stereo model of a failed composite under a longitudinal shear and (b)(c)(d) actual plane images 
of it from various perspectives[27]
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initiated from the boundary of the debonding area in Fig. 6 (a) (or to say, from the tip of 
an interfacial crack on the x2-x3 plane). After a full development (Fig. 6(b)), the matrix 
cracks induced by the interface debonding will propagate along the x3 direction, leading 
to the final fracture (Fig. 7). The schematic morphology shown in Fig. 7 is consistent with 
that in Fig. 5.

In all diagrams, it is clear that the cracks are only distributed in a part of matrix due to 
a stress concentration. The stress level in this part governs the in-plane shear strength of 
the composite. Accordingly, the definition of an in-plane SCF of the matrix with a perfect 
interface is based on a physical model similar to that represented by Fig. 4 [44, 45]. In a 
similar way, the in-plane SCF of the matrix after the interface debonding should be defined 
based on the model represented by Fig. 6 and Fig. 7.

It is widely believed that the interfacial crack will initiate from a point on the inter-
secting line of fiber surface and a symmetry plane parallel to the loading direction [25, 
40, 41, 49], for example, at the point (x2 = a, x3 = 0) in Fig. 8 (b). For a relatively small 
half-cracked angle, ψ, the interfacial crack hinders the stress transfer thus reduces the load-
bearing capacity of the matrix above the debonding region. The matrix area marked with 
vertical lines in Fig. 8(b) will carry more stresses than the same area of a model under the 
same loading condition but with the perfect interface (Fig. 8(a)), thus will be more likely 
to produce cracks. In particular, when the center angle is zero, the composite will turn back 
to the case of the perfect interface. In another situation, with an expansion of the center 
angle ψ, the main load bearing area of the matrix will move from the middle to the sides, 
as shown in Fig. 8(c). Obviously, the actually observed distribution of the matrix cracks on 
the fracture surface (Fig. 5) is in accordance with the model in Fig. 8(c) instead of Fig. 8(a) 
or Fig. 8(b).

The half-cracked angle ψ is a key parameter that effects the distribution of the matrix 
cracks and the integration line for defining the SCF. On one hand, according to the result 
obtained with an analytical method [40, 41, 49], this half-cracked angle ψ can reach a value 
of  900, indicating that a debonding crack can propagate to occupy half of the interface. On 
the other hand, if the debonding curve expands more than half of the interface, the crack 

Fig. 8  Interfacial crack expansion and corresponding distribution of potential matrix crack in a RVE under 
in-plane shear
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propagating path to form the final fracture surface is depicted in Fig. 9(a), which is longer 
and more energy-consuming than that in Fig. 9(b). Therefore, it is reasonable to assume 
that the center angle, 2ψ, is 180°.

To prove this viewpoint, the picture of transversal plane of a composite after an 
in-plane shear failure is taken from Ref. [50]. After measuring the center angles in 
Fig. 10(a), an averaged value of 175°is obtained. It is clear in the picture that the sizes 
of the debonding parts around fibers differ widely from each other due to a non-uniform 
fiber distribution, but their averaged value is close to our expectation. More evidences 
can be found on the fracture surface plane [51–53], e.g., Fig. 10(b), where the width of 
a fiber imprint is close to that of the uncovered fiber (marked with both end arrows in 
Fig. 10(b)).

In conclusion, the crack propagation process is as follows: an interfacial crack will 
initiate from a single point and propagate to about half of the interface, and further con-
nect with the cracks in the matrix rich region to form the final fracture surface. Based on 
this process, the value of ψ and the schematic in Fig. 2 and Fig. 8(c), a transverse cross-
section of the fractured composite with debonded interface under an in-plane shear is 

Fig. 9  Transversal sections of a 
composite with a half-cracked 
angle of (a) over 180°and (b) 
180°

Fig. 10  (a)Transversal section of a carbon fiber reinforced composite after in-plane shear failure under con-
focal laser microscope [50](b) Fracture surfaces of a carbon fiber/PEEK epoxy composite after in-plane 
shear failure [51]
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finally depicted in Fig. 11, with the crack distribution in the matrix marked with vertical 
lines parallel to the x2 axis.

The integration line for defining a SCF is mainly based on the inclined direction 
of the matrix induced fracture surface. According to the crack distribution in Fig. 11, 
let us consider a certain longitudinal cross-section containing matrix cracks located at 
x3 = x0

3
, � ≤ x0

3
≤ b . According to the general definition for a SCF (Appendix B), the 

stress integration line should be perpendicular to the fracture surface of a microscopic 
matrix crack. For example, for the longitudinal plane of x0

3
= � , the integration line 

starts from the fiber surface (point (0, 0, a) in Fig. 12(a)) and ends at the matrix outside 
surface of the RVE, i.e., the point ( 

√
b2 − a2,−

√
b2 − a2, a ) in Fig. 12(a). For a certain 

longitudinal plane of, the integration line is determined as shown in Fig.  12(b), from 

the starting point (0,0,x0
3
 ) to the ending one ( 

√
b2 −

(
x0
3

)2
,−

√
b2 −

(
x0
3

)2
, x0

3
 ), so that 

the line connecting the two points is perpendicular to the surface of microscopic matrix 
shear crack.

After determination of the integral line, the in-plane shear SCF after interface debond-
ing, can be obtained as

Fig. 11  Schematic of a RVE used 
in defining SCF of a composite 
after interface debonding sub-
jected to an in-plane shear
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The detailed derivations can be found in Appendix C. In Eq. (8), a is the radius of the 
fiber, b = a∕

√
Vf  

4  Role of K̂
12

 

The SCF formula, Eq.  (8), is valid once an interface debonding occurs. The moment 
when the debonding will occur must be determined. In general, the fiber/matrix inter-
face is bonded perfectly at the beginning of loading, and the interface debonding would 
happen when the applied load reaches a critical level. A transverse tension is believed to 
cause an interface debonding more potentially to occur than any other uniaxial load con-
dition. Thus, a transverse tensile strength should be provided to determine the moment 
of the interface debonding. A criterion for detecting an interface debonding has been 
established in our previous work [44], which states that.

�̄�m
12

 is the Mises stress of the matrix corresponding to matrix true stress components 
( ̄𝜎m

11
, �̄�m

22
, �̄�m

12
 ) or matrix average stress components ( ̂𝜎m

11
, �̂�m

22
, �̂�m

12
). �̂�m

e
 is the critical Mises 

true stress of the matrix. �̄�1
m

 is the first true principal stress of matrix. For a composite 
under transversal loading, if the stress applied at the moment of interface debonding, 
�̂�0

22
 , is known. �̂�m

e
 in Eq. (9) can be given by [44, 54].
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Fig. 12  Schematic for defining SCF of matrix under in-plane shear at (a) transversal and longitudinal sec-
tions at x3 = a, (b) transversal and longitudinal sections at x3 = x0

3
, � ≤ x0

3
≤ b 

914 Applied Composite Materials (2022) 29:901–935



1 3

a11, a22 and a12 are elements of bridging tensor, for which the expressions can be found 
in Appendix A. In Eq. (13), Y is the transverse tensile strength of the UD composite. �̂�m

u,t
 is 

the matrix tensile strength. �̂�0

22
  is the applied loading at the moment of interface debond- 

ing of the composite under transversal tension. Ef

22
 is the transverse modulus of fiber. Kt

22
 and  

are, respectively, the transverse tensile SCFs of the matrix before and after the interface 
debonding. In Eq. (9), �̄�m

e
 and �̄�1

m
 are the Mises and the first principal stresses of the matrix, 

respectively, calculated from its true stress components, given by Eq. (6). Namely [54],

When the composite is subjected to an in-plane shear, the interface debonding will 
occur once the applied load reaches  �̄�0

12
 , at which the Mises true stress of the matrix 

attains �̄�m
e

 . Thus, the loading process up to a composite ultimate failure is separated by 
into two stages. In the first stage, the composite has a perfect interface bonding and the 
in-plane shear SCF, K12, of the matrix should be applied to determine its true stress. In 
the latter stage with the debonded interface, the SCF, K̂12 , derived in the last section is 
applicable. Let �m,S

12
and �m

12
  be the matrix homogenized stresses corresponding to the 

failure and the debonding loads, respectively, under the in-plane shear. The failure con-
dition of the composite under in-plane shear is given by

�m
u,s

  is the matrix shear strength, and �u
12

  is the in-plane shear strength of the composite. 
From Eqs. (16) and (17), one can estimate the debonding load and the strength of the compos-
ite under in-plane shear if its transverse tensile strength, Y, is available.

In a certain longitudinal  cross-section (located at x3 = x3
0
 ) of the composite under the 

in-plane shear, there is a relative sliding displacement along the x1 direction between the 
debonded interfaces of the fiber and matrix. An overall strain of the composite is consisted of 
not only the strain contributed from the fiber and matrix deformations but also that caused by 
the interfacial slippage displacement. The relative slippage strain, � int

12
 , is found to be [55]

�0

12
  is the in-plane shear load applied to the composite. The expressions for 

the  f1
(
�1

)
  and f2

(
�1

)
  in Eq.  (18) are summarized in Ref. [55]. It is noted that the Gm in 

Eq.  (18) is an instantaneous shear modulus of the matrix, which should be defined upon 
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the current Mises true stress of Eq. (14). More details can refer to Ref. [55]. The angle ψ1 is 
defined as.

To deal with debonded interface, an incremental solution strategy should be applied to 
evaluate step by step displacements from Eqs. (19). �̂�0

12
 and �̂�m

12
 are applied loading and matrix 

stress corresponding to interface crack initiation. �u
12

 is the composite’s in-plane shear strength. 
The a66 is calculated with Eq. (4).

An additional comment regarding the interface debonding angle is made herein. At the 
beginning of an interface debonding, the debonding angle is zero. This angle expands to the 
half plane with 2ψ = π when the composite attains an ultimate failure subjected to an in-plane 
shear load. The Eq. (19) is obtained by assuming that the ultimate failure load corresponds  
to the half plane debonding [55]. However, in deriving the matrix in-plane shear SCF, , after 
the interface debonding, the largest debonding plane angle, i.e., 2ψ = π, has been used. This 
usage does not mean that the SCF, , would play a role only at an interface debonding angle of  
2ψ = π. Instead, when ψ ≤ 0 or when the in-plane shear load is smaller than the critical one, 
�0

12
 ≤ �̂�0

12
 , the perfect interface bonding based SCF, K12, is active. However, when ψ > 0 or 

�0

12
 > ̂𝜎0

12
, K̂0

12
 the must be used.

5  Illustration

5.1  Materials and Calculation Method

Only original fiber and matrix properties plus a transverse tensile strength of a UD com-
posite are necessary for predictions of, e.g., the interface debonding load, the ultimate 
strength of the composite, and the deformation up to failure. The original properties of the 
constituent materials of a total number of 10 UD composites taken from Refs. [56–59]. 
are summarized in Table 1. The SCFs of the matrices in the composites necessary for the 
predictions are calculated as per the formulae in Sect. 3 and Appendix B. They are listed in 
Table2.

Using the data of Tables 1 and Tables 2, the in-plane shear strengths of the 10 com-
posites are calculated with and without incorporation of the SCFs as well as the interface 
debonding. Results are shown in Table 3. Measured counterparts taken from the respective 
sources and their corresponding measuring methods are also given in the Table 3 to verify 
the accuracy of our predicted in-plane shear strength.

For deformation prediction, the stress–strain curves of a carbon fiber and a glass fiber 
reinforced composite under in-plane shear until failure are applied as illustrations. Four dif-
ferent kinds of prediction schemes have been made. The first is done based on the homog-
enized stresses of the matrix (i.e., all the SCFs are set to 1) and no interface slippage is 
considered. In the second prediction, the SCF of a perfect interface bonding, K12, is used 
throughout without any interface slippage considered. The third (labeled as “prediction 
with interface slippage 1”) is made by taking both the SCF K12 and the interface slippage 
into consideration. In other words, although the contribution from the interface slippage 
displacement has been considered in the third prediction, the in-plane shear SCF of the 
matrix, K12, is used throughout. The last prediction (labeled as “prediction with interface 

(19)2𝜓1 =

(
𝜎0
12
− �̂�0

12

)

(
𝜎u
12
− �̂�0

12
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=
Vf + Vm𝛼66
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slippage 2”) is obtained with the method developed in this paper, incorporated with the 
two in-plane shear SCFs of the matrix, K12 and, at different loading stages and the interface 
slippage displacement altogether. The predictions are plotted in Fig. 13 for the AS4/8552 
and in Fig. 14 for the E-Glass/ M750 material systems, respectively.

5.2  Result and Discussion

The main contribution of this paper is to derive and apply a new stress concentration factor, 
K̂12 . It is seen from Table 2 that the transverse tensile SCFs are generally higher than the  
in-plane shear SCFs. In general, the transverse tensile strength is the lowest of the uni-
axial strengths of a UD composite, sometimes even lower than half of the original tensile 
strength of the matrix. On the other hand, the in-plane shear strength of the composite is 
usually higher than the corresponding matrix shear strength. This difference confirms that 
the stress concentration caused by the embedded fiber and the interfacial crack is more 
serious to a transverse tension than to an in-plane shear. Moreover, comparing the data in 
the third and fourth columns of Table 2, the corresponding transverse tensile SCFs after the 
interface debonding are more than double of those before the interface debonding. On the 
other hand, the differences between the in-plane shear SCFs before and after the interface 
debonding are not very much significant.

Let us analyze the predicted strengths in Table 3. According to the predicted strengths 
with and without SCFs, the use of an in-plane shear SCF is very effective, and the con-
sideration of the interface debonding could further improve the accuracy of the predicted 
strength. The accuracy of predictions given by the method proposed in this paper (last 
row of Table 3) is generally satisfactory. However, it must be noted that the corresponding 

Fig. 13  Predictions and measurements [60] for stress–strain curves of AS4/8552 UD composite under in-
plane shear load
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strength measuring methods of material systems are different, as shown in Table 1. These 
test methods have their respective characteristics and defects. For example, the tension test 
of ± 45° laminates [1] is simple to use but easily affected by fiber rotation during loading, 
or to say, “scissors factors” [5, 6]. The short beam shear test will be affected by a mixed 
stress state [4]. Contrarily, the Iosipescu shear test [2] could provide a state of pure shear 
stress but will be influenced by stress concentration near the notch [3].

Due to these characteristics and defects, significant discrepancies sometimes exist 
among shear strengths measured by different methods [7]. For instance, the value of in-
plane shear strength of AS4/3501–6 was reported to be 96  MPa [60], obtained from an 
Iosipescu measuring method, while the reference value given by a thin-walled tube torsion 
test was chosen to be 79 MPa [61] by the organizers of WWFE. In fact, other published 
values are in the range of 71–110 MPa [21, 62–64]. Therefore, the difference between the 
predicted strength and the experimental value can be partly attributed to the measurement 
error. For example, the relatively error of prediction of AS /epoxy given by our proposed 
method in the Table 3 is relatively high (11.2%). This is probably because the measurement 
has been overvalued as the only one given by an Iosipescu test.

Except for the measurement deviation, the relative error can also come from calcula-
tion process. For example, the relative error of shear strength of the T300/PR319 reaches 
38.8%, which is obviously too high. In fact, the shear strength of RP319 matrix provided 
by WWEF organizer is 41 MPa, being much lower than strengths of other matrices. The 
organizers of the WWFEs admit that the data of RP319 resin ‘‘are considered to be low.’’ 
Therefore, this high relative error can be attributed to the unreasonable raw data of com-
ponent materials. Similarly, for another material system with a relative error higher than 
10%, AS4/3501–6, the mechanical properties of component materials might be doubtful. 

Fig. 14  Predictions and measurements [57] for stress–strain curves of E-glass/M750 UD composite under 
in-plane shear loading
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The tensile, compressive, and shear strengths of the matrices of other material have an 

approximately quadratic relationship: �m
u,s

≈ 0.5

√(
�m
u,t − �m

u,c

)
 . However, the given shear 

strength of the 3501–6 epoxy, 50 MPa, is far away from the value of. It is possible that the 
measurement or record of the data of this epoxy is not accurate. Another possibility is that 
the shape of the failure envelope of 3501–6 epoxy is special. Thus, our universal matrix 
failure criterion is less applicable to it.

With above discussion, the causes of all relative errors higher than 10% have been ana-
lyzed. Considering these causes, it is reasonable to believe that our method for calculat-
ing in-plane shear strength of a composite is reliable. Next, let us carry out deformation 
prediction for two composites, AS4/8552 and E-Glass/ M750, under in-plane shear up to 
failure. In Fig. 13 and Fig. 14, the first (calculation without any SCF) and the second kinds 
(calculation with K12 and an assumption of a perfect interface) of predictions deviated with 
the experiments significantly, implying that only the constituent deformations cannot make 
up the large deformation of a composite under an in-plane shear. It is the relative slippages 
between debonded fiber and matrix interfaces that dominate the nonlinear in-plane shear 
stress–strain curve of the composite during a later loading stage. Although significant dif-
ference between the predicted stress–strain curve from the second scheme and those from 
the third and last schemes exists, the predicted ultimate strengths from all of them are com-
parable with each other. The last prediction scheme, that is, the approach proposed in this 
paper correlates overall the best with the experiments.

Similar to the strength prediction, the error source and data credibility also need to be 
discussed for deformation prediction. The methods generally used for measuring in-plane 
shear deformation include Iosipescu test, ± 45° tension test and 10° off-axis tension test. 
Among these methods, the discreteness of experimental results given by Iosipescu test is 
often very high [21, 65, 66]. On the contrary, the corresponding measurement obtained 
with 10° off-axis test is less discrete but generally too small [66]. For example, the failure 
shear strain of a Kevlar/epoxy composite is 2.02% for Iosipescu test and 1.73% for ± 45° 
tension test, but is 1.03% for 10° off-axis tension test. Therefore, we have chosen two illus-
trations measured with the torsion [57] and ± 45° tension tests [67], to decrease measure-
ment error.

Although the given shear strains of torsion and ± 45° tension are often close in value, 
the latter is considered to be better because of its easy operation and low standard devia-
tion [66, 68]. According to references [66], for the same material, the coefficient of varia-
tion of failure shear strains given by repetitive torsion tests can be several times large as of 
that corresponding to ± 45° tension test. It means the measurements of AS4/8552 material 
system is more reliable (Fig. 13), of which our prediction is in very good agreement with 
the experimental data for the whole loading range. Considering the possible measurement 
error for the illustration of E-glass/epoxy composite (Fig. 14), simulation results calculated 
with FE codes have been studied as references [69–71]. The results of these simulations are 
coincided with the measured curve well, indicating that the data of E-glass/epoxy compos-
ite’s shear response is also credible. In summary, the results of illustrations in Fig. 13 and 
Fig. 14 can confirm the accuracy of our strain prediction model.

According to the illustrations, there are two potential application value of the method 
proposed in this paper. Compared with the macro-mechanical method, the micro-mechanical  
model only needs the original mechanical property data of component materials to predict 
the properties of composites, which can greatly reduce the testing cost. Besides, designing  
of a composite’s properties can be done according to the specific engineering requirements.  
As long as the component material performance database is established in advance, the 
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mechanical properties of any composite produced with these component materials can be 
calculated directly through the explicit formula, with high efficiency. Another practical 
application of our theory is interface evaluation. The general interface strength test can only 
give a numerical value, which cannot characterize the performance of composite interface 
under a certain loading condition. On the contrary, with the new SCF and the interface slip-
page model, our theory can tell the discount of the material’s effective strength and rigidity 
due to interfacial debonding, giving guidance for interface modification according to the 
specific bearing condition of composite.

6  Conclusion

In this paper, a three-dimensional geometric model is developed to represent a composite 
containing both interfacial cracks and matrix shear cracks, and the in-plane shear SCF of 
the matrix in a composite with a debonded interface is derived. The research has the fol-
lowing main conclusions:

1. The discount of the in-plane shear strength due to the interface debonding is attributed 
to an increase of the stress concentration in the matrix. Thus, it is necessary to introduce 
SCFs when calculate the ultimate strengths of a composite.

2. The decrease of the effective in-plane shear stiffness after the debonding mainly comes 
from a relative slippage between the debonded matrix and fiber interfaces.

3. The interface debonding must be taken into consideration for predicting the strain of a 
composite under an arbitrary loading containing an in-plane shear stress component.

4. The main advantages of the method proposed in this paper includes that it needs less 
in-put data and minimum calculation, but can give a realistic physical model and reliable 
predictions. The accuracy of our predicting method can be further improved if the yield 
point of matrix can be located more precisely.

7  Data Availability Statements

All data generated or analyzed during this study are included in this published article (and its 
supplementary information files).

Appendix A. Homogenized Internal Stresses by Bridging Model

For a UD composite with both fiber and matrix in an elastic deformation stage, the relation-
ships between internal stresses of the fiber and matrix and the stresses applied on the compos-
ite are expressed as [42]

(20)
{
�
f

i

}
=
(
Vf [I] + Vm

[
Aij

]−1{
�j
})

(21)
{
�m
i

}
=
[
Aij

](
Vf [I] + Vm

[
Aij

])−1{
�j
}
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The first coordinate, x1, is along the fiber axial direction. x3 is along plate thickness direc-
tions. The arbitrary stress vector applied on the composite has six components as {σj} = {σ11, 
σ22, σ33, σ23, σ13, σ12}T, and the vectors 

{
�
f

i

}
 and 

{
�m
i

}
 have the same form. Vf and Vm (= 1-Vf) 

are the fiber and matrix volume fractions and [I] is a unit tensor. Explicit expressions for the 
bridging tensor [Aij] in Eqs. (20) and (21) are given as [42]

In the equations above, Ef

11
 , Ef

22
 , Gf

12
 and vf

12
 are, respectively, longitudinal, transverse 

and in-plane shear moduli, and longitudinal Poisson’s ratio of the fiber. Em, Gm and νm are 
Young’s and shear moduli and Poisson’s ratio of the matrix. α and β are bridging param-
eters, which can be calibrated from comparison between the predicted in-plane shear and 
transverse Yong’s moduli of the composite, respectively. It is noted that

If no adjustment from an experiment is applicable, both α and β can be assumed to be 
0.3 in most cases [42].

Appendix B. Expressions of Matrix SCFs

Definition of a SCF of the matrix in a composite is generally given by [23]

(22)
�
Aij

�
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�11 �12 �13 0 0 0

0 �22 0 0 0 0

0 0 �33 0 0 0

0 0 0 �44 0 0

0 0 0 0 �55 0

0 0 0 0 0 �66

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(23)�11 =
Em

E
f

11

(24)𝛼22 = 𝛼33 = 𝛼44 = 𝛽 + (1 − 𝛽)
Em

E
f

22

(0.3 < 𝛽 < 0.6)

(25)𝛼55 = 𝛼66 = 𝛼 = 𝛼 + (1 − 𝛼)
Gm

G
f

22

(0.3 < 𝛼 < 0.6)

(26)�12 = �13 =
vmE

f

11
− Emv

f

12

Em − E
f

11

(
�11 − �22

)

(27)E22 =

(
Vf + Vm�11

)(
Vf + Vm�22

)

(
Vf + Vm�11

)(
Vf S

f

22
+ �22VmS

m
22

)
+ Vf Vm

(
Sm
21
− S

f

21

)
�12

(28)G12 =
G

f

12
Gm

(
Vf + Vm�66

)

VfG
m + VmG

f

12
�66
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 Kij is the SCF related to �m
ij

 or d�m
ij
⋅

(
�m
ij

)

BM
 is the matrix stress calculated from Bridg-

ing Model �̃m
ij

 and is a point-wise matrix stress generally obtained through an elasticity on a 
CCA (coaxial cylinder assemblage) model.  �⃗R is a vector along a line perpendicular to the 
fracture surface of the composite under the given load.  �⃗Ra and  �⃗Rb are the vectors of ending 
at the surfaces of the fiber and matrix cylinders, respectively. a is the radius of the fiber. b 
and a are correlated as b =

�
√
Vf

 . Explicit formulae for the SCFs of matrix in a composite 
are listed as follows [22–24].

The transverse tension SCF of the matrix having a perfect interface bonding with the 
fiber, Kt

22
 is given by

The expression of transverse compressive SCF of the matrix, Kc
22

 , is

E
f

11
 , Ef

22
 , and Gf

12
 are, respectively, longitudinal, transverse, and in-plane shear moduli of  

the fiber, vf
23

 is its transversal Poisson’s ratio, vf
12

 and is its longitudinal Poisson’s ratio. Em and  
Gm are Young’s and shear moduli of the matrix, respectively, and νm is its Poisson’s ratio.

The formula of in-plane shear SCF of the matrix, is shown as

(29)Kij =
1

|||
�⃗Rb − �⃗R𝛼|||

∫
|
||
|
R⃗b

|
||
|

||
||
R⃗𝛼

||
||

�𝜎m
ij

(
�𝜎m
ij

)

BM

d
|||
�⃗R
|||

(30)Kt
22

=

�

1 +

√
Vf

2
A +

√
Vf

2

�
3 − Vf −

�
Vf

�
B

��
Vf + 0.3Vm

�
E
f

22
+ 0.7VmE

m

0.3E
f

22
+ 0.7Em

(31)

Kc
22

=

��

1 − A

�
Vf

�m
u,c

− �m
u,t

4�m
u,c

+
B

2
�
1 −

√
Vf

�

�

− V2

f

�

1 − 2

�
�m
u,c

− �m
u,t

2�m
u,c

�2�

+

�
�m
u,c

− �m
u,t

�

�m
u,c

�

1 +
�m
u,c

− �m
u,t

�m
u,c

�

−
�

Vf

�
�m
u,c

− �m
u,t

�m
u,c

+ 1 − 2

�
�m
u,c

− �m
u,t

2�m
u,c

�2����

�
Vf + 0.3Vm

�
E
f

22
+ 0.7VmE

m

0.3E
f

22
+ 0.7Em

(32)A =
2E

f

22
Em

(
V
f

12

)2

+ E
f

11

{
Em

(
V
f

23
− 1

)
− E

f

12

[
2(vm)2 + vm − 1

]}

E
f

11

[
E
f

22
+ Em

(
1 − v

f

23

)
+ E

f

22
vm

]
− 2E

f

22
Em

(
v
f

12

)2

(33)B =
Em

(
1 + v

f

23

)
− E

f

22
(1 + vm)

E
f

22

[
vm + 4(vm)2 − 3

]
− Em

(
1 + v
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23

)
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 Gf

12
 and Gm are the longitudinal shear moduli of the fiber and matrix, respectively.

Besides, the transverse tension SCF of the matrix after the interface debonding, is given by

The functions in Eq. (35), N, N1, N2 and N3, are given by

(34)K12 =

{

1 − Vf

G
f

12
− Gm

G
f

12
+ Gm

(
W
(
Vf

)
−

1

3

)
}

Vf + A66Vm

A66

(35)

W
(
Vf

)
=

a

∫
0

1

�

√

1 −
x2
3

�2

√
1

Vf

−
x2
3

�2
dx3 ≈ �

√
Vf

[
1

4Vf

−
4

128
−

2

512
Vf −

5

4096
V2
f

]

(36)

K̂22
t

= K̂22
t
(𝜓) = Re

{
e−2i𝜓M

(
bei𝜓

)(
𝛼2∕b − b

)
− e−2i𝜓

(

N2 − N1

(
𝛼2

b
e−i𝜓

))

+e−i𝜓
(
2 + e−2i𝜓

)[
N
(
bei𝜓

)
− N3

]}
(
Vf + 0.3Vm

)
E
f

22
+ 0.7VmE

m

2(b − a)
(
0.3E

f

22
+ 0.7Em

)

(37)N(z) = Fz +
a2k

z
−
(
z − �ei�

)0.5+i�(
z − �ei�

)0.5−i�
[

(F − 0.5) −
D

�2z

]

(38)N1(z) = Fz +
a2k

z
+

1

�

(
z − �ei�

)0.5+i�(
z − �ei�

)0.5−i�
[

(F − 0.5) −
D

�2z

]

(39)N2 = �Fe−i� + �kei� , N3 = Faei� + e−i��k

(40)M(z) = F
�2k

z2
−

[

(F − 0.5)z + H +
C

z
+

D

z2

]

�(z)

(41)F =
1 − [cos (�) + 2� sin (�)]exp[2�(� − �)] + (1 − k)

(
1 + 4�2

)
sin (�)

4

k
− 2 − 2[cos (�) + 2� sin (�)]exp[2�(� − �)]

(42)H = �(0.5 − F)(cos (�) + 2� sin (�))

(43)C = �2(k − 1)[cos (�) − 2� sin (�)]exp[2�(� − �)]

(44)D = (1 − k)�3exp[2�(� − �)]

(45)�(z) = (z − �e� )−0.5+i�(z − �e� )−0.5−i�
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The debonding half angle, � is the solution to the following equation [44]:

If = 1, no solution for �  is available, and the corresponding interface crack is singu-
lar. But, one can always adjust a fiber or matrix property so that 1, as deviation exists  
in measurement of it  vf

23
 . is the transverse Poisson’s ratio of the fiber. �m

u, t
, �m

u, c
 , and 

�m
u, s

 are, respectively, the matrix tensile, compressive and shear strengths.

(46)k =
�1

(
1 + �2

)

(1 + �)
(
�1 + �1�2

)

(47)� = −(ln �)∕(2�), � =
(
�2 + �2�1

)
∕
(
�1 + �1�2

)

(48)�1 = 3 − 4vm, �2 =
3 − v

f

23
− 4v

f

12
v
f

21

1 + v
f

23

(49)�1 =
Em

2(1 + vm)
, �2 =

E
f

22

2
(
1 + v

f

23

)

(50)b = �∕
√

Vf

(51)Re

{(

G0 −
1

k
−

2(1 − k)

k exp(i�)
exp[2�(� − �)]

)

R
(
ei�

)
}

�=�−�

= 0

(52)R(exp(i�)) =
[
exp(i(�)) − ei�

]0.5+i�[
exp(i(�)) − ei�

]0.5−i�
exp(−i(�))

(53)G0 =
1 − [cos (�) + 2� sin (�)]exp[2�(� − �)] + (1 − k)

(
1 + 4�2

)
sin (�)

2 − k − k[cos (�) + 2� sin (�)]exp[2�(� − �)]

(54)𝛾 =

⎧
⎪
⎨
⎪
⎩

2𝜆(J21+J
2
2)

J2
1
+J2

2
−2J2J3

, if 𝜉 < 1

−
2𝜆(J21+J

2
2)

J2
1
+J2

2
−2J2J3

, if 𝜉 > 1

(55)J1 = kG0 − 1 − 2(1 − k)� exp(2��) cos (�)

(56)J2 = 2(1 − k)� exp(2��) sin (�)

(57)J3 = 2(1 − k)� exp(2��)
[
J1 cos (�) − J2 sin (�)
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∕J2
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Appendix C. Integration After Interface Debonding

For a certain longitudinal section located at x3 = x0
3
, � ≤ x0

3
≤ b , the length of the inte-

gration line between the starting and the ending points is 
√

2

[
b2 −

(
x0
3

)2] . Thus, the 

matrix shear SCF along this line is given by

Note that b = a∕
√
Vf  , where Vf is the fiber volume fraction and S is along the integra- 

tion line. In Eq. (57), 
(
�m
12

)
BM

  is the matrix in-plane shear stress calculated through 
Bridging Model.  is a point-wise stress in the matrix given by Eq. (7). Since dS equals 
(-
√
2  dx2) on the integration line (the value of x3 is a constant), the line integration of 

Eq.(57) is changed to (noticing that  x0
3
= x3).

Substituting ψ = 0.5π into Eq. (7), one has

Replacing z in Eq. (59) with x2 + ix3 and taking the integration along the x2 axis 
gives

Now let us derive the integration on the function N with respect to x2 
Setting R0

(
x2
)
=
(
x2 + x3i − �i

)0.5(
x2 + x3i − �i

)0.5 , its derivative with respect to x2 is

(58)K̂12�𝜓=0.5𝜋,a≤x0
3
≤b =

1
�

2(b2 − (x0
3
)
2
)

√
2(b2−(x0

3
)
2
)

�
0

𝜎m
12

(𝜎m
12
)
BM

dS

(59)K̂12�𝜓=0.5𝜋, 𝛼≤x0
3
≤b =

1
�

b2 − 𝜒2
3

�
0

−
√

b2−𝜒2
3

𝜎m
12�

𝜎m
12

�
BM

dx2

(60)

�m
12

= �0
12

Re

{
Gm

Gm + G
f

12

(

1 −
a2

z2

)

+
G

f

12

Gm + G
f

12

(z − ai)−0.5(z + ai)−0.5
(

z −
a3

z2

)}

(61)

∫
0

−
√

b2−x2
3

�m
12
dx2
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12 ∫

0

−
√

b2−x2
3
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�
Gm

Gm + G
f

12

�

1 −
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�
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�

+
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f

12
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12

N
�
x2 + x3i

�
�

dx2

(62)N
(
x2 + x3i

)
= �

(
x2 + x3i

)
(

x2 + x3i −
�3

(
x2 + x3i

)2

)

(63)�
(
x2 + x3i

)
= �

(
x2 + x3i + �i

)−0.5(
x2 + x3i − �i

)−0.5
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Similarly, setting R1

(
x2
)
=

�(x2+x3i−�i)
0.5

(x2+x3i+�i)
x2+x3i

  and taking a derivative with respect 
to x2 results in

Based on Eqs. (63) and (64), one can obtain that

Therefore, the integration on Eq. (60) is found to be

Substituting Eq. (66) into Eq. (58), one obtains

(64)
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dx2
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It should be noted that Eq. (67) is obtained only for a particular longitudinal cross- 
section. As done in Ref. [44], the matrix in-plane shear SCF must be determined based on an  
average along the thickness direction from to. This gives rise to

Letting  m = −
√

b2 − x2
3
+ x3i  and  R2 = −

(√
b2 − x2

3
+ x3i − �i

)0.5(

−
√

b2 − x2
3
+ x3i − �i

)0.5

= (m − �i)0.5(m + �i)0.5

Eq. (68) is changed to

The expression in Eq. (70) containing R2 is hard to integrate, and must be converted into a 
function of m. However, (m − �i)0.5(m + �i)0.5 might equal to (m2 + �2)0.5 or −(m2 + �2)0.5 . 
We need to choose the correct form within the integration range. Because x3 ∈ [a, b], the 
phase angles of (m − �i) and (m + �i) are within [0.5π, π]. Thus, the phase angles of both  
and  are in between [0.25π, 0.5π]. Hence, the phase angle of  is in the second quadrant, indi-
cating that its imaginary part is positive.

As (m2 + �2)0.5 = ((b2 − 2x2
3
+ �2) − 2x3i

√
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3
)
0.5
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√
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3
) < 0 , the 
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3
+ �2) − 2x3i

√
b2 − x2

3
  is in between -π and 0. The corresponding 

square root is within [-0.5π,0], and the imaginary part of (m2 + �2)0.5 is negative. Overall, 
for x3 ∈ [a, b] and m = −

√
b2 − x2

3
+ x3i , one has (m − �i)0.5(m + �i)0.5 = −(m2 − �2)0.5 
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√
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Similarly, 

Now, let us derive the integration for the other part of Eq. (68), which contains

As 
(
x3i − �i

)0.5(
x3i + �i

)0.5
= i

√
x2
3
− �2 , Eq. (73) equals to 

�
√

x2
3
−�2

x3

√
b2−x2

3

 

The integration on Eq. (73) becomes

(71)

∫ b

�
Re

�
R2(x3)√
b2−x2

3

�

dx3 = Re

�

∫ b

�

−
�
m2+�2
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√
b2−x2

3

dx3

�

= Re

�

∫ bi

−
√
b2−�2+�i

−i
�
m2+�2
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dm

�

= −Re
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i
�
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+ � ln
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�����
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�

= −Re

�

i[
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�
b2 − x2

3
) =

√
b2−a2

∫
0

a
√
b2 − a2 − x2

b2 − x2
dx
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In order to get the explicit integral expression, the parameter  x(0 ≤ x ≤ √
b2 − �2)  in 

Eq. (74) is replaced with (
√
b2 − �2 sin (�), 0 ≤ � ≤ 0.5�) . It becomes

Making use of the integral formula

∫ 1

�+b cos (x)
d(x) =

2

�+b

√
�+b

�−b
arc tan

(√
�−b

�+b
tan

x

2

)

,

Eq. (75) is simplified to ��
2
− �

�√
Vf arc tan

�√
Vf tan

�

2

������

�

0
=

��

2

�
1 −

√
Vf

�
. 

Combining Eqs. (67), (70), (71), (72) and (75), one finally obtains the expression of the 
in-plane shear SCF with debonded interface as Eq. (8).

References

 1. Petit, P.: A simplified method of determining the inplane shear stress-strain response of unidirectional 
composites, in Composite Materials: Testing and Design., ASTM International (1969)

 2. Walrath, D., Adams, D.: The losipescu shear test as applied to composite materials. Exp. Mech. 23(1), 
105–110 (1983)

 3. Lee, S., Munro, M.: Evaluation of in-plane shear test methods for advanced composite materials by the 
decision analysis technique. Composites 17(1), 13–22 (1986)

 4. Daniels, B., Harakas, N., Jackson, R.: Short beam shear tests of graphite fiber composites. Fibre Sci-
ence and Technology 3(3), 187–208 (1971)

 5. Friedrich, K.: Application of fracture mechanics to composite materials. Vol. 6.: Elsevier. (2012)
 6. Bradley, W.L.: Relationship of matrix toughness to interlaminar fracture toughness, in Composite 

materials series. Composite Materials Series, Chapter 5 (1989)
 7. Yeow, Y., Brinson, H.: A comparison of simple shear characterization methods for composite lami-

nates. Composites 9(1), 49–55 (1978)
 8. Whitney, J., Halpin, J.: Analysis of laminated anisotropic tubes under combined loading. J. Com-

pos. Mater. 2(3), 360–367 (1968)
 9. Purslow, D.: Matrix fractography of fibre-reinforced thermoplastics, Part 2. Shear failures. Com-

posites 19(2), 115–126 (1988)
 10. Chen, J., Wan, L., Ismail, Y., Peng, F.H., Ye, J.Q., Yang, D.M.: Micromechanical analysis of UD 

CFRP composite lamina under multiaxial loading with different loading paths. Compos. Struct. 
269(1), 114–124 (2021)

 11. Khosravani, M. R., Anders, D., Weinberg, K.: Influence of strain rate on fracture behavior of sand-
wich composite T-joints. European Journal of Mechanics-A/Solids 78, 103821 (2019)

 12. Gautham, S., Sasmal, S.: Determination of fracture toughness of nano-scale cement composites 
using simulated nanoindentation technique. Theoretical and Applied Fracture Mechanics 103, 
102275 (2019)

(75)

√
(b2−a2)

∫
0

a
√
(b2 − a2)(1 − sin2(�))

b2 − (b2 − a2) sin2(�)
d
√
(b2 − a2) sin(�) = a

�

2

∫
0

(b2 − a2) cos2(�)

a2 + (b2 − a2) cos2(�)

=

�

2

∫
0

a[1 −
2a2

2a2 + (b2 − a2)(1 + cos(2�))
]d�

=
a�

2
−

�

2

∫
0

[
a2

(b2 − a2) cos(�) + (b2 + a2)
]d�

932 Applied Composite Materials (2022) 29:901–935



1 3

 13. Bilisik, K., Erdogan, G., Sapanci, E., Gungor, S.: Three-dimensional nanoprepreg and nanostitched 
aramid/phenolic multiwall carbon nanotubes composites: Experimental determination of in-plane 
shear. J. Compos. Mater. 53(28–30), 4077–4096 (2019)

 14. Park, I.K., Park, K.J., Kim, S.J.: Rate-dependent damage model for polymeric composites under in-
plane shear dynamic loading. Comput. Mater. Sci. 96, 506–519 (2015)

 15. Bilisik, K., Karaduman, N., Erdogan, G., Sapanci, E., Gungor, S.: In-plane shear of nanoprepreg/
nanostitched three-dimensional carbon/epoxy multiwalled carbon nanotubes composites. J. Com-
pos. Mater. 53(24), 3413–3431 (2019)

 16. Danial, A.V., Karolina, M., Bent, F. S., Brian, N. L.: Experimental and numerical studies of the micro-
mechanical failure in composites. 19th International Conference on Composite Materials, ICCM 2013, 
July 28, - August 2, Montreal, QC, Canada: International Committee on Composite Materials (2013)

 17. Kaw, A. K.: Mechanics of composite materials.: CRC press (2005)
 18. Vargas, G., Ramos, J. A., Mondragon, I., Mujika, F.: In-plane shear properties of multiscale hybrid 

FMWCNTS / long carbon fibres / epoxy laminates. in European Conference on Composite Materi-
als (2012)

 19. Lee, S.M.: Mode II delamination failure mechanisms of polymer matrix composites. J. Mater. Sci. 
32(5), 1287–1295 (1997)

 20. O’Brien, T. K.: Composite Interlaminar Shear Fracture Toughness, G IIc: Shear Measurement or Sheer 
Myth?, in Composite Materials: Fatigue and Fracture: 7th Volume., ASTM International (1998)

 21. Swanson, S., Messick, M., Toombes, G.: Comparison of torsion tube and Iosipescu in-plane shear 
test results for a carbon fibre-reinforced epoxy composite. Composites 16(3), 220–224 (1985)

 22. Huang, Z.M., Liu, L.: Predicting strength of fibrous laminates under triaxial loads only upon inde-
pendently measured constituent properties. Int. J. Mech. Sci. 79(1), 105–129 (2014)

 23. Liu, L., Huang, Z.M.: Stress concentration factor in matrix of a composite reinforced with trans-
versely isotropic fibers. J. Compos. Mater. 48(1), 81–98 (2014)

 24. Huang, Z.M., Xin, L.M.: Stress Concentration Factor in Matrix of a Composite Subjected to Trans-
verse Compression. Int. J. Appl. Mech. 08(03), 1650034 (2016)

 25. Totry, E., Molina-Aldareguía J.M., González C., LLorca J.: Effect of fiber, matrix and interface 
properties on the in-plane shear deformation of carbon-fiber reinforced composites. Composites 
Science and Technology 70(6), 970–980 (2010)

 26. Purslow, D.: Some fundamental aspects of composites fractography. Composites 12(4), 241–247 
(1981)

 27. Heutling, F., Franz, H., Friedrich, K.: Microfractographic analysis of delamination growth in 
fatigue loaded-carbon fibre/thermosetting matrix composites 29(5), 239–253 (1998)

 28. Rogers, C. E.: Investigating the micromechanisms of mode II delamination in composite laminates. 
Imperial College London (2010)

 29. Arcan, L., M., Daniel I. M.: SEM fractography of pure and mixed-mode interlaminar fractures in 
graphite/epoxy composites, in Fractography of Modern Engineering Materials: Composites and 
Metals., ASTM International (1987)

 30. Argüelles, A., Viña, J., Canteli, A.F., Bonhomme, J.: Influence of resin type on the delamination 
behavior of carbon fiber reinforced composites under mode-II loading. Int. J. Damage Mech 20(7), 
963–978 (2011)

 31. Kusaka, T., Arcan, M., Daniel, I.M.: Rate-dependent mode II interlaminar fracture behavior of carbon 
fiber/epoxy composite laminates. Journal of the Society of Materials Science 48(6), 98–103 (1999)

 32. Tanks, J., Sharp, S., Harris, D.: Charpy impact testing to assess the quality and durability of unidi-
rectional CFRP rods. Polym. Testing 51, 63–68 (2016)

 33. Zhang, K., Y. Gu, Zhang Z.: Effect of rapid curing process on the properties of carbon fiber/epoxy 
composite fabricated using vacuum assisted resin infusion molding. Materials and Design 54, 624–
631 (2014)

 34. Xu, Z., Huang, Y., Zhang, C., Liu, L., Zhang, Y., Wang, L.: Effect of γ-ray irradiation grafting 
on the carbon fibers and interfacial adhesion of epoxy composites. Compos. Sci. Technol. 67(15), 
3261–3270 (2007)

 35. Yan, K.F., Zhang, C.Y., Qiao, S.R., Han, D., Li, M.: In-plane shear strength of a carbon/carbon 
composite at different loading rates and temperatures. Mater. Sci. Eng., A 528(3), 1458–1462 
(2011)

 36. Gutkin, R., Pinho, S.T., Robinson, P., Curtis, P.T.: A finite fracture mechanics formulation to pre-
dict fibre kinking and splitting in CFRP under combined longitudinal compression and in-plane 
shear. Mech. Mater. 43(11), 730–739 (2011)

 37. Gaur, U., Miller, B.: Microbond method for determination of the shear strength of a fiber/resin 
interface: Evaluation of experimental parameters. Compos. Sci. Technol. 34(1), 35–51 (1989)

933Applied Composite Materials (2022) 29:901–935



1 3

 38. Lee, S.M.: Mode II interlaminar crack growth process in polymer matrix composites. J. Reinf. 
Plast. Compos. 18(13), 1254–1266 (1999)

 39. Zhong, Z., Meguid, S.: Interfacial debonding of a circular inhomogeneity in piezoelectric materi-
als. Int. J. Solids Struct. 34(16), 1965–1984 (1997)

 40. Steif, P.S., Dollar, A.: Longitudinal shearing of a weakly bonded fiber composite. J. Appl. Mech. 
55(3), 618–623 (1988)

 41. Teng, H., Agah-Tehrani, A.: Interfacial slippage of a unidirectional fiber composite under longitudi-
nal shearing. J. Appl. Mech. 59(3), 547–551 (1992)

 42. Huang, Z.M.: Simulation of the mechanical properties of fibrous composites by the bridging micro-
mechanics model. Compos. A 32(2), 143–172 (2001)

 43. Benveniste, Y., Dvorak, G.J., Chen, T.: Stress fields in composites with coated inclusions. Mech. 
Mater. 7(4), 305–317 (1989)

 44. Zhou, Y., Huang, Z.M., Liu, L.: Prediction of Interfacial Debonding in Fiber-Reinforced Composite 
Laminates. Polym. Compos. 40(5), 1828–1841 (2019)

 45. Zhou, Y., Huang, Z.M.: Failure of fiber-reinforced composite laminates under longitudinal com-
pression. J. Compos. Mater. 53(24), 1–17 (2019)

 46. Zhang, X., Hasebe, N.: Antiplane shear problems of perfect and partially damaged matrix-inclusion 
systems. Arch. Appl. Mech. 63(3), 195–209 (1993)

 47. Smiley, A.J., Pipes, R.B.: Rate sensitivity of mode II interlaminar fracture toughness in graphite/
epoxy and graphite/PEEK composite materials. Compos. Sci. Technol. 29(1), 1–15 (1987)

 48. Zhang, Y., Zhang, L., Liu, Y., Liu, X., Chen, B.: Oxidation effects on in-plane and interlaminar 
shear strengths of two-dimensional carbon fiber reinforced silicon carbide composites. Carbon 98, 
144–156 (2016)

 49. Teng, H.: On stiffness reduction of a fiber-reinforced composite containing interfacial cracks under 
longitudinal shear. Mech. Mater. 13(2), 175–183 (1992)

 50. Miyagawa, H., Sato, C., Ikegami, K.: Mode II interlaminar fracture toughness of multidirectional 
carbon fiber reinforced plastics cracking on 0//0 interface by Raman spectroscopy. Mater. Sci. Eng., 
A 308(1–2), 200–208 (2001)

 51. Selzer, R., Friedrich, K.: Inluence of water up-take on interlaminar fracture properties of carbon 
fibre-reinforced polymer composites. J. Mater. Sci. 30(2), 334–338 (1995)

 52. Canturri, C., Greenhalgh, E.S., Pinho, S.T.: The relationship between mixed-mode II/III delamina-
tionand delamination migration in composite laminates. Compos. Sci. Technol. 105(10), 102–109 
(2014)

 53. Johannesson, T., Sjöblom, P., Seldén, R.: The detailed structure of delamination fracture surfaces in 
graphite/epoxy laminates. J. Mater. Sci. 19(4), 1171–1177 (1984)

 54. Huang, Z.M.: On micromechanics approach to stiffness and strength of unidirectional composites. 
J. Reinf. Plast. Compos. 38(4), 167–196 (2019)

 55. Zhou, Y., Huang, Z.M.: Shear deformation of a composite until failure with a debonded interface. 
Compos. Struct. 254, 112–797 (2020)

 56. Soden, P. D., Hinton, M. J., Kaddour, A. S.: Lamina properties, lay-up configurations and loading 
conditions for a range of fibre-reinforced composite laminates. Composites Science and Technol-
ogy 58(7), 1011–1022 (1998)

 57. Kaddour, A., Hinton, M.: Input data for test cases used in benchmarking triaxial failure theories of 
composites. J. Compos. Mater. 46(19–20), 2295–2312 (2012)

 58. Kaddour, A.S., Hinton, M.J., Smith, P.A., Li, S.: Mechanical properties and details of composite lami-
nates for the test cases used in the third world-wide failure exercise. J. Compos. Mater. 47(20–21), 
2427–2442 (2013)

 59. Chan, P. H., Tshai, K. Y., Johnson, M., L. S.: Finite element analysis of combined static loadings on 
offshore pipe riser repaired with fibre-reinforced composite laminates. J Reinforced Plastics and Comp 
33(6), 514–525 (2013)

 60. Swanson, S. R., Toombes, G. R.: Characterization of prepreg tow carbon/epoxy laminates. J Engg 
Mater Techno, Trans ASME;111:150–3(1989)

 61. Kim, R.Y., Crasto, A.S.: A longitudinal compression test for composites using a sandwich specimen. J. 
Compos. Mater. 26(13), 1915–1929 (1992)

 62. Daniel, I. M., Hsiao, H. M., Wooh, S. C., Vittoser, J. In: AMD, vol 162, mechanics of thick compos-
ites. ASME publication, 107–26(1993)

 63. Sun, C. T., Jun A. W.: Effect of matrix non-linear behaviour on the compressive strength of fibre com-
posites. In AMD, vol 162, mechanics of thick composites. ASME, 91–105(1993)

 64. Sun, C.T., Zhou, S.G.: Failure of quasi-isotropic composite laminates with free edges. J. Reinf. Plast. 
Compos. 7(6), 515–557 (1988)

934 Applied Composite Materials (2022) 29:901–935



1 3

 65. Crossan, M.: Mechanical Characterization and Shear Test Comparison for Continuous-Fiber Polymer 
Composites. Elec Thesis and Dissert Repos, 5408 (2018)

 66. Chiao, C.C., Moore, R.L., Chiao, T.T.: Measurement of shear properties of fibre composites: Part 1. 
Evaluation of test methods. Composites 8(3), 161–169 (1977)

 67. Herraez, M., Andrew, C. B., Carlos, G., Lope. C.S.: Modeling Fiber Kinking at the Microscale and 
Mesoscale. Tech report, NASA/TP2018220105(2018)

 68. Terry, G.: A comparative investigation of some methods of unidirectional, in-plane shear characteriza-
tion of composite materials. Composites 10(4), 233–237 (1979)

 69. Bednarcyk, B.A., Aboudi, J., Arnold, S.M.: Micromechanics modeling of composites subjected to 
multiaxial progressive damage in the constituents. AIAA J. 48(7), 1367–1378 (2010)

 70. Toledo, M.W., Nallim, L.G., Luccioni, B.M.: A micro-macromechanical approach for composite lami-
nates. Mech. Mater. 40(11), 885–906 (2008)

 71. Laurin, F., Carrere, N., Huchette, C., Maire, J.F.: A multiscale hybrid approach for damage and final 
failure predictions of composite structures. J. Compos. Mater. 47(20–21), 2713–2747 (2013)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

935Applied Composite Materials (2022) 29:901–935


	Prediction of In-Plane Shear Properties of a Composite with Debonded Interface
	Abstract
	1 Introduction
	2 Internal Stresses in Constituents
	3 Derivation of In-Plane Shear SCF after Interface Debonding
	3.1 Definition of SCF and True Stress
	3.2 Stress Field of a Composite with Debonded Interface Under Longitudinal Shear
	3.3 Determination of Integration Path

	4 Role of  
	5 Illustration
	5.1 Materials and Calculation Method
	5.2 Result and Discussion

	6 Conclusion
	7 Data Availability Statements
	References




