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Abstract
This article presents an approach to accurately predict the Length of Cohesive Zone (LCZ) 
and model delamination under mixed-mode loading. A novel expression for estimating 
the cohesive zone length for the structure subjected to mixed mode delamination is pro-
posed. The proposed expression of LCZ is validated for various structural configurations 
like mixed-mode delamination specimen, ply-drop, and L-bend. Besides, the effect of 
maximum interfacial strength and element size is also investigated. A modified embedded 
cohesive zone model based on cohesive surface modeling is suggested to predict intrala-
minar and interlaminar failures in ply-drop and L-bend structures. The cohesive surfaces 
are inserted in 90º plies to account for the matrix cracking and along the adjacent 0º plies 
to model interlaminar delamination. The delamination accompanied by matrix cracking, 
resulting in crack kinking and migration, is predicted. The predicted numerical results are 
in very good agreement with the experimental results available in the literature. A fine dis-
cretization of the mesh is necessary along the cohesive zone length for the precise estima-
tion of various energy dissipation mechanisms. Thus, the present methodology aids in the 
mesh design by calculating LCZ and accurately predicting the structure’s failure response 
under mixed-mode delamination.

Keywords  Length of Cohesive Zone (LCZ) · Cohesive Zone Model · Delamination · 
Matrix cracking · Mixed-mode loading · Ply-drop

Nomenclature
�	� Crack opening displacement
K	� Penalty Stiffness
t	� Traction
Gc	� Critical energy release rate
G	� Shear modulus
D	� Damage variable
�max	� Maximum interfacial stress/strength
lch	� Characteristic length of cohesive zone
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E	� Elastic modulus
M	� Dimensionless parameter of length of cohesive zone
lch	� Actual/numerical length of cohesive zone
�	� Mode ratio parameter
�	� B-K mixed-mode integration parameter
�	� Power law parameter
h	� Specimen/structure thickness
h1,h0, n, m	� Fit parameters based on the type of law, loading, and material property
Ne	� Number of elements
le	� Length of each element
a	� Crack length

Subscripts
I	� Parameter under mode-I loading
II	� Parameter under mode-II loading
Mixed	� Parameter under mixed-mode loading
cr	� Critical
eff	� Effective
f	� Final

Superscripts
◦	� Finite/slender structures
∞	� Infinite structures
n, t and s	� Normal and two shear direction
1, 2 and 3	� Principal material axes

Acronyms
CZM	� Cohesive Zone Model
LCZ	� Length of Cohesive Zone
FE	� Finite Element
MMB	� Mixed Mode Bending
MECM	� Modified Embedded Cohesive Zone Model
VCCT​	� Virtual Crack Closure Technique
LEFM	� Linear Elastic–Plastic Fracture Mechanics

1  Introduction

Polymer composite materials, especially fiber-reinforced composites, offer a distinctive 
material capability for low weight structures which demand high strength and stiffness. 
The composites can be tailored or customized to adequately match the high structural 
design standards of various industries like defence, aerospace, automotive, and wind 
energy. The failures of composite structures in numerous applications are complex phe-
nomena with intralaminar matrix failures and interlaminar delamination failures [1, 2]. 
Cohesive Zone Model (CZM) is most widely used to predict delamination initiation and 
propagation behavior in composites. Since its inception by Dugdale [3] and Barenblatt 
[4], various cohesive zone models have been proposed. However, the bilinear CZM is 
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most simple to implement and is widely used for delamination analysis as the global 
load–displacement of composite structures is insensitive to the shape of the traction 
separation curve [5].

The cohesive zone requires an accurate representation of the stress field distribution 
of crack tip along the process zone. Subsequently, it requires fine discretization of the 
cohesive zone ahead of the crack tip to account for energy dissipation. The Length of 
the Cohesive Zone (LCZ) is defined as the crack plane distance wherein the cohesive 
forces are acting. The CZM considers the internal length, also known as the character-
istic length (lch), which is a function of elastic modulus, critical fracture toughness, and 
interfacial stress of the material. The LCZ may vary with specimen geometry and is 
different for a finite/slender structure or infinite/thick structure [6]. It is very desirable 
and efficient to know the LCZ beforehand, thus making the investigations a good com-
promise between accuracy and computational cost. Analytical expressions proposed in 
most of the literature have limiting conditions such as infinite structure and finite struc-
ture or a generalized expression for LCZ under pure and mixed modes of loading [7, 8]. 
However, expressions to predict LCZ for delamination under mixed-mode loading for 
composite structures of any thickness are not found in the literature. The current work 
focuses on the prediction of LCZ based on the analytical bounds for finite and infinite 
expression for mixed-mode loading.

As the failures of composites are known for their complexity, accurate estimation of 
structural response would require progressive damage simulation with high fidelity. As 
standard simulation techniques are not suitable to predict such failures, many numerical 
models based on CZM and other FE models have been proposed [9–14]. Even though 
the use of methods other than CZM is more accurate, the computational effort and cost 
required to numerically model large structures or complex shapes are immense. The use of 
cohesive behavior has shown encouraging results in many previous studies. Also, unlike 
most numerical models, substantial relation cannot be established between in-plane matrix 
damage and delamination [15].

On similar grounds, many models have been proposed for simple composite specimen 
configurations [16–25]. However, numerous interfacial element behavior in all the layers of 
a large composite structure would be computationally inefficient. To predict intralaminar 
and interlaminar failure of complex shapes like L bend, Cao et al. [26] inserted interfacial 
behavior in 90º lamina as potential matrix cracking was bound to happen. Further, in com-
posite materials, the effect of LCZ in discretization is overlooked in the literature. To attain 
a numerically accurate and computationally efficient model, it is necessary to consider the 
various length scale or LCZ for the discretization of the model. The current study tries 
to improve the capabilities of the embedded cohesive zone technique by considering the 
length scale or LCZ under mixed-mode loading. Henceforth, the work focuses on the accu-
rate capture of stress variation ahead of the crack tip and the precise prediction of load– 
displacement behavior of the structure.

The present study aims to propose an analytical equation for the prediction of LCZ for 
mixed-mode delamination for any specimen configuration by a detailed investigation of 
existing analytical equations. The work also aims to predict the load–displacement behav-
ior accurately by modeling intralaminar and interlaminar behavior, such as crack migration 
under mixed-mode loading. Further, the expression for LCZ for mixed-mode delamination 
is also formulated. The proposed expression is validated for standard fracture toughness 
specimens as well as other structural components such as ply-drop and L bend. Finally, a 
modified embedded cohesive zone model is proposed based on the LCZ estimation for an 
accurate prediction of structural behavior.
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2 � Background

2.1 � Cohesive Zone Model and Cohesive Surfaces

The cohesive surface [27, 28] has zero thickness, or interface thickness is negligibly 
small. The traction separation law considers initial linear elastic behavior, succeeded by 
initiation and damage evolution. The relative displacement along the interface surface is 
denoted as ’δ’, and the traction separation behavior of the cohesive zone can be repre-
sented as shown in Fig. 1.

The elastic behavior can be represented as

Fig. 1   Traction separation response of cohesive zone model
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where ’t’ denotes the traction vector, ’K’ represents the stiffness. The subscripts n, t, 
and s depict the normal (mode-I), tangential (mode-II), and shear tractions (mode-III), 
respectively.

The tractions acting at the interface can be represented as

The variable ’D’, represents the irreversible damage, with D = 0 and D = 1 depicting 
no damage and completely damage states, respectively.

To represent the damage under the combined mode of loading with both normal and 
shear components acting across the interface, an expression for effective separation is 
defined as

The damage evolution is dependent on the energy released during the surface sepa-
ration process. The energy dissipated during the process is called fracture energy and 
is equal to the area under the traction separation curve. The dependence of fracture 
energy (G) on mixed-mode can be represented either by power-law as

or by B-K criteria [29] as

The parameter ’α’ and ’η’ represent power law and B-K law coefficient, respectively.
The failure process is governed by damage factor is estimated based on the defor-

mation and accumulated damage history as

where,
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2.2 � Length of Cohesive Zone

Many authors have proposed various analytical expressions to estimate the LCZ. For the 
case of ductile solids, Irwin [30] proposed that the cohesive zone length is considered 
the size of the plastic zone ahead of a crack when Von Mises stress exceeds the tensile 
yield stress at the crack tip. Dugdale [3] measured the length of the plastic zone for a 
thin elastic sheet with center crack by assuming yielding to be a very narrow strip along 
the line ahead of the crack tip. Barenblatt [4] proposed a cognate of Dugdale’s plastic 
zone analysis for ideally brittle materials. The length of the cohesive zone for soft elas-
tic solids was estimated based on linear viscoelastic fracture mechanics by Hui [31]. 
Falk et al. [32] predicted a cohesive length scale as a function of crack propagation and 
branching velocities. The cohesive zone length scale was determined by elastic proper-
ties, strength, and surface energy. Hillerborg et al. [33] proposed the use of characteris-
tic length parameters in concrete. They assumed that the crack would propagate when 
the stress at crack trip reaches the material’s tensile strength, and there is a gradual 
decrease in the stress with an increase in the crack opening. Assuming the stress inten-
sity factor at the crack tip and crack opening should be equal to that of the critical value, 
Cox and Marshall [34] proposed the length of cohesive zone based on the bridged crack 
theory. Similarly, Bazant [35] established cohesive zone length for concrete. It can be 
noted that all the expressions proposed are of the form

where E, G, M are dependent on the cohesive zone model. Bazant et al. [35, 36] also inves-
tigated the size effect on fracture energy and characteristic cohesive process zone length. 
Both fracture energy and process zone length were expressed as a function of specimen 
thickness. Therefore, it is convenient to predict the characteristic length in simple fracture 
toughness specimens compared to geometrically similar structures or specimens of differ-
ent sizes and thicknesses. It is also assumed that the nominal stress depends on the speci-
men geometry. In contrast, the relative displacement of a simple, slender structure is more 
than that of a thick structure, as shown in Fig. 2. It is an effect of slender specimens having 
shorter LCZ as compared to thick specimens along the crack propagation plane.

The studies done by Yang et al. [37] used CZM to analyze the nonlinear process of 
material failure. The representation of nonlinear deformation attributes to micro failures 
occurring in the fracture process zone. Analogously, various forms or shapes of cohe-
sive zone models are used based on the fracture process at the micro-scale, thus vary-
ing the fracture process zone along with the crack propagation. Consequently, cohesive 
zone length depends on the thickness of the specimen or structure, cohesive shape, and 
characteristic length.

(8)lch =
EGc

�I,max

(9)lcz = M × lch
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2.3 � Length of a Cohesive Zone for Infinite Structures

The analytical solutions of cohesive zone length for infinite structures do not influence the 
material depth or thickness as the fracture process zone is much smaller than the specimen 
size. Turon et al. [38] defined the length of the cohesive zone for infinite structure as:

Fig. 2   Effect of size of structure and stress distribution along the cohesive zone
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For mode-I and mode-II

For mixed-mode

where,

where M is a dimensionless factor defined based on the model or constitutive relation and 
mode of fracture. For the various form of the softening law, Smith [39] predicted the length 
of the fracture process zone for structures subjected to pure mode I loading. The value of 
M was deduced to be π/8 for an infinite solid and 0.760 for a double cantilever beam. To 
analyze the evolution of the fracture process zone for infinite specimens, Planas and Elice 
[40, 41] presented an asymptotic analysis method. The analysis was utilized to investigate 
the effect of size and shape of cohesive law on the length of the cohesive zone. The authors 
established the values of M equal to π/8 for constant, 0.731 for linear, and 2.92 for quasi 
exponential softening models. Hence, justifying the variation of length of the zone is influ-
enced by the shape of cohesive law and the thickness of the structure. Bao and Suo [42] 
emphasized the concept of large-scale bridging to estimate the length of the process zone.

Similarly, Suo and Bao [43] established the variation of process zone with the increase in 
the specimen thickness for mode-I, mode-II, and mixed-mode loading. Harper and Harlett 
[44] investigated the effect of strength, fracture toughness, and youngs modulus on cohesive 
zone length.

2.4 � Length of a Cohesive Zone for Slender Structures

The analytical expressions discussed in the previous section are for infinite bodies where 
the structure’s thickness does not affect the length of the cohesive zone. However, it is 
demanding to analyze the effect of thickness for many practical engineering applications 
due to the slender character in most of the composite laminates. In most failures like 
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delamination and bond line failure, the thickness of the specimen might be less or compa-
rable with the length of the cohesive zone. To investigate the thickness effect on the length 
of the cohesive zone for a range of cohesive laws, William et al. [45] proposed an analyti-
cal solution of equivalent crack length for elastic materials. Smith [39] proposed a theory 
for the slender body under pure mode -I loading and obtained dimensionless parameter 
M = 1/3 for constant and 1 for linear softening law.

In a relatively slender body, the expression to predict characteristic length under mode-I 
loading is as follows:

where h is half the thickness of the laminate, and M = 1/3 is a non-dimensional scale 
parameter for constant cohesive law. The equivalent elastic modulus, E1 is a function of 
E11. E22 and G12, which are presented in Appendix 1.

Massabo and Cox [46] investigated delamination cracks subjected to mode II loading 
for through-thickness bridging. An analytical expression for the length of the cohesive 
zone for mode II can be written as

Turon et al. [47] proposed a methodology to predict the LCZ under mode I, mode II and 
mixed-mode loading based on the relation of characteristic length and size effect on the 
structure. Authors also assumed that in finite-size structures, the unstable crack propagates 
at an energy level less than the actual fracture toughness of the material, and the length of 
the process zone is comparably small. The analytical solution for the length of cohesive 
prediction is expressed as.

For mode-I

For mode-II

For mixed-mode

where h is the length, which is a function of material and structure. The dimensionless 
scale parameters, M and h0 depend on the type of loading and shape of cohesive law.
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2.5 � Generalised LCZ Expressions

It can be noted that in the various comprehensive applications, LCZ cannot be estimated 
accurately. To the best of the authors’ knowledge, very few studies attribute to the estima-
tion of LCZ for any thickness, structure, and type of loading. Harper and Hallett [48] pro-
posed a scaling factor of 0.5 to be multiplied with a minimum LCZ value obtained among 
analytical expressions from both finite and infinite length. The length was estimated for a 
bilinear traction separation law under mixed-mode loading. However, the solution does not 
remain valid for variation in crack length, mode ratio, and structure geometries.

Soto et  al. [7] presented an empirical expression to estimate the LCZ for orthotropic 
material under mode I and Mode II loading as

where n is a fitting parameter based on the type of cohesive law and loading, the solution 
provides a reasonably good agreement of cohesive zone length for any structural variations 
in geometry and characteristic length for pure loading modes only. However, the investiga-
tion of delamination under mixed-mode loading is integral for LCZ estimation. Thus, the 
consecutive section provides details of an analytical expression for the prediction of LCZ 
for delamination under mixed-mode loading.

3 � Expression of LCZ for Mixed‑mode Delamination

The solution proposed by Soto et  al. [7] using the statistical investigation is limited to 
mode-I and mode-II loading. Numerical analysis by Turon et al. [47] and Harper et al. [48] 
under-predicts the length of the cohesive zone under a wide range of situations. Besides, 
Eqs. (22)—(24) analytical solutions are inconsistent in determining the length in various 
intermediate scenarios for delamination under mixed-mode loading. Subsequently, it is 
pertinent to deduce a solution to estimate the length of the cohesive zone for a structure 
of any thickness subjected to mixed-mode loading. Consequently, to predict LCZ for any 
structure and the transitional situation between finite to infinite, the current work proposes 
an asymptotic regression model for mixed-mode delamination as follows:

where h is the thickness of structure; m is the fitting parameter based on the type of traction 
separation law and material orthotropy.

By substituting Eqs. (12) and (21) in Eq. (25) for predicting LCZ in finite and infinite 
thickness structures, the following relation is obtained:
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min(Eq. 10, Eq. 11, Eq. 17, Eq. 18)
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A numerical analysis was performed to estimate and investigate the suitability of the 
solution for different fitting parameters. The studies were performed using Abaqus [49] 
software with standard cohesive surfaces established on the contact pair algorithm and 
cohesive zone model approach. The current numerical study with cohesive surfaces 
is restricted to cohesive law with bilinear softening for mixed-mode, as in Fig.  3. Since 
Eq. (26) is a function of the characteristic length (lch) and specimen thickness (h), a para-
metric investigation was performed for various structural depths. A wide range of speci-
men thicknesses (0.5  mm < h < 40  mm) is considered for the analysis. A mixed-mode 

(26)l◦∞
cz,mixed

= lch,mixed

[
M∞

mixed
+
[(

h

h + h1

)
M0

mixed
−M∞

mixed

]
× e−mh

]

Fig. 3   Bi-linear traction separation law for mixed-mode loading
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configuration specimen [50] of 102 mm long and an initial crack of 39.3 mm is considered. 
The built-in plane strain, CPE4I element from Abaqus [49], was used with a minimum of 
10 elements through thickness. The material properties used are given in Table 1. The B-K 
criteria is used to predict delamination with η = 2.284 [29].

The exponent m and other fit parameters from Eq. 26 were obtained using the least 
square method for the mode ratio of 50% and 80%, as shown in Figs. 4 and 5, respec-
tively. It is observed that the parameters are dependent on the material property as well 
as a mixed-mode ratio. The prediction of parameters for variation in mode ratios is 
listed in Table  2. Figures  6 and 7 show a comparison between the proposed analyti-
cal solution and other existing analytical solutions from the literature. As discussed in 

Table 1   Material Properties for 
AS4/PEEK

Laminate Property Interfacial Properties

E11 (GPa) 122.7 GIc (N/mm) 0.969
E22 = E33 (GPa) 10.1 GIIc (N/mm) 1.719
G12 = G13 (GPa) 5.5 σI, max (MPa) 80
G23 (GPa) 3.7 σII, max (MPa) 100
ν12 = ν13 0.25 KI (N/mm3) 106

ν23 0.45 KII (N/mm3) 106

Fig. 4   Numerical and predicted lCZ results for MMB with 50% mode ratio
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previous sections, it is evident from the result that the existing analytical solutions for 
mixed-mode delamination either underestimate or overestimate the LCZ. However, the 
present analytical solution (Eq.  26) for mixed-mode delamination prediction concurs 
with numerical results. It can be noted from Figs. 6 and 7 that for the low thickness val-
ues, the solution obtained by Turon [47] gives a relatively close match to the numerical 
results, but as thickness increases, the estimation is inaccurate. In comparison, the cur-
rent analytical solution provides a better estimation.

To ascertain the relative error as the discrepancy amongst numerical solution, the 
proposed model, and other analytical solutions from the literature, the relative error 
(RE) is calculated by Eq.  (27). From Figs.  8 and  9, it is observed that the relative  
error for LCZ estimations made from the existing literature can be as high as 370% 

Fig. 5   Numerical and predicted lcz results for MMB with 80% mode ratio

Table 2   Fitting parameters Parameters Mode ratio

50% 80%

h1 1.495677 1.786554
M0 0.695424 0.998026
M∞ 1.155511 1.669675
m 0.032405 0.01884
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and 140% for 50% and 80% mode ratio, respectively. On the other hand, the relative 
errors by the present solutions are well below 2% and 2.9% for 50% and 80% mode 
ratio, respectively. Thus, except for an initial underestimation with 23% for 50% mixed-
mode ratio, the predicted LCZ is in close agreement with numerical studies.

From the proposed analytical solution (Eq. 26), the length of the cohesive zone for a 
wide range of situations which fall between finite and infinite thickness bounds can also 
be estimated.

4 � Numerical Determination of LCZ

The numerical LCZ is interpreted as the length of the interface over which elements 
lie in the softening region of the traction separation curve, i.e., the distance from the 
initial node where the interfacial strength is maximum to the node where the strength 

(27)RE(%) =
|||||
lcz,exact − lcz,estimated

lcz,exact

|||||
× 100

Fig. 6   Comparison of numerical results for mixed-mode Eq. 26  (current model) with the Turon’s infinite 
and finite expression [47], Harper’s expression [48] for mode ratio 50%
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is zero. In this section, the applicability of the proposed analytical solution is validated 
for standard fracture toughness specimens and for a few structural component configura-
tions under mixed-mode loading. In addition, further investigation is carried out to vali-
date the influence of element size and interfacial strength on structural response.

4.1 � Standard Fracture Toughness Specimen: MMB

In this section, to substantiate the proposed analytical solution for the prediction of LCZ 
and verify the influence of mesh size and interfacial strength, standard fracture toughness 
specimen under mixed-mode bending delamination is analyzed. The specimen simulated 
is 150 mm long, with two 1.55 mm thick arms, and with an initial crack length of 35 mm, 
as shown in Fig. 10. The material property for numerical analysis is given in Table 3. The 
B-K criteria is used to predict delamination, η = 2, and the mixed-mode ratio of 50% [51].

The FE model consists of CPE4I, a plane strain element from Abaqus/ Standard. The 
two arms are defined with cohesive surface behavior with a minimum of ten elements 
through-thickness and element size of 0.15 mm along the length of the specimen.

Several simulations with the same material property with different arm thickness h 
were performed to predict LCZ. The fit parameters in the proposed solution were obtained 
by the least-square fitting method. Based on Eq.  (26), the LCZ for mixed-mode bending 

Fig. 7   Comparison of numerical results for mixed-mode with Eq. 26 (current model), Turon’s infinite and 
finite expression [47], Harper’s expression [48] for mode ratio 80%
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delamination is 1.9133 mm (h1 = 2.4931, M0 = 0.517613, M∞ = 0.537133, m = 0.021433). 
The numerically obtained LCZ is 1.9834 mm. This value is close to the predicted value 
from the model. Several other simulations were carried out to investigate the effect 
of element size ranging from 0.125  mm to 4  mm and interfacial strength ranging from 
(15 MPa ≤ Mode-I ≤ 40 MPa; 30 MPa ≤ Mode-II ≤ 90 MPa).

The load–displacement curves are obtained for the simulation at the loading point 
and are compared with the analytical solution based on the LEFM approach (Appen-
dix 2). It can be noted that with element size greater than 1 mm, numerical results are  
not in convergence with analytical solutions, as shown in Fig. 11. The LCZ can also be 
defined as

where, Ne is the number of elements in the damage zone, and le is the length of each 
element.

Hence, as per Eqs.  (26) and (28), the element size should be less than a millimeter  
to accommodate a minimum of three elements in the cohesive zone. The applied load and 
displacement relation in Fig. 12 exhibits quite good agreement with the analytical curve, 
except for a few cases. With the variation of interfacial strength, a variation of predicted 
peak load is noted. This can be attributed to the variation of the energy release rate with 

(28)lcz = Nele

Fig. 8   Comparison of the error percentage for mixed-mode with Eq. 26 (current), Turon’s infinite and finite 
expression [47], Harper’s expression [48] for mode ratio 50%

1876 Applied Composite Materials (2021) 28:1861–1898



1 3

an increase in interfacial stress [28]. It can be ascertained with inequitable variation/reduc-
tion of interfacial strength (15 MPa, 30 MPa). As a result, the shape of the initiation curve 
changes, and the solution does not converge with the analytical curve. Hence, it can be 

Fig. 9   Comparison of the error percentage for mixed-mode with Eq. 26 (current), Turon’s infinite and finite 
expression [47], Harper’s expression [48] for mode ratio of 80%

Fig. 10   Mixed Mode Bending (MMB) specimen configuration
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confirmed that mixed-mode delaminations are a strength-sensitive failure process com-
pared to mode-I and mode-II [52].

4.2 � Structural Component: Ply‑drop

In this section, a simple ply-drop specimen [44] is analyzed. Various advanced lightweight 
composite structures, especially defence and aerospace structures, have a complicated 
shape with through-thickness variations [53, 54]. The tapering can be achieved by ter-
minating the lamina resulting in a ply-drop. As eventuate of material discontinuity in the 
geometry, ply-drop induces stress concentration, causing the onset of failure.

Table 3   Material property for 
mixed-mode specimen

Laminate Property Interfacial Properties

E11 (GPa) 120 GIc (N/mm)GIc (N/mm) 0.260
E22 = E33 (GPa) 10.5 GIIc (N/mm) 1.002
G12 = G13 (GPa) 5.25 σI, max (MPa) 30
G23 (GPa) 3.48 σII, max (MPa) 60
ν12 = ν13 0.3 KI (N/mm3) 106

ν23 0.5 KII (N/mm3) 106

Fig. 11   Effect of element size on load vs. displacement behavior for MMB
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In this study, a numerical ply-drop model without initial crack, as shown in Fig.  13, 
is considered for the analysis. A quarter model of symmetric external ply-drop with 16 
unidirectional plies and four ply-drop on either side of the core is analyzed, as depicted in 
Fig. 13. The thickness of each ply is 0.65 mm, and that of the core is 2.6 mm. The plies 
and core are modeled with plane strain elements. A cohesive contact behavior is estab-
lished between the final ply-drop and core. The material properties used for the modeling 
are tabulated in Table 4. To verify the nature of the failure process, the interfacial strength 
and element size is varied in the range of (0.125  mm to 4  mm) and (15  MPa ≤ Mode-
I ≤ 60 MPa; 30 MPa ≤ Mode-II ≤ 90 MPa) respectively.

Fig. 12   Effect of interfacial stress on load vs. displacement behavior for MMB

Fig. 13   Specimen configuration for ply-drop without crack
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Since no analytical or experimental results are available in the literature for the compar-
ison, the present results are compared with VCCT analysis as it is independent of any input 
parameters. Similar to the MMB result, it can be observed in Fig.  14 that the elements 
size less than 1 mm were able to give assenting results. It can be observed from Fig. 15 
that in contrast to MMB simulations, higher or more pragmatic interfacial stress is pre-
ferred in ply-drop. The sharp prediction of load with lower values of interfacial stress can 
be associated with the presence of a larger process zone resulting in larger energy absorp-
tion. However, the higher values of interfacial stresses tend to give more consistent results. 
It is due to a small fracture process zone wherein the process in mode-I dominates at the 
initial stage and mode-II at the end. This can also be justified by a sudden drop in peak 
load with an unequal variation of interfacial stress (30 MPa, 90 MPa), as shown in Fig. 15. 
Therefore, for the prediction of LCZ, a mode ratio of 20% close to mode-I behavior, inter-
facial strength of (60 MPa, 90 MPa), and thickness h equal to 2.5 mm is adopted. In case of 

Table 4   Material property ply-
drop configuration

Laminate Property Interfacial Properties

E11 (GPa) 120 GIc (N/mm) 0.260
E22 = E33 (GPa) 10.5 GIIc (N/mm) 1.002
G12 = G13 (GPa) 5.25 σI, max (MPa) 30
G23 (GPa) 3.48 σII, max (MPa) 60
ν12 = ν13 0.3 KI (N/mm3) 106

ν23 0.5 KII (N/mm3) 106

Fig. 14   Effect of element size on load vs. displacement behavior for ply-drop without crack
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ply-drop specimen with material property as in Table 4 and the fit parameters (h1 = 2.5483, 
M0 = 0.7866, M∞ = 0.8950, m = 0.052801), the LCZ predicted by Eq.  26 is 0.7762  mm, 
whereas the numerically determined length with mesh size 0.2  mm is 0.7981  mm. The 
curve fit parameters are obtained based on the least square fit method. Thus, the simula-
tion requires a minimum of 3 or more elements, and the failure process is observed to be 
strength sensitive.

4.3 � Structural Component: Ply‑drop with Pre‑crack

In this section, another ply-drop with a slightly different configuration subjected to mixed-
mode loading is analyzed. The composite laminates are manufactured by stacking lami-
nae with variations in orientation to attain the necessary strength and stiffness. Thus, it 

Fig. 15   Effect of interfacial stress on load vs. displacement behavior for ply-drop without crack

Fig. 16   Ply-drop configuration specimen with crack

1881Applied Composite Materials (2021) 28:1861–1898



1 3

becomes a provenance of complex out-of-plane stresses leading to initiation of failure. A 
structural specimen [55], as shown in Fig. 16, with cross-ply orientation is investigated. 
The ply-drop specimen of a total thickness of 5.29  mm with 44 layers and thickness of 
each layer equal to 0.12 mm is considered. The stacking sequence of the ply-drop speci-
men considered is [04/9012/010904/T/0/90/02/906/02/90/0], where T depicts the initial crack. 
The specimen is modeled with plane strain elements, and the material properties con-
sidered are listed in Table 5. The cohesive behavior is defined at a ply-drop between two 
plies of different orientations with a pre-crack of 25 mm. The effect of element size and 
interfacial strength on the load–displacement behavior is investigated. The element size 
is varied in the scale of 0.125 mm to 4 mm, and interfacial strength is diverse in the scale 
(15 MPa ≤ Mode-I ≤ 60 MPa; 30 MPa ≤ Mode-II ≤ 120 MPa).

Table 5   Material property for 
ply-drop with crack

Laminate Property Interfacial Properties

E11 (GPa) 161 GIc (N/mm) 0.210
E22 = E33 (GPa) 11.38 GIIc (N/mm) 0.770
G12 = G13 (GPa) 5.17 σI, max (MPa) 60
G23 (GPa) 3.98 σII, max (MPa) 90
ν12 = ν13 0.32 KI (N/mm3) 106

ν23 0.44 KII (N/mm3) 106

Fig. 17   Effect of element size on load vs. displacement behavior for ply-drop with crack
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A similar trend of the load–displacement behavior can be observed with variations of 
element size, as shown in Fig. 17. The element size greater than 1 mm are insufficient and 
overestimate the peak load as well as softening behavior. It can be noted that the element 
size smaller or near to 1 mm exhibits a close match to experimental results. However, accu-
rate prediction of the curve is possible with an element size of 0.5 mm or less.

It can be noticed from Fig. 18 that with the increment in interfacial strength, the val-
ues close to material property give accurate load–displacement behavior. The interfacial 
values of 60  MPa and 90  MPa are observed to give a higher prediction of peak stress 
than the experimental curve. This variation in the curves can be attributed to the load 
drop due to crack migration or shift around 80 MPa. The peak value predicted drops to a 
lower value with the variation of interfacial strengths from (60 MPa, 90 MPa) to (30 MPa, 
90  MPa), which shows mode-I dominant failure [36]. For interfacial strength values, 
mode-II > 90 MPa and mode-I < 30 MPa are insufficient to estimate the result. As depicted 
in Fig.  17, it results in either under prediction (15  MPa, 30  MPa) or over prediction 
(90 MPa,120 MPa) of the load–displacement relation. In order to predict LCZ, the mixed-
mode ratio is assumed to be 20%, and the thickness h is considered to be 2.65 mm. The 
LCZ as estimated by Eq.  (26) is 0.4940  mm (h1 = 2.4950, Mº = 0.5212, M∞ = 0.538276, 
m = 0.020877) and numerical value obtained with element size of 0.125 mm is equal to 
0.5214 mm. Accordingly, a minimum number of four elements are required in the cohesive 
zone to predict the behavior accurately [48].

Fig. 18   Effect of interfacial stress on load vs. displacement behavior for ply-drop with crack
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4.4 � Structural Component: L Bend

Curved composite structures form an integral part of many engineering applications, such 
as defence, aerospace, automotive, and medical devices. Often, in the aerospace industry, 
for components like wing spars or to connect any parallel/ orthogonal panels, L-shaped 
curved composites structures have been used. These structures are often subjected to com-
plex loads such as bending and out-of-plane stresses, making them a weak zone in the 
complete system. Besides, the stacking of lamina and the alignment of fibers concocts to a 
failure behavior even more complex leading to unstable delamination and global failure of 
the assembly. Therefore, to predict the failure in such components, an L-shaped laminated 
composite (L-bend) [56] is modeled, as shown in Fig. 19. The numerical model consists of 
a total thickness of 3.75 mm with the stacking sequence [03/903/03/T/903/06/903/03/903/03], 
where T depicts the initial crack of 3 mm.

The plane strain elements were used to model the L bend specimen with the prop-
erties given in Table  6. In between the ninth 0º ply and the tenth 90º ply, the cohe-
sive contact behavior was defined with the initial crack, as shown in Fig.  19. The 
load–displacement behavior of the structure is investigated for variation in element size 
of 0.125 mm to 4 mm and interfacial strength ranging from 15 MPa ≤ Mode-I ≤ 60 MPa; 
30 MPa ≤ Mode-II ≤ 120 MPa.

Fig. 19   L bend configuration specimen with crack

Table 6   Material property for L 
bend configuration

Laminate Property Interfacial Properties

E11 (GPa) 133 GIc (N/mm) 0.133
E22 = E33 (GPa) 9 GIIc (N/mm) 0.4588
G12 = G13 (GPa) 4.4 σI, max (MPa) 60
G23 (GPa) 3.7 σII, max (MPa) 80
ν12 = ν13 0.35 KI (N/mm3) 106

ν23 0.2857 η 1
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It can be observed from Fig. 20 that the element size equal to or less than 0.5 mm are suf-
ficiently capable of predicting load–displacement relation. The element size greater than 1 mm 
significantly overestimates peak load and does not capture exact softening behavior. With the 
variation in interfacial stress, it can be witnessed from Fig. 21 that the load–displacement behav-
ior with the stress values close to the actual material properties exhibits good agreement with 
the experimental results. Like ply-drop configuration, L bend is also subjected to crack shift/
migration, resulting in a higher prediction of load with interfacial stress of (60 MPa, 80 MPa). 
Also, the strength values higher than (60 MPa, 90 MPa) and lower than (15 MPa, 30 MPa) 
are unsustainable in estimating the result. The values either under predict (15 MPa, 30 MPa) 
or over-predict (90 MPa, 120 MPa) the peak load value. To check the mode dominancy, the 
value of stress was decreased to (30 MPa, 90 MPa). A sudden drop in the predicted peak value 
of the load is observed, depicting mode-I dominant delamination [57]. Thus, it can be ascer-
tained that L bend delamination is strength sensitive. To calculate LCZ, the specimen is meshed 
with coarse mesh on one end and fine mesh on the other end of the initial crack to allow crack 
initiation at one end only [58]. The LCZ is calculated based on Eq. (26) with h = 1.875 mm 
and an element size of 0.05 mm. The LCZ predicted by the Eq. 26 is 0.2321 mm, while the 
numerical value obtained is equal to 0.2100 mm. The fit parameters (h1 = 2.4950, M0 = 0.5212, 
M∞ = 0.538276, m = 0.020877) were obtained using least square method. Thus, a fine mesh 
with a minimum of 4 or more elements is required to capture load–displacement behavior.

Fig. 20   Effect of element size on load vs. displacement behavior for L bend
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5 � Crack Migration

The composite structural failure in many cases is dominated by delamination. However, 
it is consistently accompanied by matrix or fiber failure leading to multiple delamina-
tions or cracks. This delamination often propagates and shift into other lamina inter-
faces resulting in the crack shift or delamination migration, as shown in Fig. 22. Simi-
lar behavior has been recorded in many experimental studies [59–62] as well as in the 
studies carried out in the previous section. It can be noticed from the load–displace-
ment behavior of both the ply-drop with initial crack (Fig.  18) and L-bend (Fig.  21) 
that the load predicted is slightly higher than that of the experimental results. It can be 
attributed to the premature matrix cracking and crack shift/migration occurring at 0º/90º 
lamina interfaces of both the structures. As He and Hutchinson [63] defined, the crack 
shift into the adjacent lamina is ascribed as ‘kinking’, and the migration is referred to 
complete process of delamination propagation to another lamina interface. The current 
section focuses on modeling the crack kinks and delamination migration to accurately 
predict load–displacement behavior. A Modified Embedded Cohesive Model (MECM) 
approach is proposed to predict crack kinking and migration to estimate the behavior.

Fig. 21   Effect of interfacial stress on load vs. displacement behavior for L bend

1886 Applied Composite Materials (2021) 28:1861–1898



1 3

5.1 � Model Description

The proposed model is an improvisation over Needleman’s [64] intrinsic cohesive behavior 
model wherein cohesive interaction is established in between elements. The finite element dis-
cretization is based on the estimation of crack propagation along the specific path that consists 
of cohesive zone surfaces. Thus, representing the actual behavior of delamination propagation. 
The discretization in the current model is contingent on the brick and mortar model proposed 
by Begley et al. [65]. They investigated the behavior of nacre-influenced material topologies. 
The model allows assigning of the material property that is independent of orientations. A 
similar approach is followed in the current study to model unidirectional composite material 
structures. The present research is focused on modeling 0º/90º cross-ply laminate structures 
where material property depends on the fiber orientation. In comparison with Begley’s model 
[65], the current method represents a solid element as brick and cohesive behavior as mor-
tar, as shown in Fig. 23. The model allows predicting both intralaminar matrix failure (matrix 
cracking/kinking) as well as interlaminar matrix failure (delamination).

Fig. 22   Representation of crack/delamination migration due to initiation of transverse matrix crack

Fig. 23   Schematic representation of the Modified Embedded Cohesive Model (MECM) approach applied to 
unidirectional composite
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The cohesive behavior is inserted between solid elements representing unidirectional 
plies in a different orientation. The vertical interaction depicts the intralaminar, and the 
horizontal interaction illustrates the interlaminar matrix failure. The model assumes that 
the matrix cracks are approximated to be vertical.

Furthermore, a simple beam with cross-ply orientation is considered to extend the 
approach further to structure, as shown in Fig.  24. The blue colour depicts the matrix 
cracks, and the red colour represents the delamination. Introducing several cohesive behav-
iors among the elements introduces the problem of artificial compliance to the model and 
largely influences the total behavior of the structure. The widely used approach to over-
come this problem is to increase the initial stiffness of cohesive behaviour. However, 
this would require higher computational time leading to expensive simulation. Hence, in 
the current numerical model, the discretization to define cohesive behavior is limited to 
regions with 90º plies where the failure is inevitable, as shown in Figs.  23 and 24. The  
0º plies are modeled for interlaminar delamination only. Also, the element’s size is a factor 
that is inversely proportional to artificial compliance [16, 66]. As a result, brittle materials 
like polymer composites require small element size (le) as a consequence of a smaller frac-
ture process zone or cohesive length. Hence, to establish the convergence in simulation, the 
association between length scales must be defined.

The model requires the definition of three main length scales, mainly specimen dimen-
sion (h), the length of the cohesive zone (lcz), and the length of each element (le). The cohe-
sive zone’s length depends on maximum traction, fracture energy, and elastic modulus of 
the material. The estimation of LCZ is made based on Eq. (26) for mixed-mode. The length 
of the element should be less than LCZ (le < lcz) to provide accurate solutions [38]. The 
bilinear cohesive surface behavior which is more robust as compared to other traction sepa-
ration law is utilized. The proposed methodology is validated for the ply-drop with initial 
crack and L bend configurations in the next section.

5.2 � Ply‑drop

The basic configuration of the investigated structural specimen is shown in Fig. 16, simi-
lar to the one analyzed in Sect. 4.3. The material properties and boundary conditions are 
also maintained identical. The load–displacement behavior shows a variation in peak load 
predictions, as shown in Fig. 18. The experimental observations made by Ratcliffe et al. 

Fig. 24   Schematic representation of cross-ply laminate modeled with improved embedded cohesive zone 
model
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[55] demonstrated the intralaminar matrix failure with the occurrence of crack kinking at 
0º/90º interface and subsequently leading to the migration of the crack to another ply. For 
the modeling of such a phenomenon, the MECM approach is utilized. The discretization 
is made to 90-degree ply orientation only, and the element size was decided based on the 
LCZ calculated using Eq. (26). The discretization and element size were maintained less 
than LCZ to keep a minimum number of elements in the process zone to accurately capture 
failure. This also ensures convergence and reduces artificial compliance problems. The ply-
drop configuration has a total thickness of 5.29 mm and a total of 44 plies with 0º and 90º 
orientations. The discretization was generated for each ply with a thickness of 0.12 mm. 
The discretization of the model is set up by a user-defined python script within the frame-
work of Abaqus pre-processor. The model is built ply-by-ply, starting from the bottom. The 
mesh is generated for each ply, and the discretization is carried out only for 90º plies where 
the matrix cracking is anticipated. The size of each discretization strip is based on the total 
length of the cohesive zone.

As calculated in Sect. 4.3, for the model, the length of the cohesive zone is 0.49 mm. 
Thus, to ensure a minimum of four elements, the length of each element (le) is chosen to be 
0.12 mm. Thus, each discretized strip is considered in a square shape with a dimension of 
0.12 mm on each side, as shown in Fig. 25. The cohesive behavior is defined between the 
adjacent discretized strips to form a network. The plies with 0º orientation are not expected 
to exhibit any intralaminar failure. Therefore, only interlaminar failure leading to delami-
nation is defined in between the plies. The blue line indicates the cohesive behavior for 
matrix failure, whereas the red line indicates cohesive behavior for delamination. The pro-
cess is replicated for every ply based on the orientation of the configuration of the ply-
drop until the complete model is achieved. Consequently, this leads to a network of the 
embedded cohesive zone allowing to capture both interlaminar matrix failure in 90º ply 
and intralaminar delamination in 0º ply.

It can be seen from Fig. 26 that the crack migration is observed from the plane of the 
initial pre-crack. Similar experimental behavior was observed [55] at loading position 
L = 0.5a. It can be attributed to the shear stresses acting at the vicinity of the initial crack 
tip, which results in crack kinking due to matrix failure across the 90º ply stacking orienta-
tion. The behavior is due to the failure of cohesive surfaces along the discretized strips. As 
the damage propagation reaches 0º/90º interface, the crack starts to propagate as interlami-
nar delamination leading to migration of crack. As the matrix cracking occurs due to kink-
ing, and the migration progress to another interface, a load drop is noticed. The estimated 

Fig. 25   Numerical model discretization representation for ply-drop

1889Applied Composite Materials (2021) 28:1861–1898



1 3

load–displacement behavior as compared to experimental results is in good agreement, as 
shown in Fig. 27. However, there is a slightly higher prediction of peak load, which can be 
associated with the rigid behavior of the model as a consequence of the increase in stiffness 
[16]. The load drop predicted numerically is approximately equal to 81 N, which is close to 
the experimental value. The migration pattern is similar to the experimental, as shown in 
Fig. 27, thus capturing failure more precisely.

5.3 � L Bend

Failure in curved composites structures is mainly due to complex damage progression, 
which is often accompanied by intralaminar matrix failure and interlaminar delaminations. 
A similar structural composite with the L shape component discussed in earlier Sect. 4.4 
is analyzed for crack migration and matrix cracking. It can be observed in Fig. 21 that the 
load–displacement behavior is overpredicting the peak load values as compared to that of 
experimental results. It can be accredited to matrix cracking leading to crack kinks and 
delamination migration in the structure that can be observed in an experimental study [56]. 
To precisely estimate the behavior and to simulate crack kinks, a modified embedded cohe-
sive zone approach is used. An approach similar to the modeling of ply-drop specimen 
configuration is implemented. The L bend has a total thickness of 3.75 mm, and each lam-
ina of about 0.125 mm thick. The model is established ply by ply using python script for 
Abaqus pre-processor. The LCZ, as calculated by Eq. (26), is equal to 0.23 mm, whereas 
the numerically obtained value is equal to 0.21  mm. The plies with 90º orientation are 
discretized based on LCZ obtained. Since the process zone size comparably small, the 
numerical model would require an enormous number of discretized strips and cohesive 
interactions to be defined. This would contribute to an increase in artificial stiffness, caus-
ing convergence issues. Therefore, to avoid this computational problem, the length of each 

Fig. 26   Comparison of numerical (MECM) and experimental crack kink, delamination pattern for ply-drop 
with initial crack; (a) MECM, (b) Experimental [55]
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discretized strip is considered equivalent to the estimated LCZ by Eq. (26). Each discre-
tized strip is meshed with four elements to maintain a minimum number of elements in 
the process zone. The size of each strip was assumed to be equal to 0.125 mm to ensure 
uniformity, and the element size, le equal to 0.031 mm, as shown in Fig. 28. It resulted in 
reduced artificial compliance, and thus convergence in the solution is obtained. The cohe-
sive behavior for intralaminar failures depicting matrix failure is inserted in between two 
strip surfaces. The 0º are assigned with interlaminar cohesive behavior, as plies are not 
expected to have any intralaminar failures. The load and the material property are the same 
as that of the model discussed in Sect. 4.4.

The failures obtained from numerical results, as shown in Fig. 29, exhibit matrix domi-
nate failure in 90º piles. The initial kinking is followed by delamination with crack migra-
tion to 0º/90º interface. With the further increase in the load, multiple matrix failure with 
crack kinking is observed, followed by delamination along with the different 0º/90º inter-
face. The predicted and measured load–displacement curves are in close agreement, as 
shown in Fig. 30. The load at which the kinking occurs is marginally more due to the initial 
rigidity of the structure. The proposed methodology using the Modified Embedded Cohe-
sive Zone Model (MECM) approach can relatively predict both intralaminar and interlami-
nar failures in curved composites under mixed-mode loading.

Fig. 27   Comparison of Predicted (MECM) and measured [55] force vs. displacement behavior for ply-drop 
with initial crack

1891Applied Composite Materials (2021) 28:1861–1898



1 3

Fig. 28   Numerical model discretization representation for ply-drop

Fig. 29   Comparison of numerical (MECM) and experimental [56] crack kink and delamination pattern for 
L-bend; (a) at 2 mm load level, (b) 7 mm load level
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6 � Conclusions

Based on the numerical investigations, a novel empirical expression is proposed for 
mixed-mode loading delamination. A fairly good agreement was observed between the 
numerical and predicted values of LCZ for various structural configurations. The influ-
ence of input parameters such as interfacial stress and element size on load–displacement 
behavior was also investigated. It was noticed that for simple specimen configurations, 
like MMB, accurate prediction of behavior could be achieved with a wide range of inter-
facial stress values. However, for the complex geometries like ply-drop or L-bend, the 
values close to actual material properties provided accurate predictions. A precise estima-
tion of behavior can be obtained with shorter LCZ with values close to the true strength 
of the material. Hence, it requires a minimum of three to four elements in the cohesive 
zone for the prediction. Further, a Modified Embedded Cohesive Model was proposed to 
investigate the intralaminar matrix cracking and interlaminar delamination. The numeri-
cal investigations revealed that the failure in composites is accompanied by simultaneous 
multiple crack initiation and propagation. Bsides, the intralaminar cracks and interlaminar 
delamination combined to form a crack kinks and delamination migrations, as observed in 
the experimental studies. It is observed that the numerical and experimental results exhibit 
excellent agreement with reduced computational efforts. Therefore, the proposed method-
ology can be used to predict the LCZ and various failures such as intralaminar and inter-
laminar failures in composites of various geometries under mixed-mode loading.

Fig. 30   Comparison of Predicted (MECM) and measured [56] force vs. displacement behavior for L bend
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Appendix 1

Equivalent Elastic Modulus

For orthotropic materials equivalent elastic modulus, E′
I
 and E′

II
 are calculated as

where, a11, a22 , a12 and a66 under plane stress condition are given by

For plane strain condition, the equivalent elastic modulus is given by

where,
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Appendix 2

Analytical (LEFM) Load–displacement Relation for MMB Test

The load–displacement behavior for MMB can be obtained as per ASTM standard D5528. 
The applied load and displacement relation are obtained by

where, ξ is given by

The corresponding arm displacement is given by
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