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Abstract
The paper presents the method of analysis and a comparison of the effectiveness of modi-
fied and conventional syntactic foams. The method employs the two-phase superposition 
approach recently developed for composite materials consisting of several concentric 
phases. Conventional syntactic foams consisting of spherical voids surrounded by thin 
glass shells embedded in the matrix are compared to modified foams with cylindrical or 
spheroidal voids. Modified syntactic foams analyzed in the paper include foams with cylin-
drical voids aligned along the applied stress or perpendicular to the stress and foams with 
randomly oriented cylindrical voids. It is demonstrated that while conventional syntactic 
foams with spherical voids absorb more energy than their modified counterparts, the stiff-
ness of such foams is compromised due to the presence of voids to a larger degree than in 
modified foams. Accordingly, modified syntactic foams may appear a better compromise 
if a high energy absorption has to be combined with a prescribed large stiffness of the 
material.
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1  Introduction

Syntactic foams have found a wide range of applications because of their light weight, high 
specific strength, low coefficient of thermal expansion, low moisture absorption and other 
attractive properties. In conventional syntactic foams hollow or non-hollow spherical voids 
are surrounded with thin glass or metallic shell and embedded in the matrix. Manufac-
turing, design and application issues of these materials have been considered in several 
reviews (e.g. [1]). Micromechanics of syntactic foams with spherical coated voids has 
been extensively studied and explicit expressions for the bulk and shear moduli are avail-
able. In particular, the solution for the upper and lower bounds on the shear modulus and 
the explicit expression for the bulk modulus of elastic syntactic foams was obtained in [2, 
3]. Explicit expressions for elastic constants of a syntactic foam have been derived in [4].  
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A numerical FEA methodology was employed in [5] to evaluate the properties of the inter-
phase in syntactic foams. It has been illustrated in both numerical and experimental stud-
ies that while the tensile modulus of elasticity of a syntactic foam increases with a higher 
microsphere volume fraction, the tensile strength decreases [6]. Moreover, micromechani-
cal methods have been extended to include elastic–plastic aspects of metal matrix syntactic 
foams [7–9], while viscoelastic response of syntactic foams was studied in [10]. Bardella 
et al. compared several micromechanical models of syntactic foams with spherical voids 
[11].

One of the attractive features of syntactic foams is a high toughness and energy absorp-
tion (e.g., [12–14]). Besides energy absorption in foams with an elastic matrix, energy 
absorption in metal-matrix syntactic foams has been extensively investigated [15–19]. In 
particular, aluminum matrix foams with iron hollow spheres were studied and showed an 
impressive energy absorption capacity attributed to a significant plastic yielding plateau on 
the stress–strain curve [17]. Advantages in the energy absorption capacity, as compared to 
that in conventional metal foams, was demonstrated for zinc alloy matrix, glass microbal-
lons syntactic foams in [19]. A syntactic foam with alumina cenospheres and bulk metal-
lic matrix was manufactured and proven to combine high strength and energy absorption 
properties exceeding those of pure metallic glass foams [18]. A new class of metal-matrix 
syntactic foams was developed in [15] combining CoCrFeMnNi matrix with alumina ceno-
spheres. These foams combine high strength attributed to the effect of ceramic shells with 
a high energy absorption capacity provided by the metal matrix. The behavior of syntactic 
foams with viscoplastic matrices subject to a high strain rate loading was considered in 
[20]. A comprehensive review of applications of syntactic foams is outside the scope of 
this paper, mentioned here are submersible vehicles, rudders of submarines, thermal insu-
lators, propeller fillers and cores of sandwich structures. Note that a modified syntactic 
foam could also be manufactured with cylindrical or spheroidal inclusions, but its advan-
tages compared to the conventional counterpart have not been thoroughly investigated.

The analysis of stiffness and energy absorption of syntactic foams relies on microme-
chanical modeling of concentric three-phase composites with a thin coating separating 
the matrix from the inclusion (Fig.  1). The unique feature attributed to syntactic foams 
is that the “inclusion” is often hollow possessing zero stiffness. While the solutions for 
spherical syntactic foams can rely on such studies as [2–6] and [21–23], other shapes of 
voids have not been extensively researched. In this paper we apply the recent microme-
chanical approach to the evaluation of the tensor of stiffness of a multi-phase composite 
material based on the superposition of two-phase solutions [24, 25] to compare the energy 

Fig. 1   Cross section of a syn-
tactic foam. In “conventional” 
syntactic foams, this is a cross 
section of a spherical void 
encompassed by a thin spherical 
shell and the matrix. In a “modi-
fied” syntactic foam” this is a 
cross section of a cylindrical or 
spheroidal void surrounded by a 
thin shell and the matrix
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absorption and stiffness of “conventional” syntactic foams with spherical voids to those 
of modified foams with cylindrical or spheroidal voids. It is demonstrated that while the 
energy absorption is maximum in the foams with spherical voids, these foams also possess 
the lowest stiffness. Accordingly, modified syntactic foams with cylindrical or spheroidal 
voids may present an attractive compromise increasing the energy absorption compared 
to that in the pristine matrix, while retaining a higher stiffness compared to their spherical 
void counterparts.

2 � Analysis

The purpose of this paper is to analyze possible advantages and shortcomings of modified 
syntactic foams as compared to conventional foams with spherical voids. In all these foams 
hollow voids are surrounded by thin glass or metallic shells that are in turn embedded in 
the matrix. Here we compare the performance of foams with aligned cylindrical or sphe-
roidal voids aligned either along of perpendicular to the applied stress direction, randomly 
oriented voids, and spherical voids. The basis for the comparison is the density of absorbed 
energy in foams subject to uniaxial or shear stress as well as the reduction in the stiffness 
due to the presence of voids.

In the case where inclusions or voids with a single layer of coating are embedded in the 
elastic matrix, the two-phase superposition method introduced by Birman [24] yields the 
tensor of stiffness as

where subscripts i, c and m refer to inclusions (or voids), coating and matrix, respectively, 
and Ωj (j = i, c,m) are the volumes occupied by the inclusion, coating, and matrix, respec-
tively. Accordingly, Lpq(Ωk,Ωl) denotes the tensor of stiffness of a two-phase composite 
material where phase p occupies the volume Ωk  and phase q occupies volume Ωl.

It has been shown [24] that the present method of the evaluation of the tensor of stiff-
ness of composites with coated inclusions provides simple and accurate solutions for fiber-
reinforced materials with the fiber volume fraction up to 40% and a thin coating. In case of 
thicker coatings (10% volume fraction) the results were accurate if the fiber volume frac-
tion remained below 20%. In syntactic foams the shell encompassing the void is very thin. 
Thus, the stiffness estimate obtained by the two-phase superposition method should be 
accurate with a possible exception of large void volume fractions.

Two cases of the syntactic foam are considered here, including the foams with a linear 
elastic matrix (e.g., polymer matrix composites) and the foams with elastic–plastic matrix 
(e.g., metal matrix composites).

1.	 Elastic Matrix

For a limited volume fraction of voids in the syntactic foam, the Mori–Tanaka method 
of estimating the stiffness of the composite material [26] should be accurate as follows 
from the previous research on fiber-reinforced and particulate composites [27]. Note that 
the Mori–Tanaka method for the bulk and shear moduli also represents the lower bound 
of the Hashin–Shtrikman if the matrix is more compliant than the inclusion and the upper 
bound if the matrix is stiffer, as is the case in the present problem [28], so that the results 
generated by this method are within the physically acceptable range.

(1)L = Lim(Ωi,Ωc + Ωm) + Lcm(Ωi + Ωc,Ωm) − Lcm(Ωi,Ωc + Ωm)
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The stiffness of two-phase uniaxially oriented spheroidal inclusions obtained employing 
the Mori–Tanaka approach is [29]:

where Vi is the volume fraction of the inclusion, E11 and E22 are the longitudinal and trans-
verse moduli of elasticity, respectively, G12 and G23 are the longitudinal plane and trans-
verse plane shear moduli, K23 is the plane strain bulk modulus, v12 is the major Poisson 
ratio of the composite, and v0 is the Poisson ratio of the matrix. In Eq. (2), the stand-alone 
subscripts “0” and “1” refer to the matrix and inclusion properties, respectively. Both the 
elements of the Eshelby tensor Sijkl and the coefficients A,An are affected by the inclusion 
aspect ratio. The last two Eq. (2) are coupled and can be solved by iterations.

The comparison between the results obtained by the Mori–Tanaka method to those avail-
able by the self-consistent and Halpin–Tsai methods is presented in [29]. The self-consistent 
and to a lesser degree the Halpin–Tsai methods yield larger longitudinal moduli at a small 
inclusion aspect ratio not exceeding 10. At the aspect ratio of inclusions equal to 10, the 
results obtained by the Halpin–Tsai and Mori–Tanaka method practically coincide, while the 
self-consistent method still yields higher values of the modulus. At the aspect ratio of 100 
(approaching the case of continuous fibers) all three methods predict nearly identical results. 
Accordingly, for the aspect ratio of voids equal to or exceeding 10, the two-phase Halpin–Tsai 
method can be used predicting the stiffnesses as follows:

E11∕E0 =
1

1 + Vi(A1 + 2v0A2)A
−1

E22∕E0 =
1

1 + Vi[−2v0A3 + (1 − v0)A4 + (1 + v0)A5A](2A)
−1

G12∕G0 = 1 +
Vi

G0

G12 − G0

+ 2(1 − Vi)S1212

G23∕G0 = 1 +
Vi

G0(G1 − G0)
−1 + 2(1 − Vi)S2323

K23∕K0 =
(1 + v0)(1 − 2v0)

1 − v0(1 + 2v12) + Vi{2(v12 − v0)A3 + [1 − v0](1 + 2v12)A4}A
−1

(2)v12 =

[

E11

E22

−
E11

4
(G−1

23
+ K−1

23

]1∕2

(3)

E11∕E0 =
1 + ��lVi

1 − �lVi

� = 2a �l =
E1∕E0 − 1

E1∕E0 + �

E22∕E0 =
1 + ��tVi

1 − �tVi

� = 2 �t =
E1∕E0 − 1

E1∕E0 + �

G12∕G0 =
1 + ��sVi

1 − �sVi

� = 1 �s =
G1∕G0 − 1

G1∕G0 + �
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where � is the aspect ratio of the inclusions. Equation (3) are shown for the case where both 
phases of the composite material are isotropic. The major Poisson ratio can be obtained by 
the rule of mixtures.

In case where cylindrical voids are 2-D randomly oriented, the Tsai-Pagano method [30] 
can be applied to calculating the stiffness of the material that is isotropic at the macromechani-
cal scale:

Other methods for estimating the stiffness of composite materials with 2-D and 3-D ran-
domly oriented inclusions were developed by Nielsen and Chen [31] and by Christensen and 
Waals [32, 33].

Two aspects of the effectiveness of syntactic foams or modified syntactic foams for the 
energy absorption should be discussed. The first is the energy absorption under the pre-
scribed load that does not cause failure of the material. As is shown in Fig. 2a, reducing 
the stiffness of the material results in a larger absorption of energy at the prescribed stress. 
However, if the requirement is preventing a catastrophic failure, the absorbed energy has to 
be associated with work to failure (Fig. 2b). The presence of coated voids results in local 
stress concentrations at the interface between the coating and the matrix as well as in the 
matrix adjacent to the coating. As a result, the failure stress of the foam could be reduced 
as compared to that in the pristine solid matrix. The opposite trends in toughness (work to 
failure) and strength are well documented (e.g., [34, 35]). Thus, the effectiveness of the 
syntactic foam in absorbing the energy at catastrophic failure has to be analyzed consid-
ering local stresses. The stress analysis in the case of uniaxially oriented spheroidal and 
spherical voids can be based on the solution in [36].

In this paper we concentrate on the effects of the shape and orientation of voids in syn-
tactic foams on the reduction in the stiffness of the material and on the increase in the 
energy absorption. The former effect is detrimental since the voids reduce the stiffness, 
even though the shells (coating) may somewhat counterbalance this effect. The latter effect 
is positive and accordingly, designers may be interested in finding the optimum balance 
between the two effects. To conduct such analysis, we compare the engineering constants 
and the density of energy absorbed by the foam for the following materials:

–	 Foam with coated cylindrical voids aligned along the applied stress;
–	 Foam with coated voids aligned perpendicularly to the applied stress;
–	 Foam with randomly oriented coated voids;
–	 Foam with spherical coated voids.

(4)E =
3

8
E11 +

5

8
E22 G =

1

8
E11 +

1

4
E22

Fig. 2   (a) Density of absorbed 
energy of complaint materi-
als represented by the area of 
triangle OAB is larger compared 
to a stiffer counterpart subject to 
the same stress (area of OCD), 
(b) Work to failure of a compli-
ant material (area of OAB) is not 
necessarily higher than that of a  
stiffer material (area of OCD) 
since the work depends on the 
failure stress
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Both the stiffness as well as the density of the absorbed energy are normalized with 
respect to those in the pristine matrix. While the stiffness is independent of the nature of 
load applied, the energy absorption is analyzed both for the case of a uniaxial stress as well 
as under the shear stress (the latter case is important if the foam is used as the core in a 
sandwich structure [37, 38]).

The mechanism of failure of syntactic foams has been considered in a number of experi-
mental and numerical studies. This mechanism could be different in various classes of syn-
tactic foams; i.e., failure in the foam with a metallic matrix differs from that in foams with 
epoxy matrices. In particular, Huang and Li [39] modelled the failure in foams with epoxy 
matrices. They found that local stresses cause the vertical splitting fracture of microspheres 
and the formation of microscopic cracks in the matrix. These cracks either join each other 
or propagate through the damaged microspheres, and finally merge into a macrocrack.

The absorbed energy density is calculated by

where �i and �i are the components of the tensors of stress and strain, respectively.
In the elastic range the stress–strain relationships are linear, i.e., the tensors of stress 

and strain are related by

where Q is the tensor of reduced stiffnesses.
The energy absorption in the case of elastic matrices is considered for a regular life-

time cycle, i.e., the foam should absorb a maximum amount of energy at the applied 
stresses that remain below the failure combination. Such formulation is relevant in the 
situations where the syntactic foam is designed to increase damping of the structure 
during lifetime when it is subject to loads that do not cause damage.

The energy absorption improvement factor referred to below is defined as the ratio of 
the absorbed energy in the unit volume cell of the syntactic foam subject to a prescribed 
load to the counterpart in the unit volume of the pristine matrix material subject to the 
same load. In the following Eqs. (7) and (8) this factor is presented for loading that 
does not cause damage in the material. The corresponding energy densities in the elastic 
range are obtained from Eqs. (5) and (6) using reduced stiffnesses calculated in terms 
of engineering constants of the material that are determined using Eqs. (1), (2) and (3). 
An extension to the case where the ductile matrix becomes plastic is outlined in the next 
section.

In the case of a uniaxial stress the energy absorption improvement factor of the 
above-mentioned types of syntactic foams for energy absorption is compared using the 
ratio

where u′

f
 and u0 are the energy densities of the foam and the pristine matrix material, 

respectively, and Q(j)

kl
 are reduced stiffnesses of the corresponding materials.

In the case of a shear stress the effectiveness of the foam is determined from

(5)u = ∫
�i

0

�id�i

(6)� = Q�

(7)Rf =
u

�

f

u0
=

Q
(0)

11
−
(

Q
(0)

12

)2
/

Q0

22

Q
(f )

11
−
(

Q
(f )

12

)2/

Q
(f )

22
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2.	 Elastic–Plastic Matrix

The approach presented above is concerned with syntactic foams with elastic matri-
ces. However, it can be extended to ductile metal matrix composites as well. In the fol-
lowing, we adopt the extension of the Mori–Tanaka micromechanics [27] to the case 
of elastic–plastic matrices. This theory is based on averaging the strains in the matrix 
within the representative volume cell. Thus, the transition from the elastic to elas-
tic–plastic response occurs throughout the entire matrix at the same stress level, rather 
than varying with the position vector. Within the framework of such approach the elas-
tic–plastic response of the matrix can be modelled using the J2 deformation theory of 
plasticity.

The extension of the Mori–Tanaka theory to characterize the response of composite 
materials with elastic–plastic or elastic-viscoplastic phases has been extensively studied 
(e.g., [40–42] and [43]). In particular, limiting the analysis to the small-strain J2 defor-
mation theory of plasticity, without unloading, the solutions have been developed for 
composites with elasto-plastic matrix in such papers as [44, 45]. The approach where 
unloading can be incorporated would be based on the so-called J2 flow theory (e.g., Hill 
R. The mathematical theory of plasticity. New York: Oxford, University Press, 1950) 
that is not considered here.

The solution incorporating the elastic–plastic response of an isotropic matrix can be 
derived using the same micromechanical superposition as in the case of elastic matri-
ces (Eq.  (1)), but accounting for the physically nonlinear matrix behavior. The solu-
tion demonstrated here is based on the analysis developed by Tandon and Weng for the 
case of spherical inclusions [46] that was extended by Hu to fiber-reinforced compos-
ites and composites with voids [45]. The main steps of the analysis are reproduced for 
convenience.

The analysis of Tandon and Weng employs the assumption that the matrix material 
is incompressible. This implies that the bulk modulus of the matrix in the elastic stress 
range remains unchanged when the matrix becomes plastic. The material is assumed 
macroscopically isotropic meaning that the foam analyzed using the approach below has 
either spherical or randomly oriented coated voids.

Three superposition cases referred to in Eq. (1) involve the matrix encompassing the 
inclusion. The inclusion can be filled with air (first term in the right side of Eq. (1) or 
coating material (second and third terms in the right side of Eq. (1)). As in the previous 
analysis, the subscripts 0 and 1 identify the matrix and inclusion, respectively.

The plastic stress–strain relationship in the matrix material is assumed to follow the 
Ludwik law generalized for the case of proportional loading in terms of effective stress and 
effective plastic strain:

where �y is the yield stress, � and �p are the effective stress and effective plastic strain, 
respectively, n is the work-hardening exponent and h is a material constant. The effec-
tive stress and plastic strain are determined in terms of components of deviatoric tensor of 

(8)Rf =
Q

(0)

66

Q
(f )

66

(9)� = �y + h�
n

p
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stress and tensor of plastic strain (the components of the deviatoric stress tensor are identi-
fied by the prime):

The flow rule imposed in this theory is

Note that there are numerous matrix materials that follow the Ludwik law in the plastic 
range. For example, according to [45], for 6061 aluminum h = 145 MPa, n = 0.455, while in 
the example for an epoxy matrix presented in [46] h = 32.18 MPa, n = 0.26.

The development of the stress–strain relationships and the energy absorption analysis 
can be conducted as follows. Given a prescribed applied composite stress tensor � , the 
value of the secant matrix shear modulus �s

0
 has to be assumed. The secant bulk modulus 

is obtained by assumption that the matrix is incompressible. Accordingly, it does not dif-
fer from the bulk modulus in the elastic range, �0 . Then the secant shear (�s), bulk (�s) and 
elastic (Es) moduli as well as the Poisson ratio (�s) of the composite in each of three super-
position cases are obtained from

where c1 is the volume fraction of the inclusions, and

The hydrostatic and deviatoric strains in composite can be determined from

(10)� =

√

3

2
�

�

ij
�

�

ij
�p =

√

2

3
�pij�pij

(11)�pij =
3�p�

�
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2�

�s = �0 +
c1�0

(
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0

)

(

1 − c1
)

�s
0

(
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0

)

+ �s
0

�s = �0 +
c1�0

(

�1 − �0
)

(

1 − c1
)

�s
0

(

�1 − �0
)
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(12)�s =
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2(3�s + �s)

�s
0
=
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0

3
(
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0

)
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0
=

2
(
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)
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(
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where the first terms in the right side of the equations are the average hydrostatic and devi-
atoric strains in the matrix, and

represent equivalent transformation strains [46].
The average stresses in the matrix corresponding to the prescribed values of the tensor 

of stress and the secant shear modulus of the matrix are

The process outlined above can be applied to the evaluation of the composite tensor of 
stiffness and the energy absorption density in a syntactic foam. The analysis of the com-
posite material consisting of the elastic–plastic matrix and coated voids is subdivided into 
three subcases:

Subcase 1: Void encompassed within the elastic–plastic matrix;
Subcase 2: Coating material occupying the volume of the coated void encompassed within 

the elastic–plastic matrix;
Subcase 3: Coating material occupying the volume of the void encompassed within the 

elastic–plastic matrix.
For each of subcases identified above, the iterative process of developing the stress–strain 

relationship can be developed as follows. For a prescribed applied stress tensor, the secant 
shear modulus in the matrix is assumed. Subsequently, composite material secant moduli and 
Poisson’s ratio are evaluated from Eq. (12). The average stresses in the elastic–plastic matrix 
are found from Eq. (16) and the corresponding matrix strains are available using the first terms 
in the right sides of Eq. (14). The updated matrix secant modulus can now be found, compared 
to the previously assumed value and if necessary, employed in the new iteration.

Combining the secant stiffness tensors evaluated for each case, the secant tensor of stiffness 
of the syntactic foam is obtained expanding Eq. (1) that now reflects the effect of the tensor of 
applied stress �:

In the case of uniaxial loading, the iterative process described above is not required and the 
closed-form solution is available [46]. For a given plastic strain �p , the stress in the matrix is 
determined by the Ludwik law (9). The secant modulus of elasticity the matrix is obtained by

(14)�
�
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�
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�
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Other secant matrix engineering constants can be evaluated following [46]. Subse-
quently, the secant constants of the composite material corresponding to the prescribed 
plastic strain in the matrix are specified from Eq. (12).

The applied composite stress �11 is available from the first Eq. (16). The corresponding 
plastic strain in the composite material is

The energy absorption density for the syntactic foam is obtained using Eq. (5) and the 
composite stress–strain diagrams developed as shown above.

3 � Numerical Examples

The results shown below are limited to the case of elastic matrices. Thus, they are relevant 
if the goal is to provide a sufficient energy absorption under design loading, while retaining 
a required stiffness of the foam.

The properties of foams analyzed below are:
Matrix (epoxy resin): Moduli of elasticity and shear are equal to 3.2 GPa, 1.23 GPa, 

respectively.
Glass shell (coating): Moduli of elasticity and shear are equal to 72.0 GPa and 31.3 

GPa, respectively.
The volume fraction of glass shells is taken equal to 0.01, while the volume fraction 

of hollow voids vary from 0.1 to 0.5. The aspect ratio of cylindrical voids was kept at 10. 
Note that the maximum volume fraction of randomly oriented voids or fibers decreases 
with a smaller aspect ratio. For example, extensive research on the effect of geometry on 
the maximum packing density of inclusions was conducted by Torquato and his associ-
ates. In particular, extrapolating the results for prolate ellipsoids presented in [47] to the 
aspect ratio of 10, yields an estimate for the maximum packing fraction of about 0.45 (also 
suggested by Prof. S. Torquato in private correspondence). Similar estimates follow from 
experiments [48].

The moduli of elasticity of various foams normalized with respect to the elastic modu-
lus of the solid matrix materials are presented in Fig. 3. All moduli exhibit a decrease as 
the volume fraction of voids increases. The axial stiffness of material in the direction of 
voids is higher than in the perpendicular direction. This is partly explained by the stiffen-
ing effect of the glass shell. It is noted that at a low void volume fraction the longitudinal 
stiffness of foam with aligned voids exceeds that of the pristine matrix reflecting the con-
tribution of the glass constituent. The stiffness of the foam with randomly oriented voids 
is lower than that of the foam with aligned voids in the longitudinal direction but higher 
than the stiffness of such foam in transverse direction. The stiffness of the syntactic foam 
with spherical inclusions is lower than that of the counterparts with aligned or randomly 
oriented voids. In the case where the voids are oriented in the perpendicular direction to 
the load, the moduli E11 and E22 are interchanged, i.e., the stiffness in the load direction 
is compromised by the voids to a larger extent as compared to the foam with the voids 
aligned with the applied stress.

(18)Es
0
=
(

1∕E0 + �p∕(�y + h�−n
p
)
)−1

(19)�11 =
�11

(

1∕Es
− 1∕E

)
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The in-plane shear stiffness of foams normalized with respect to the shear modulus 
of the matrix is shown in Fig.  4. Similar to the moduli of elasticity, the shear stiffness 
decreases with a higher void volume fraction. However, contrary to the moduli of elastic-
ity, the shear stiffness of foams with randomly oriented voids is higher than that for the 
counterparts with aligned voids. The shear stiffnesses of foams with spherical and aligned 

Fig. 3   Moduli of elasticity of 
syntactic foams normalized by 
the modulus of the solid matrix 
( E

m
 ). E11 and E22  are the moduli 

in the axial and transverse 
directions, respectively, E

r
 is 

the modulus of the foam with 
randomly distributed voids, E

s
 

is the modulus of the foam with 
spherical voids. Note that the 
maximum volume fraction of 
randomly packed coated voids 
with the aspect ratio of 10 cannot 
exceed the values in the range 
from 0.40 to 0.45 ([47], private 
correspondence with Prof. 
Torquato)

Fig. 4   Moduli of shear of syntac-
tic foams normalized by the solid 
matrix shear modulus ( G

m
 ). G12 

is the in-plane shear modulus, G
r
   

is the shear modulus of the foam 
with randomly distributed voids, 
G

s
  is the modulus of the foam 

with spherical voids. Note that 
the maximum volume fraction 
of randomly packed coated voids 
with the aspect ratio of 10 cannot 
exceed the values in the range 
from 0.40 to 0.45 ([47], private 
correspondence with Prof. 
Torquato)
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voids almost coincide. Note that the ratio of absorbed energy of syntactic foams to that of 
the pristine matrix material subject to shear loading and calculated by Eq.  (8) represent 
an inverse of the ratio of shear stiffnesses shown in Fig. 4. Accordingly, we conclude that 
foams with spherical or aligned voids are more efficient as energy absorbers than foams 
with randomly oriented voids, but at the expense of a larger loss in the stiffness.

The ratios of the density of absorbed energy of syntactic foams to that of the solid 
matrix material undergoing a uniaxial stress are presented in Fig. 5. The foams with spheri-
cal voids exhibit the highest energy absorption capacity, but similar to the case of shear 
loading, this is achieved at the expense of a larger loss in the stiffness (compare Figs. 3 and 
5. On the contrary, the foams with voids aligned in the direction of the load have the lowest 
energy absorption, while retaining the highest stiffness.

4 � Conclusions

The paper compares relative advantages and shortcomings of several architectures of syn-
tactic foams in terms of the stiffness and energy absorption. The analysis is conducted 
using the recently introduced two-phase superposition method to evaluate the stiffness of 
the material. The energy absorption magnification factor of the foams is analyzed under 
uniaxial and in-plane shear loads. The “conventional” syntactic foam with spherical voids 
has been shown to provide the highest energy absorption capacity under uniaxial load and 
nearly the same capacity with the foam with aligned voids under shear loading. However, 
this was achieved at the cost of the highest decrease in the stiffness. Therefore, in applica-
tions that require both the energy absorption as well as retaining a required stiffness, one 
of foam architectures discussed here can be considered as an alternative to changing the 
volume fraction of spherical voids or surrounding them shells.

Fig. 5   Energy absorption in syn-
tactic foams normalized by the 
absorption in the solid matrix. R 
is the ratio of absorbed energy in 
case where the voids are oriented 
along the applied stress, R

orth
 is 

the energy ratio for voids aligned 
perpendicular to the stress, R

r
 

is the energy ratio for randomly 
oriented voids, R

s
 is the ratio of 

energy for spherical voids. Note 
that the maximum volume frac-
tion of randomly packed coated 
voids with the aspect ratio of 10 
cannot exceed the values in the 
range from 0.40 to 0.45 ([47], 
private correspondence with 
Prof. Torquato)
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