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Abstract
This study presents an artificial neural network (ANN) model for predicting the residual 
strength of carbon fibre reinforced composites (CFRCs) after low-velocity impact. First, 
a finite element (FE) model was developed addressing intra-laminar damage and inter-
laminar delamination, to estimate low-velocity impact (LVI) and compression-after-impact 
(CAI) responses of CFRCs. The FE results in terms of load–displacement curves, damage 
patterns, and residual strengths were found to be essentially in agreement with those by 
experiments. An ANN model was developed using back-propagation learning algorithm 
and was trained using the FE results to establish a nonlinear relationship between LVI 
parameters (i.e. impact energy and impactor diameter) and CFRC residual strength. Twelve 
sets of additional CAI simulations were carried out to validate the proposed ANN-based 
residual strength prediction model. A good agreement was achieved between the residual 
strengths predicted by ANN model and the FE results with errors less than 5%, demonstrat-
ing the effectiveness of the present ANN model. The established ANN-based model can 
effectively reduce the experimental costs and computational time.
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1 Introduction

Carbon fibre reinforced composites (CFRCs) have been increasingly used in aerospace, 
automotive, and wind turbine applications. In comparison to traditional metallic mate-
rials, CFRCs have many advantages such as excellent specific strength and stiffness, 
high resistance to corrosion and fatigue [1–3]. However, CFRCs are vulnerable to for-
eign object impacts (i.e. tool drops, bird strike, hail/ice impact) due to their intrinsi-
cally brittle failure nature [4, 5]. The damage introduced by an accidental impact may 
substantially reduce the structural stiffness and integrity, leading to a significant drop 
in residual strength. Compression-after-impact (CAI) strength, which attracted increas-
ingly attentions to both academia and industry, is a well-known material property to 
assess the structural integrity of CFRCs after impact.

Over the decades, low-velocity impact (LVI) response and failure analysis of CFRCs 
have been extensively investigated [6–10]. The damages such as fibre fracture, matrix 
cracking, and delamination caused by LVI depend on the level of the applied impact 
energy. These can reduce the residual mechanical properties of CFRCs [11–15]. The 
failure process of CFRCs with LVI damage is difficult to predict when combined with 
in-plane compression. The LVI-induced damage in CFRC may trigger local stress con-
centration, resulting in fibre fracture, matrix cracking or delamination, and eventually 
structural collapse [16–18].

Various experimental and numerical methods have been presented for predicting 
the CAI strength of laminates in recent years. The CAI strength of CFRCs with LVI-
induced damage are closely related to laminate type, ply thickness, stacking sequence, 
impactor shape, and impact energy. Liu et  al. [19, 20] conducted a series of LVI and 
CAI tests to understand the failure mechanism of hybrid unidirectional (UD) and plain 
woven fabric (WF) CFRCs subjected to in-plane compression. The outermost WF plies 
improved the composite CAI strength since the woven plies could constrain the extent of 
damage during impact. Cheng and Xiong [9] demonstrated that the laminate type has an 
evident effect on LVI and CAI behaviour of composite materials, and the CAI strength 
of CFRCs was nearly 1.5 times higher than that of glass fibre reinforced composites. 
Caminero et  al. [21] examined the effect of stacking sequence on the CAI strength of 
CFRCs and they found that cross-ply laminates exhibited lower CAI strengths than 
angle-ply laminates. The low CAI strength of the CFRCs may be due to the fact that 
the 90° plies made the central sub-laminate less stiff, more unstable, and liable to fail 
subjected to a smaller load. González et al. [22, 23] developed a 3D finite element (FE) 
model predicting inter-laminar and intra-laminar damage to evaluate the LVI and CAI 
behaviours of CFRC, and they found that the laminate CAI strength is fairly sensitive 
to the stacking sequence. Habibi et al. [24] performed experimental and numerical stud-
ies to characterize the influence of impactor shape and impact energy on the LVI and 
CAI behaviours of CFRCs. In general, the CAI strength decreased with the increase of 
impact energy and number of multiple impacts [25].

It is well known that the experiments on the CAI strength of CFRC with LVI dam-
age often require a lot of manpower, materials, and financial resources. For instance, to 
meet the damage tolerance airworthiness requirement, composite structures in aircraft 
with many types of damage (i.e., barely visible impact damage, visible impact damage, 
discrete source damage) should be considered to assess their residual mechanical prop-
erties. Therefore, it is of great importance to develop an efficient prediction model to 
assess the CAI strength of CFRCs with various LVI damages.
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Artificial neural network (ANN) algorithm is a powerful method for modelling a com-
plex nonlinear relationship between inputs and outputs where an accurate analytical expres-
sion is difficult to achieve. An elaborate review on the application of ANN to mechanical 
modelling of composite materials is given by Zhang et al. [26]. Fan and Wang [27] used an 
ANN-based approach to predict the tensile strength of composite laminates with an open-
hole by training the limited number of testing data. Altabey and Noori [28] developed a 
feed-forward neural networks model to predict the fatigue life of CFRCs as a function of 
stress ratios, fibre orientations, materials, and loading conditions. Stamopoulos et al. [29] 
developed two ANNs models which were trained using a multi-scale methodology to pre-
dict matrix-dominated mechanical properties (e.g. transverse strength, transverse stiffness, 
flexural strength, flexural modulus, and short beam strength) of CFRCs with the aid of 
either the porosity characteristics using X-ray computed topography (CT) or the autoclave 
pressure, and the predictions were consistent with the mechanical tests. Balokas et al.  [30]  
studied the influence of manufacturing uncertainties of three-dimension(3-D) braided 
carbon fibre/epoxy composites on elastic modulus and in-plane strength using an ANN-
based method. Vineela et al. [31] developed the ANN model to predict the ultimate tensile 
strength of hybrid carbon/glass short fibre composites and the effectiveness of the method 
was validated by experiment. Chen et al. [32] developed an integrated numerical approach 
consisting of direct methods (DM) and ANN algorithm to study how ultimate strength and 
endurance limit of composite materials.

It is well known that the experiments on the CAI strength of CFRC with LVI damage often 
require a lot of manpower, materials, and financial resources. To meet damage tolerance airwor-
thiness requirements, aircraft composite structures containing various types of damages should be 
carefully considered to assess their residual mechanical properties. Therefore, it is of great impor-
tance to develop an efficient prediction model to assess the CAI strength of CFRCs with various 
LVI damages. To achieve this goal, this paper aims to develop an efficient ANN-based model 
together with an FE model to predict the CAI strength of CFRC. First, the FE model considering 
fibre breakage, matrix cracking and delamination failure was presented to obtain the LVI damage 
and subsequent CAI behaviour of unidirectional CFRCs. Intra-laminar failure was modelled using 
Hashin damage criterion [33, 34], while inter-laminar delamination failure was simulated using 
cohesive interfaces between all plies. Second, the FE predictions were validated with the experi-
mental results. Third, the CAI strengths under various impactor diameters and impact energies 
were predicted using the present FE model. Then, the nonlinear relationship of the LVI parameters 
and CAI strength was established with the FE data trained using the ANN method. Finally, the 
proposed ANN method was validated by the numerical results.

2  Materials and Experimental Setup

2.1  CFRC Preparation

16-ply CFRC laminates (fibre: Toray T300, Japan, epoxy: Techstorm 480, China) were 
prepared by unidirectional woven fabrics using a vacuum-assisted resin transfer moulding 
(VARTM) process with a curing temperature of 110 ℃ at six atmospheres. The stacking 
sequence of the laminates was [0°/90°/0°/90°]2 s and the ply thickness was approximately 
0.34 mm. The fibre volume fraction of the cured CFRC laminates was calculated as ~44% 
based on the areal density of the fabrics and the weight/volume of the laminate. According 
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to the ASTM D7137 standard [35], the CFRC laminates were cut into rectangular speci-
mens with dimensions of 100 × 150 × 5.44  mm3.

2.2  Experimental Setup

According to the ASTM 7136 standard [36], LVI tests on the CFRC specimens were performed 
using a drop-weight tower (Instron CEAST 9350, USA) as depicted in Fig. 1a. Three hemispher-
ical stainless-steel impactors with diameters of 12.7, 16, and 20 mm and three impact energies 
(i.e. 20, 33, and 40 J) were considered in this work, as listed in Table 1. The supporting fixture 
for LVI tests had a 125 × 75  mm2 cut-out in the centre, and the CFRC specimen was fixed by four 
rubber clamps prior to the LVI tests as shown in Fig. 1a.

Fig. 1  Experiment setup: a 
Instron 9350 drop weight tower, 
b Zwick/Roell machine for CAI 
test

(a)

(b)

CAI fixture

LVI fixture Specimen

Specimen

Table 1  Parameters for the low-velocity impact tests

Tests Impactor diam-
eter (mm)

Impactor mass
(kg)

impactor height
(mm)

Initial velocity 
(m/s)

Impact energy
(J)

Case 1 12.7 5.392 624.57 3.50 33
Case 2 16.0 5.392 377.21 2.72 20

5.392 624.57 3.50 33
5.392 755.74 3.85 40

Case 3 20.0 5.392 755.74 3.50 33
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CAI experiments were conducted on the specimens using a universal testing machine 
(Zwick/Roell, Germany) as seen in Fig. 1b, in accordance with the standard of ASTM 7137 
standard [35]. The specimens were clamped by a CAI fixture (see Fig. 1b) and were com-
pressed along the in-plane direction using a direct-current servo motor with a constant dis-
placement rate of 1 mm/min. At the start of the in-plane compression test, a small force 
(0.45 kN) was applied to the specimen to ensure the full contact between the specimen and 
loading surface. Then, the in-plane compression tests were carried out with the measure-
ment of both compressive load and displacement. Each test was repeated twice to obtain 
the average.

3  Composite Damage Model

3.1  Intra‑Laminar Damage

3.1.1  Intra‑Laminar Damage Initiation

Hashin failure criterion [33] has been regarded as an effective failure criterion for UD 
CFRC. Damage initiation occurs when the failure index F reaches or is greater than the 
unity (1). Hashin’s four damage indices can be calculated according to Eqs. (1–4).

For the fibre tension failure ( ̂�11 ≥ 0):

For the fibre compression failure ( ̂�11 ≤ 0):

For the matrix tension failure ( ̂�22 ≥ 0):

For the matrix compression failure ( ̂�22 ≤ 0)

where XT and XC each denote the tensile strength and compressive strength in the fibre 
direction. YT and YC represent the tensile and compressive strength in the transverse direc-
tion, respectively. SL and ST are the shear strength in the longitudinal and transverse direc-
tions, respectively. �̂11 and �̂22 are the effective normal stress tensors in the fibre direction 
and transverse direction, respectively. �̂12 is the shear stress tensor and α is the shear failure 
coefficient.
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3.1.2  Intra‑Laminar Damage Evolution

Once the damage initiation criterion was met, the damage starts to evolve with material’s  
degradation. Damage variables are included in the constitutive equation to describe the 
damage evolution as

where D = 1-(1-df)(1-dm)υ12υ21. E1 and E2 are the elastic modulus of composite in the fibre 
direction and the transverse directions, respectively. G is the shear modulus. υ12 and υ21 are 
the major and minor Poisson’s ratios. df and dm are the damage variables that describe the 
current state of fibre damage and matrix damage, respectively. ds denotes the current state 
of shear damage. Damage variables (df, dm and ds) are derived from the fibre and matrix 
damage parameters dft, dfc, dmt, and dmc, corresponding to the four failure modes as follows:

After the damage initiation (i.e., �I,eq ≥ �0
I,eq

 ) as shown in Fig. 2a, the damage vari-
able dI denotes the reduction of stiffness at the failure mode, which is given as

where �0
I,eq

 and �f
I,eq

 are the equivalent displacement at damage initiation (dI = 0) and final 
failure (dI = 1) respectively [1], as shown in Fig. 2b.
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{
dft, if �̂�11 ≥ 0

dfc, if �̂�11 < 0
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�
f
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)(dI ∈ [0,1], I = ft, fc,mt,mc
)

Equivalent 
stress

A (damage initiation)

B (final failure)

0

0

Equivalent 
displacement

Gc

0

(a)

0

Damage
variable

1

0 Equivalent 
displacement

(b)

Fig. 2  Damage evolution: a equivalent stress versus equivalent displacement relationship, b damage vari-
able versus equivalent displacement
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The equivalent displacement and stress for the four failure modes depend on the sign of 
stress and strain components and can be expressed as:

For the fibre tension ( ̂�11 ≥ 0, �11 ≥ 0):

For the fibre compression ( �𝜎11 < 0, 𝜀11 < 0):

For the matrix tension ( ̂�22 ≥ 0, �22 ≥ 0):

For the fibre compression ( ̂�22 ≤ 0, 𝜀22 < 0):

where Lc is the characteristic length.

3.2  Inter‑Laminar Delamination

3.2.1  Delamination Initiation

Delamination occurs when the contact stress ratios reach a value of one based on a quad-
ratic nominal stress function [6]. The delamination initiates when the following equation is 
met:

(10)�ft,eq = Lc
�
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�
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where ti (i = n, s, t) is the traction stress vector in the normal n and shear directions, s and t, 
respectively, t0

i
 (i = n, s, t) represents the inter-laminar strength under normal stress and two 

shear stresses, respectively.

3.2.2  Delamination Evolution

Once the delamination initiation criterion is met, the interfacial stiffness starts to degrade 
as represented using a damage variable dinter. Damage variable dinter = 0 indicates no delam-
ination failure, whereas dinter = 1 indicates full delamination failure [1]. The damage vari-
able is given by:

where �max

m
 is the maximum value of the mixed-mode displacement. �fm is the mixed-mode 

displacement at complete failure, �0
m
 is the effective displacement when damage is initiated. 

�m is the total mixed-mode displacement (normal, sliding, tearing) written by:

A Benzeggagh-Kenane (BK) fracture energy-based criterion [1] is used to define the 
mixed-mode displacement for complete failure as:

where, η is the B–K power law parameter with a value of 1.45, obtained from experiments 
in literature [37]. � =

�2

1+�2
 with � taking values between zero and one. When �= 0 fracture 

is mode I driven, while as � → 0 is mode II dominated (and this is also the case when 
�= 0 ). � is the mode mixity ratio ( �n

�t
 ) [1].

When the delamination between each ply is initiated, a degradation of the cohesive properties  
is calculated based on a bi-linear traction–separation law adopted in the literature [1, 4, 6] (see 
Fig. 3). The point A represents the material damage initiation. The material deforms in the linear  
elastic range before the point A and the elastic stiffness is denoted as Ki (i = n, s, t). Once the nor-
mal or shear traction reaches the ultimate value (point A), delamination occurs and the stiffness 
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Fig. 3  Traction–separation law 
of cohesive behaviour used in the 
finite element (FE) model. GC 
represents the fracture toughness
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begins to degrade linearly based on the damage evolution variable (Eq. (19)). For the failure under 
a mixed-mode loading, the damage initiates when the energy release rate G (= GI + Gshear) is 
greater than the critical energy release rate, with an expressed as:

where GI, GII, GIII are the critical fracture energies required to cause failure in the normal, 
the first, and the second shear directions, respectively. The values of the critical fracture 
energies are listed in Table 4 which are cited from the literature [4].

(22)GC = GC
I
+
(
GC

II
− GC

I

){GII + GIII

GC
I
+ GC

II

}�

A B

CD

x

y
z

o

Impactor

Laminate plate

Cohesive 
interface

(interlaminar)

2 mm

Ply

D1

A1 B1

C1

Reference point MPC
P

o x

y

(a)

(b)

Fig. 4   a Schematic of FE model for low-velocity impact analysis. The dimensions of the laminate are 
100 × 150 × 5.44  mm3. The four edges of the laminates are fixed, and an initial velocity is assigned to the 
impactor. b Schematic of FE model for compression-after-impact. A displacement condition along the 
x-direction is applied on a reference point using multi-point constraint (MPC)
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3.3  FE Model

The FE analysis for CFRC with LVI damage subjected to CAI loading was performed 
using a commercial FE package ABAQUS [25]. Figure 4a shows the LVI FE model and 
the boundary conditions. The impactor was modelled using a hemispherical rigid body 
with diameters ranging from 10 to 20 mm. The laminate dimensions were 100 × 150 × 5.44 
 mm3, consistent with the LVI test coupons. The four edges of the laminates were fixed, 
and an initial velocity was assigned to the impactor. The initial mesh sensitivity study [6] 
showed that the mesh size of no more than 2 mm led to negligible differences of the pre-
dicted force–displacement curve and damage pattern. Therefore, in this study, the 2 × 2 
 mm2 four-node doubly curved shell elements were used to mesh the laminate. The total 
number of elements for the laminate was approximately 60,000, and the total number of 
nodes was 62,016. The distance between two adjacent layers is equal to the ply thickness. 
The cohesive contact behaviour which is set between each ply are used to predict inter-
laminar damages.

Once the LVI FE analysis was finished, the CFRC laminate with damage were trans-
ferred to the CAI FE model as the initial state using “Import Module” in ABAQUS [25]. 
Meanwhile, the boundary conditions of the FE model were modified for the CAI simula-
tion as shown in Fig. 4b. A quasi-static compressive displacement (1 mm/min) was applied 
at the reference point attached to the laminate’s left edge using multi-point constraints 
(MPCs). A “smooth step” was adopted to reduce the dynamic effect. The explicit analysis 
in ABAQUS was adopted to avoid the severe convergence problem [25]. The damping was 
neglected in both the LVI and CAI analyses. The detailed boundary conditions used in the 
LVI and CAI FE models are summarised in Table 2.

3.4  Material Properties and Contact Algorithm

Material properties of the CFRCs are summarised in Table 3 [38, 39]. The fracture tough-
ness for intra-laminar and inter-laminar damage modes were estimated from literature 
[40, 41]. The cohesive properties of ply interface are given in Table  4 [4]. The contact 
forces were generated by a penalty contact algorithm. A tangential interaction was defined 
between contact pairs in terms of a Coulomb friction model. The friction coefficient μ was 
used to account for the shear stress of the surface traction with contact pressure p, repre-
sented as τ = μp. The friction coefficient mainly depends on material property and surface 

Table 2  Boundary conditions of the FE model

*1 represent no restraint, 0 represents restraint

Analysis model Location Translations Rotations

Ux Uy Uz URx URy URz

LVI model AB, BC, CD and AD 0 0 0 0 0 0
Impactor 0 0 1 0 0 0

CAI model A1B1 1 1 0 0 0 0
C1D1 1 0 0 0 0 0
B1C1 0 1 0 0 0 0
Reference point P 1 1 0 0 0 0
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quality [42]. Schön [43] measured the friction coefficient for seven surface combinations 
with fibres in the 0°/0°, 90°/90°, 0°/90°,45°/0°, 45°/90°, 45°/45° and 45°/-45° directions. 
The 90° direction was perpendicular to the sliding direction. The specimen pairs with 
90°/90° fibre directions had the highest friction coefficient value of 0.5, while the specimen 
pairs with 0°/0° fibre directions had the lowest friction coefficient value of 0.2. The speci-
men pairs with 0°/90° 45°/0°, 45°/90°, 45°/45° and 45°/-45° fibre directions showed fric-
tion coefficient values in the range of 0.2–0.5. In the present study, the friction coefficient 
μ = 0.3 was applied between ply interfaces, which is consistent with the friction coefficient 
used in literature [42]. Similarly, the friction coefficient between the metal impactor and 
the composite plate was 0.3.

4  Artificial Neural Network Method

An artificial neural network (ANN) is a group of artificial neurons with a nonlinear mapping 
capacity inspired by biological central nervous system [44]. It is an adaptive system that can 
adjust structure according to external or internal information within the network. The three-
layer ANN model (Fig. 5) was developed in MATLAB NN Toolbox [45]. The input variables 
were the impactor diameter and the impact energy of CFRCs. Five neurons were used in the 
hidden layer to obtain the output of the residual compressive strength.

A sigmoidal activation function with a scaling parameter α and a constant γ, as given in 
Eq. (22), is adopted to treat the input information (x) in the ith neuron, and then the informa-
tion is transferred to an output signal (yi):

The values of α and γ were taken as 1.0. A linear transfer function was used to pro-
vide connections between each layer with an expression as

(23)yi =
2�

1 + e(−�xi)
− �

(24)xj =
∑m

i=1
wijyi + bj

Table 3  Intra-laminar properties of carbon fibre reinforced composites laminate [40, 41]

Items Values

Density 1445 kg/m3

Elastic E1 = 153 GPa, E2 = 10.3 GPa G12 = 6 GPa v12 = v13 = 0.3
In-plane strength XT = 1637 MPa XC = 1080 MPa YT = 82 MPa

YC = 236 MPa S12 = 90 MPa S23 = 40 MPa
Intra-laminar fracture energies G

T

IC
 = 70 kJ/m2 GC

IC
 = 50 kJ/m2

Intra-laminar fracture energies G
T

IIC
 = 0.22 kJ/m2 GC

IIC
 = 1.1 kJ/m2

Table 4  Interfacial properties 
of carbon fibre reinforced 
composites laminate [4]

Items Mode I Mode II Mode III

Normalised elastic modulus (GPa) 2.89 2 2
Inter-laminar strength (MPa) 62.3 92.3 92.3
Inter-laminar fracture toughness (kJ/m2) 0.28 0.79 0.79
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where m is the number of neurons in the layer including ith neuron. wij is the connection 
weight. bj is a constant corrective term [44].

The training data include the input (x) and output (y) parameters. A series of input signals are 
provided to the neural network of which output signal is already known. The network is trained 
iteratively to reduce the computed errors (e) between the output signals (y) and the target signals 
(t). The error is back-propagated through the network to correct the connection weights until the 
error meet the requirement of the network. Then, the relationship between the input and output 
signals is obtained to predict the output signals under known input signals. This training method 
is called back-propagation (BP) learning algorithm [44, 46] and a representative three-layer BP 
neural network structure is shown in Fig. 4 [47].

When the input signal (xi) for the ith input neuron propagates through the network to 
produce output signals (yj), the computed error (ej) between the output signal (yj) and 
target signals (tj) can be written as:

Then, the mean squared error (MSE) for the neural network is calculated.

(25)ej = tj − yj

(26)MSE =
1

n

∑n

j=1
e2
j

Input signals

Output signals

Hidden layerInput layer Output layer

Weighting function

Neurons

Impact energy

Impactor diameter
CAI strength

Fig. 5  A three-layer back-propagation (BP) neural network structure, consisting of input, hidden, and output 
layers
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The corresponding root mean square error (RMSE) is as follow:

The connection weights (wij) are adjusted to minimize a RMSE value by comparing the 
predefined error (Eq. 25) with the computed RMSE (Eq. 27). The incremental form of a 
connection weight (Δwij) is expressed as:

k is the learning rate parameter. Then, the new connection weight wnew
ij

 is updated [48] as 
follows:

5  FE Model Validation

5.1  Validation of FE Model for LVI

Figure 6a, e show typical impact force–time histories of the CFRCs under 33 J and 40 J 
predicted by the experiments and the FE models, respectively. The impact force histories 
determined by the present FE model are generally consistent with the experimental results. 
The variations in the impact response curves between FE results and experimental data 
may be attributed to the ignorance of the damping in CFRC laminate. Although there are 

(27)RMSE =

√
1

n

∑n

j=1
e2
j

(28)Δwij = k
�E

�wij

= k
�E

�ej

�ej

�yj

�yj

�xj

�xj

�wij

(29)wnew
ij

= wold
ij

+ Δwij

Fig. 6  Impact responses by experiment and simulation under different impact energy, a and e impact force–
time history curves, b and f impact force–displacement curves, and c and g absorbed energy history curves
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differences between the impact force–displacement curves by FE model and experiment, 
the predictions in terms of peak impact load, energy absorption curve and failure pattern 
were in good agreement with the experimental results. Correspondingly, the failure pattern  
and the ultimate compressive force predicted by the FE model were mostly consistent with 
the experimental results (Figs. 7 and 11). The impact force increased rapidly in the begin-
ning, and then reached its maximum value followed by a large oscillation due to the dam-
age evolution after ~1 ms. Under 33  J impact, the measured maximum impact force was 
6295.8 N. This peak impact force is consistent with the predicted maximum impact force 
of 6410.9 N. The relative percent difference of the measured and predicted peak impact 
forces was 1.8%. When subjected to a higher impact energy (40  J), the relative percent 
difference between the predicted and measured maximum impact force was only 1.6%. As 
shown in Fig.  4b, f, the impact force–displacement relations obtained by the FE model 
agreed well with the experimental results when subjected to an impact energy of 40  J, 
whereas the residual deformation obtained from the FE model was smaller than that by the 
experiment under 33 J impact. In addition, the absorbed energy histories predicted by the 
FE model and measured by the experiment were similar to each other at the same impact 
energies, as shown in Fig.  6c, g. Particularly, the predicted absorbed energy under 40  J 
impact was lower than the experimental result, possibly due to the ignorance of the damp-
ing effect in the FE model. Typical visual inspection of the front and back faces of the 
CFRCs under 33 J impact and the corresponding predicted deformation distributions are 
compared in Fig.  7. The large deformation and damage were seen in the centre, which  
is consistent with the observation of the tested specimens. Good agreements between the 
predicted and measured LVI responses (i.e., impact force–time history, impact force– 
displacement profile, absorbed energy curve, and damage patterns) demonstrate the effec-
tiveness of the present LVI FE model.

Three primary failure modes resulting from LVI include fibre breakage, matrix cracking 
and delamination. The distribution of displacement at cross-sectional view of the CFRC 
laminate after 33 J impact are displayed in Fig. 8. In the figure, the failed elements were 
removed from the FE model. A good agreement of delamination shapes between experi-
mental and numerical results is found, and the fibre breakage and matrix cracking occur at 
each ply, which can’t be seen in the experimental results. The scanning electron microscope 
(SEM) images (Fig. 9) clearly show fibre breakage, matrix cracking, and delamination that 
are consistent with the FE prediction (Fig. 8b). During the impact, matrix cracking occurs 
first in the impact zone due to its relatively low strength. Shear stresses created between the 
fibres and the matrices with the impact loading, which eventually result in matrix cracking 
and delamination failure. With further increase the stress, fibre breakage occurs.

The damage initiation and evolution in the CFRC is obtained during the impact. 
The typical predicted intralaminar and interlaminar damages in the CFRC under 40 J 
impact are shown in Fig.  10. At the initial stage, it is seen that slight matrix tensile 
damage appears at both the front (Fig. 10a) and back faces (Fig. 10b) in the laminate 
without fibre damage (Fig.  10a, b) and delamination (Fig.  10c) when t = 0.6  ms. At 
t =  ~1 ms, the growth of matrix tension damage is seen and delamination occurs in the 
CFRC, while there are still no fibre damages. Subsequently, the area of matrix tension/
compression damages continues to increase and propagate. Meanwhile, slight fibre ten-
sion/compression damages also appear at the front and back faces (t = 4.4 ms). Simul-
taneously, the delamination damage in CFRCs propagates rapidly as seen in Fig. 10c. 
After that, during the impact progress, a larger number of matrix damages are observed 
and fibre damages barely changed at that time.
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5.2  Validation of FE Model for CAI Test

Figure  11 shows the damage evolution of the CFRC under the LVI (33  J) and fol-
lowed by the in-plane compression. In the figure, the red region denotes the fibre 
compression failure. Fibre compression failure caused by the in-plane compression 
was the main failure mode for the CAI analysis of CFRCs with initial LVI damages. 
The fibre compression damage initiated first at the impact zone, and then propagated 
along the transverse direction, leading to a final local buckling [49, 50]. The ultimate 

Simulation Experiment

(a)

(b)

20mm

20mm

20mm

20mm

Fig. 7  Experimental and numerical comparison of deformation state after 33 J impact, a front face, b back 
face
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compressive force predicted by the FE model was 67,315  N that was close to that  
by the experiment (67,280 N) with a 0.09% relative percent difference. The CAI strengths  
under 33 J impact coincided well with the experimental results. Figure 12 shows the 
SEM images of the CFRC under LVI and followed by CAI including different failure 
modes, i.e. fibre breakage, matrix cracking, and delamination failure.

Delamination

Fibre breakageMatrix cracking

Delamination

3 mm

3 mm

(a)

(b)

Fig. 8  Cross-sectional observation of failure surface of the specimen by experiment and FE model under 
33 J impact

Fibre breakage

Matrix cracking

Delamination

(a) (b)

Fig. 9  Scanning electron microscope (SEM) micrographs of carbon fibre reinforced composites subjected 
to 33 J impact
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6  ANN Method for Prediction of CAI Strength

Impactor diameter and impact energy are the two important parameters that determine 
the CAI strength of the CFRC with LVI damage [51, 52]. In this work, the nonlinear 
relationship between the impactor diameter, impact energy and the CAI strength was 
established by the proposed ANN method. Five impactor diameters ranging from 12 
to 20 mm were selected herein. Figure 13 shows the predicted CAI strength as a func-
tion of the impactor diameter of the CFRCs under 10, 33, and 50  J. The predicted 
CAI strength of the CFRCs somewhat decreased linearly with the impactor diameter 

Fig. 10  Damage evolution of the composite laminate under 40  J impact, a intralaminar damage at front 
face, b intralaminar damage at back face, c projected interlaminar damage area
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Fig. 11  Damage evolution and failure pattern comparison of the specimen under 33 J impact
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since a larger impactor produces a larger damage/delamination area leading to a lower 
CAI strength. As expected for the same impactor size, a higher impact energy led to a 
lower CAI strength.

Various impact energies introduce different LVI damage levels, resulting in dif-
ferent residual compression strength. Figure 14 shows the relationship between the 
LVI energy and the CAI strength. The residual CAI strength of the CFRCs decreased 
with the increase in the impact energy. In particular, the CFRC with the 50  J LVI-
induced damage showed a nearly 50% reduction in the CAI strength, compared to the 
undamaged laminated plate (201.0 MPa). As shown in Fig. 14, the influence of the 
impact energy on the CAI strength is insignificant when the impact energy is larger 
than 40  J, since the laminate is penetrated by the impactor with an energy of 40  J. 
Thus, the FE model has obtained some numerical data for the training of ANN to 
establish the nonlinear relationship between CAI strength and impactor diameter and 
impact energy.

Table  5 summarises the CAI strengths of the CFRCs with various impactor 
diameters and impact energies. The other FE model parameters (i.e., geometrical 

Matrix cracking

Delamination

Fibre breakage

(a) (b) (c)

1.0 mm 120 μm 15 μm

Fig. 12  Scanning electron microscope (SEM) images of the carbon fibre reinforced composites subjected to 
low-velocity impact (33 J) and followed by in-plane compressive loading

Fig. 13  Predicted compression 
after impact (CAI) strength by 
the FE model versus impactor 
diameter under three different 
impact energy (i.e. 10 J, 33 J and 
50 J)
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dimension, material properties, stacking sequence) were identical to the test speci-
men. A total of 20 datasets obtained from the proposed LVI/CAI models were used to 
perform the data training. Impactor diameter and impact energy were input data and 
CAI strength was utilised as output data of the ANN model. The MSE of CAI strength 
(Eq. 25) predicted by the ANN model is depicted in Fig. 15. The training performance 
was deemed to be satisfactory after 104 iterations, since the value MSE reaches to a 

Fig. 14  Compression after 
impact (CAI) strength by the 
FE model evaluated at various 
impact energy values ranging 
from 0 to 50 J

0 10 20 30 40 50
-200

-100

0

100

200

300

C
A
Is

tr
en

gt
h
(M

Pa
)

Impact energy (J)

D=16 mm

0

20

40

60

80

100

St
re
ng

th
re
du

ct
io
n
(%

)

48%46%43%
39%35%32%29%

22%

0

Table 5  Compression after 
impact (CAI) strength of 
composite laminates with 
different impact levels obtained 
from FE method

Model number Impact 
energy (J)

Impactor 
diameter (mm)

CAI strength (MPa)

No. 1 10 16 157.75
No. 2 15 16 142.96
No. 3 20 16 136.66
No. 4 25 16 130.77
No. 5 33 16 123.74
No. 6 40 16 119.05
No. 7 45 16 107.32
No. 8 50 16 104.39
No. 9 10 12 163.26
No. 10 10 14 161.75
No. 11 10 18 150.83
No. 12 10 20 148.48
No. 13 33 12 127.93
No. 14 33 14 125.32
No. 15 33 18 122.19
No. 16 33 20 118.69
No. 17 50 12 111.20
No. 18 50 14 107.36
No. 19 50 18 101.56
No. 20 50 20 97.15
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design goal value of 3 ×  10–6. The performance of the proposed ANN model was eval-
uated until MSE reached a design goal of 3 ×  10–6. The predicted MSE substantially 
decreased to 4.8 ×  10–6 after 25 iterations, and then gradually reached the design goal 
at 104 iterations. Figure 16 compares the CAI strengths predicted by the FE model to 
the trained results based on the ANN model. A correlation coefficient of determina-
tion  (R2) between FE- and ANN-predicted data reflects a good fit. Excellent corre-
lation  (R2 = 1) between these two results was reached suggesting that the developed 
ANN model is capable of accurately training the CAI strength of the CFRCs associ-
ated with various LVI parameters (impact energy and impactor diameter).

12 additional sets of CAI strength data of CFRCs with different impactor diam-
eter and impact energy obtained by the proposed numerical model were selected to 
further validate the present ANN method. Table  6 lists the FE- and ANN-predicted 
CAI strengths associated with initial LVI with various impactor diameters and impact 
energy. For all cases considered, the maximum relative percent difference was 4.48% 

Fig. 15  Evolution of mean 
squared error (MSE) versus the 
number of iterations used for the 
artificial neural network (ANN) 
model
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tion coefficient  R2 = 1

80 100 120 140 160 180
80

100

120

140

160

180

A
N
N

pr
ed

ic
te
d
C
A
Is

tr
en

gt
h
(M

Pa
)

FE predicted CAI strength (MPa)

Ordinate value = Abscissa value
ANN predicted CAI strength

Correlation coefficient (R2) = 1

828 Applied Composite Materials (2021) 28:809–833



1 3

with an average error value of 2.41% and the coefficient of variation of 0.75%. Fig-
ure  17 show a plot of the FE- versus ANN-predicted CAI strengths. A good accu-
racy  (R2 = 0.99) is achieved with significantly low computation time (~6 s) and costs 
compared to both FE method and experiment. The ANN-predicted CAI strengths 
of CFRCs under 30  J and 40  J impact with the impactor diameter = 16  mm were 
123.68 MPa and 109.13 MPa respectively, while the corresponding experimental val-
ues were 123.84 MPa and 114.06 MPa. The maximum error between ANN prediction 
and experimental results was 4.32% from 40 J impact. Therefore, the proposed ANN 
model can be used to predict the residual CAI strength of CFRCs with initial LVI 
damage.

Table 6  Comparison of the FE predicted and artificial neural network predicted (ANN) compression after 
impact (CAI) strengths

Impact energy 
(J)

Impactor diameter 
(mm)

ANN results (MPa) FE results (MPa) Relative Percent 
difference (%)

12 13 156.45 157.08 0.40
12 15 152.87 153.74 0.57
12 17 150.03 149.67 0.24
12 19 141.39 137.04 3.08
30 13 130.39 127.78 2.00
30 15 127.92 124.69 2.53
30 17 127.88 122.15 4.48
30 19 119.62 115.70 3.28
48 13 109.97 107.72 2.04
48 15 105.63 101.56 3.86
48 17 105.54 101.27 4.05
48 19 98.57 94.30 4.33

Fig. 17  Relationship between 
FE predicted compression after 
impact (CAI) strengths and ANN 
predicted CAI strengths. Correla-
tion coefficient  R2 = 0.99
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7  Conclusions

In this paper, LVI damages including intralaminar and interlaminar cracking in CFRCs 
are simulated by Hashin damage criterion, quadratic traction criterion for damage initi-
ation, and BK fracture energy-based criterion are adopted for damage evolution. The 
cohesive contact behaviour is inserted between plies to predict inter-laminar damages. 
Then, an ANN model was developed to predict the CAI strength of CFRCs, together 
with the establishment of an FE model considering intra-laminar, and inter-laminar 
damage. The conclusions are summarised as follows:

1. Two cases of FE models were established according to the corresponding experiments, 
and the predicted LVI force–time history, force–displacement profile, absorbed energy 
curves were generally consistent with the corresponding experimental values. The 
results demonstrated that the proposed FE model can predict the LVI damages of com-
posite structures well.

2. The FE results in terms of residual strength under CAI loading coincided well with  
the experimental results, and the FE-predicted damage patterns agreed well with the 
SEM observations in the test specimen, demonstrating the effectiveness of the present 
CAI FE models.

3. The residual CAI strength decreased with increasing the impact diameter and impact 
energy. The CAI strength was significantly reduced in the CFRCs after a LVI, even under 
an impact of 10 J.

4. An ANN model was developed using back-propagation learning algorithm and was 
trained using the FE results to establish a nonlinear relationship between LVI parameters 
(i.e. impact energy and impactor diameter) and CFRC residual strength. The ANN-
predicted CAI strengths coincided well with the FE predicted CAI strengths. The R2 
value between the two predicted CAI strengths was 0.99, indicating the proposed ANN 
model is both effective and accurate in predicting the CAI strength of a CFRC for many 
LVI parameter combinations.

5. It is recommended that more tests offering a more abundant sample sets (e.g., input data: 
impact energy, impactor diameter, ply thickness, ply sequence and material properties; 
output data: damage area and CAI strength) contribute to train a more comprehensive 
and effective prediction model of LVI damage area and CAI strength by ANN technol-
ogy.

Appendix

In this study, a minimum of two LVI/CAI tests were repeated for each impact energy 
to ensure the reliability of test data. Figure 18 compares CAI test reproducibility of the 
CFRCs subjected to initial 33 J LVI. It is clear in the Fig. 18 that two CFRCs showed 
similar impact damage pattern, compressive load–displacement responses, and peak 
compressive loads at failure.
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