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Abstract
A cohesive element able to connect and simulate crack growth between independently
modeled finite element subdomains with non-matching meshes is proposed and validated.
The approach is based on penalty constraints and has several advantages over conventional FE
techniques in disconnecting two regions of a model during crack growth. The most important
is the ability to release portion of the interface that are smaller than the local finite element
length. Thus, the growth of delamination is not limited to advancing by releasing nodes of the
FE model, which is a limitation common to the methods found in the literature. Furthermore, it
is possible to vary the penalty parameter within the cohesive element, allowing to apply the
damage model to a chosen fraction of the interface between the two meshes. A novel approach
for modeling the crack growth in mixed mode I + II conditions has been developed. This
formulation leads to a very efficient computational approach that is completely compatible
with existing commercial software. In order to investigate the accuracy and to validate the
proposed methodology, the growth of the delamination is simulated for the DCB, ENF and
MMB tests and the results are compared with the experimental data.

Keywords Finite element . Cohesive element . Penaltymethod . Composite materials .

Delamination .Mixed-mode propagation

1 Introduction

Unmatched interface problems are increasingly common because it is difficult to satisfy the
connectivity of elements for complex domains and the transition between coarse and fine
meshes often results in distorted elements that reduce the accuracy of the solution in transition
regions. For example, there is a growing need to perform combined analyzes of complex
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structures, as an airplane or a ship, using sub-structural numerical models created indepen-
dently by teams of engineers using different software and collaborating remotely. Frequently
the meshes of these numerical models are incompatible at the interfaces, therefore all the sub-
structural models must be joined to build the entire structure. Even within the same team,
discretizing problems in regions, dividing them into sub-structural models, and then using a
coupling technique to connect their mismatched interfaces, can be a winning strategy.

Many different methodologies have proposed for non-matched interface problems [1–8].
Most of them use Lagrange multipliers with a negative result that the resulting system of
equations is not definite positive. A possible fix is to enforce the interface constraints via a
penalty method, the following advantages are obtained: a formulation that can be easily
implemented in commercial codes, a positive-definite and banded stiffness matrix and a
reduced number of DOFs. Therefore, the penalty approach should greatly improve the
computational efficiency. However, specific procedures are required for the selection of an
appropriate value of the penalty parameter. A rule for selecting the penalty parameter in the
framework of the cohesive element for non-matched interface problems has been developed by
Pantano and Averill [9, 10].

More and more often the sub-structural models that must be united to build the entire
structure, or parts of it, are made of composite materials, of which it is important to simulate
possible risks of delamination. The penalty-based cohesive element can also be effectively
used to model delamination in composite materials or adhesive failure in composite-composite
or metal-composite bonding.

To describe the delamination, many authors started from the basics of Linear Elastic
Fracture Mechanics (LEFM) and from the concept of energy release rate, G, the energy
released for crack advance unit [11–13]. It is clear from the literature that this magnitude
has often been measured using the technique known as Virtual Crack Closure Technique
(VCCT). Since this technique is based on the principles of LEFM, it is only appropriate if the
crack propagates in a fragile way along a predefined path. In other words, if the LEFM theory
is valid, then it is true that the necessary and sufficient condition for delamination is G >Gc,
where Gc is the energy needed to break the internal bonds of the material and create two new
surfaces of unit area and it is called the critical strain energy release rate. The substantial
advantage of this technique is that of calculating the energy contributions through a single
analysis and that the calculation is based on energy and not on the stresses, however there are
several limitations. VCCT requires that the points where the propagation is triggered are
identified a priori, it is necessary to define an initial delamination, but this operation is largely
influenced by the type of geometry and by the acting loads, which can make it difficult to
determine the initial position of the delamination front.

In order to overcome some of the difficulties related to VCCT (or other different techniques,
but always deriving from the LEFM approach), over time other theories have been developed
for the simulation of delamination starting from different fields. Among these, that of the
cohesive finite elements is the one that perhaps has been more successful in recent decades and
that today is the subject of an ever increasing number of researches.

The cohesive finite element theory is based on the so-called Cohesive Zone Model (or
process zone, or also Cohesive Zone Model (CZM)) developed at the beginning of the
sixties [14, 15]. These models combine aspects of strength-based analysis to predict the
onset of damage at the interface between laminae and fracture mechanics to predict
delamination propagation. Since the cohesive zone can still transfer load after the onset
of damage, a softening model is required that describes how the stiffness is gradually
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reduced to zero after the interfacial stress exceeds the interlaminar tensile strength. The
relation between the traction and separation that are normal to the fracture surfaces is
considered. The cohesive models were later extended to the mode II fracture process, in
which the tangential traction and separation are considered instead. The main advantage
in the use of cohesive finite elements lies in the ability to describe both the activation and
the propagation of delamination without knowing a priori neither the position of the
crack nor the direction of propagation. Cohesive models to the determination of the
delamination growth has been adopted by several authors [16–26].

In this article the penalty-based cohesive element technology previously developed [9, 10]
is reviewed, subsequently new applications of the cohesive element for predicting delamina-
tion crack growth in laminated structures are introduced.

2 Formulation of the Cohesive Element

A cohesive element can act as a Bglue^ in the common interface of two subdomainsΩ1 andΩ2

modeled independently, as shown in Fig. 1. The nodes of the cohesive element are independent
of the interface nodes in the two subdomains. The cohesive element has a Bstiffness^ matrix,
which includes the coupling terms and it is assembled as usual with the other stiffness
matrices.

The sub-domain Ωj has nodal displacements identified by qoj and qij. The degrees of

freedom (DOFs) that are not on the interfaces are denoted with the superscript o, while i
represents DOFs that are on the interfaces. The interface displacement field uj is function
of the unknown nodal displacements qij of the sub-domain Ωj. The displacement field of

the cohesive element, identified as V, is approximated in terms of unknown nodal
displacements qs.

uj ¼ N j qij V ¼ T qs ð1Þ

where Nj can be the matrices of interpolation functions and T is a matrix of cubic spline
interpolation functions. Two vectors of penalty parameters, γ1 and γ2, are used to enforce the
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Fig. 1 Interface element configurations
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displacement continuity constraint in a least squares sense. Therefore the total potential energy
of the system takes the form:

π ¼ πΩ1 þ πΩ2 þ
γ1
2
∫
S
V−u1ð Þ2dsþ γ2

2
∫
S
V−u2ð Þ2ds ð2Þ

By taking the first variation of π respect to all the DOFs, with the exception of the vectors of
penalty parameters γ1 and γ2 that are preset constants, the equilibrium configuration is found.

δπjqo1;qi1;qS ;qo2;qi2 ¼ 0 ð3Þ

The global system of equations method assumes the following form:
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where:

Gii
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This global stiffness matrix is symmetric, banded and positive definite (after imposing
boundary conditions). Thus the cohesive element can be associated with a Bstiffness^ matrix
and a generalized vector of unknown displacements:
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For a detailed description of the cohesive element formulation, see [9, 10].

2.1 Automatic Calculation of the Proper Penalty Parameters

In the penalty method, the displacement continuity constraint is imposed through penalty
parameters, a set of predetermined constants. The FE solution obtained with the penalty
method is approximate, and the value of the penalty parameters used determines its accuracy.
The penalty parameter should be function of the material and geometric properties of the two
sub-regions. It is known that there exists a relationship between the penalty parameter and the
corresponding Lagrange multiplier that enforces the same constraint. If the Lagrange multiplier
method is used the continuity constraint is enforced exactly; thus it can be a reference value to
assess the accuracy of the penalty method. If simple models are studied is easier to find
relations among the penalty parameter and the geometrical and material properties of the
model under examination.

A broad variety of one-dimensional, two-dimensional and three-dimensional problems
have been solved with both the Lagrange multiplier method and the penalty method. Finite
elements studied are of the following types: conventionally formulated and reduced integrated
Timoshenko beam elements, plane stress quadrilateral elements and plate elements based on
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the first order shear deformation theory (FSDT), or Mindlin plate theory, tetrahedral and
hexahedral elements.

Different penalty parameters are needed for the various nodal DOFs of each finite element
formulation. Since each degree of freedom can be associated in different ways with the
material and geometric properties of the model, the penalty parameters must be chosen
independently. If we consider Timoshenko’s beam element as an example, it has three
independent nodal DOFs: the axial displacement u, the transverse displacement w and the
rotation ψ. Thus the interface continuity constraints on the three DOFs requires three different
penalty parameters γu, γw and γψ to be enforced.

The approach adopted can be summarized as follow. A simple model of one or two
elements is considered and the most common load cases for the FE type studied are applied
separately. Both the Lagrange multiplier method and the penalty method are used to find the
solutions in terms of displacements, then they are compared individually for each degree of
freedom. The ratio between the two solutions is expressed in the form:

upenalty

uLagrange
¼ 1þ f

γ
ð7Þ

where f = f (material properties, element geometric properties, and loads).
If the penalty parameter γ is set equal to γ = βf, the ratio between the solutions is

independent of geometrical and material properties:

upenalty

uLagrange
¼ 1þ 1

β
ð8Þ

The parameter β determines the accuracy of the solution, however it cannot be indefinitely
increased since round off amplification error would rise. A reasonable compromise between
constraint representation error and the round off error is required. Once a value of β is
identified, the same level of accuracy can be achieved for every combination of material and
geometrical properties. It should be underlined that an exact value of the penalty parameter is
not required. Rather, a value that is of the right order of magnitude is sufficient. In fact, even in
the most complex FE analysis, there exists a range of values for this parameter for which the
numerical outcomes change very little. This range can equal as much as 12 orders of
magnitude for simple analyses, but usually is not less than two orders of magnitude in most
situations.

An automatic control of the round-off error has been developed in previous works [9, 10] as
summarized in the following lines. Due to finite precision in floating-point arithmetic used
when the cohesive element stiffness matrix is numerically integrated, the stiffness coefficients
are always approximated. However, in order to be imposed correctly (and to contribute no
energy to the system), the displacement continuity constraint (V − u) requires the sum of the
terms in every row of its stiffness matrix (6) to be zero. This condition usually cannot be
achieved, due to the round-off error, and the resulting inaccuracy grows with the value of the
penalty parameter. Precisely, the important measure is the ratio between the order of magnitude
of the cohesive element stiffness matrix rows’ imbalance and the element stiffness. If Kn is the
stiffness associated to the n-th nodal DOF, it is sufficient to consider the ratio:

Qn ¼
ERn

Kn
ð9Þ
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where ERn is the unbalance in the cohesive element stiffness matrix row related to the DOF n.

ERn ¼ ∑
j
Knj ð10Þ

When the value of Qn exceeds about 1 ⋅ 10−4, errors in the solution may become appreciable.
The discussed row imbalance is proportional to the value of the penalty parameter,ERn ∝ γ. It is
also approximately true that:

ERn∝γ∝β⋅Kn⇒Qn∝β ð11Þ
Accordingly, an algorithm has been developed to control the round-off error. Its steps can be
summarized as follows:

& Stiffness terms for every nodal DOF in the cohesive element are computed from known
geometrical and material properties.

& For each row in the stiffness matrix:

The highest stiffness term is selected and assigned to a variable K
The row imbalance of the stiffness matrix is stored in a variable ER
Q ¼ ER

K is evaluated

& The highest Q found is compared to a given constant value C. Typically C = 1 ⋅ 10−7is
used.

& If Q >C, the parameter β is reduced according to: βnew ¼ C
Q ⋅β

& The cohesive element stiffness matrix is recalculated using the new value β = βnew.

This approach reduces the risk that round-off errors could adversely affect the solution. Thus,
the initial value of β can be increased, in order to get a higher degree of accuracy, knowing that
it will be automatically reduced if rounding errors don’t allow that precision to be realized.

2.2 Interface Technology for Modeling Delamination

The cohesive element technology [9, 10], in addition to being used to connect non-matching
meshes, has several advantages over conventional FE one in disconnecting two regions of a
model during crack growth. The most important is the ability to release portion of the interface
that are smaller than the local finite element length. This is possible since the extreme values of
the interval of integration of the cohesive element can be freely modified, moreover it is
possible to reduce the value of the penalty parameter for a part of that interval. So the growth
of delamination is not limited to advancing by releasing nodes or elements of the FE model,
which is a common limitation to delamination techniques found in literature.

A frequently used damage model with bilinear softening has been implemented, combining
strength of materials and fracture mechanics approaches, see Fig. 2. In single-mode delami-
nation, when the load grows, the relative displacement δ the two joined FE meshes increases
proportionally to the value of the penalty stiffness γ. Once δ0 is reached the stress is equal to
the maximum stress level possible, the interfacial tensile strength σt. As displacements are
further increased the interface accumulates damage and its capability to withstand stress
decreases progressively. The model would unload to the origin after δ0 has been exceeded,
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but δF has not been reached. The interface is fully debonded when δ exceeds δF. For example,
if from point K, see Fig. 2, the load is reduced, the model follows the line KO. If the load is
reapplied, the stress grows with the relative displacement along the same line KO.

This damage model works by acting on the penalty stiffness γ. A parameter D controls the
damage accumulated at the interface:

σ ¼ 1−Dð Þγδ ð12Þ
The damage parameter D, whose initial value is zero, starts growing when δ ≥ δ0 and reaches
the value 1 when δ ≥ δF. From geometry is possible to compute the value of D to be:

D δð Þ ¼ δF δ−δ0ð Þ
δ δF−δ0ð Þ ð13Þ

To define the interfacial constitutive model when two among the following four properties are
known:Gc, σt, δ0 and δF, whereGc is the critical strain energy release rate, which is equal to the
area under the σ-δ curve in Fig. 2.

Among these parameters two relations exist:

Gc ¼ δFσt

2
ð14Þ

δ0 ¼ σt
γ

ð15Þ

The cohesive model keeps together a sub-region of the interface between the two
meshes. More are the sub-regions in which the interface is divided the higher is the
accuracy of the prediction. The common implementation of the damage model with
bilinear softening requires it to be applied along the length of one finite element. In
this case the crack can only advance by weakening and releasing at a time a length of
the interface equal to one element. Thus a refined finite element mesh is needed.
Instead, if the previously presented cohesive element is adopted the damage evolution
is effectively mesh-independent.

Gc

0 F

1
(1-D)

1

t

K

O

Fig. 2 Bilinear interfacial constitutive damage model
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The present cohesive model is applied to a desired fraction of the interface by dividing the
cohesive element into a given number of intervals n, this means that the total potential energy
of the system is modified as follows:

π ¼ πΩ1 þ πΩ2 þ
1

2
∑
n

i¼1
1−Dið Þγ1∫

Li
Li−1 V−u1ð Þ2dsþ ∑

n

i¼1
1−Dið Þγ2∫

Li
Li−1 V−u2ð Þ2ds ð16Þ

where Di is the damage parameter associated with the interval i, and the interval i is defined
over the range (Li-1, Li). Li is the value of the interface coordinate L at the end of the ith interval.
Thus, each interval i will obey the rules of the failure model independently from the others.
The value of the relative displacement δ is evaluated at the center of the interval i. By allowing
crack advance in a more continuous manner, greater accuracy of the simulation can be
obtained.

For a given problem, it is necessary to perform a convergence study progressively reducing
the size of the intervals in which the cohesive element is divided. This study does not require
many simulations because the convergence rate is generally high and the familiarity in
choosing the length of the intervals from similar simulations can be applied to new
calculations.

The other important convergence study regards the number of increments in which the
given load/displacement is progressively applied. This study is required for the great majority
of the FE approaches to crack growth simulations, because if the increase in applied load or
displacement is too high, the bilinear softening model cannot work properly and the results
will be not be accurate.

2.3 Mixed Mode Failure

The definition of the damage model for crack initiation and propagation in mixed-mode I/II
requires the interlaminar tensile and shear strengths T and S, the penalty parameter γ, and the
critical strain energy release rates GIc and GIIc. For simplicity, we assume the same material
behavior for both tensile and compressive loading.

At a given load increment the FE solution gives δx and δz for each interval of the cohesive
element. It is known:

δz0 ¼ T
γ

ð17Þ

δx0 ¼ S
γ

ð18Þ

σz ¼ γδz ð19Þ

τ xz ¼ γδx ð20Þ
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A quadratic interface failure criterion takes the following forms:

σz

T

� �2
þ τ xz

S

� �2
¼ 1 ð21Þ

δz
δz0

� �2

þ δx
δx0

� �2

¼ 1 ð22Þ

If the condition (22) is not satisfied, it is not necessary to do anything. Else the following ratio
is assumed:

δz
δz0

� �

δx
δx0

� � ¼ C1 ð23Þ

to be the same as it was when the failure condition (22) was satisfied first (see Fig. 3).
If small load steps are used, the assumption is rather accurate. Then it is possible to determine

the value of the relative displacements δx’ and δz’, corresponding to point F in Fig. 3.

δx
0 ¼ δx0

δx
δx0

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δz
δz0

� �2
þ δx

δx0

� �2
r ð24Þ

δz
0 ¼ δz0

δz
δz0

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δz
δz0

� �2
þ δx

δx0

� �2
r ð25Þ

The interfacial models is now modified for both modes I and II by setting δx0’ = δx’ and
δz0’ = δz’, see Figs. 4 and 5. The interlayer tensile strengths T and S are modified consequently:

T 0 ¼ γz⋅δ
0
z0 ð26Þ

S0 ¼ γx⋅δ
0
x0 ð27Þ

Note that the following inequalities hold.

δx0
0≤δx0; δz0

0≤δz0; δx≥δx00; δz≥δz00 ð28Þ
The quadratic interaction criterion forecasts reaching the final failure when the following
condition is met:

GI

GIc

� �2

þ GII

GIIc

� �2

¼ 1 ð29Þ
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In a similar way to the previous one, the ratio between (GII/GIIc) and (GI/GIc) is assumed not to
change as the work of separation grows, as shown in Fig. 6

GII

GIIc

� �

GI

GIc

� � ¼ C2 ð30Þ

Delamination researches commonly use specimens that, for a given configuration (geometry
and loads), have a ratio between the strain energy release rates for modes I and II, GI/GII, that

Fig. 4 Updated interfacial constitutive model for mode I

A

0.0

1

1

F

Fig. 3 Quadratic failure envelope
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does not change appreciably during the entire test, e.g. [27]. This fact provides a valid basis for
our assumption. Consequently, it is possible to determine the value of the strain energy release
rate GI’ and GII’ corresponding to point F in Fig. 6.

From geometry, the value of the (GI/GIc)’ at F is:

GI
0 ¼ GIc

GI

GIc

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GI
GIc

� �2
þ GII

GIIc

� �2
r ð31Þ

Fig. 5 Updated interfacial constitutive model for mode II

GII/GIIc

A

0.0

1

1

GI’/GIcGI/GIc

F

GI/GIc

GII/GIIc

GII’/GIIc

Fig. 6 Quadratic final failure surface
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To evaluate this expression we must determine the value of GI divided by GIc, see Fig. 7.

GIc ¼ T 0⋅δzF 0

2
¼ δz00⋅γz⋅δzF 0

2
ð32Þ

GI ¼ GIc− Area TriangleOBKð Þ ¼ δz00⋅γz⋅δzF 0

2
−

δz 1−Dzð Þγz
� �

⋅δzF 0

2
ð33Þ

GI

GIc

� �
¼

δz00⋅γz⋅δzF 0

2
−

δz 1−Dzð Þγz
� �

⋅δzF 0

2
δz00⋅γz⋅δzF 0

2

¼ 1−
δz
δz00

1−Dzð Þ ð34Þ

Fig. 7 Final interfacial constitutive model for mode I delamination

Fig. 8 Final interfacial constitutive model for mode II delamination
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In the same way, we have:

GII

GIIc

� �
¼

δx00⋅γx⋅δxF 0

2
−

δx 1−Dxð Þγx½ �⋅δxF 0

2
δx00⋅γx⋅δxF 0

2

¼ 1−
δx
δx00

1−Dxð Þ ð35Þ

Now, the updated state of the interfacial models can be completed for both modes I and II by
setting GIc’ =GI’ and GIIc’ =GII’. The final form of the interfacial constitutive models is
reported in Figs. 7 and 8. Note that the models have different penalty and damage parameters.

2.4 Friction Model

A friction model has been implemented in the cohesive element, since friction can be
required for an accurate simulation when, after complete failure, the two meshes
remain in contact, e.g. ELS test specimen. The friction model can also be used for
cohesive elements whose only purpose is to avoid overlapping and to enforce friction.
Interface forces can be evaluated for a portion of the interface length by changing the
extreme values of the interval of integration and they do not depend on the compat-
ibility of the interface meshes.

Specimen

Loading arm

Base

2L a0

2h

c LP

Fig. 9 Loading, geometry and boundary conditions for the Mixed Mode Bending test

Table 1 Mechanical properties of the material, AS4/PEEK, of the specimens [18]

E11 [GPa] E22=E33 [GPa] G12=G13 [GPa] G23 [GPa] v12=v13 v23

122.7 10.1 5.5 3.7 0.25 0.45
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For each of the intervals in the interface, the normal force Fn can be computed as function
of the normal relative displacement δn:

Fn ¼ 1

2
γn ∫

s
δnds ð36Þ

The tangential force Ft needed to generate the friction phenomenon is:

Ft ¼ 1

2
γt 1−Dtð Þ ∫

s
δtds ¼ μFn ð37Þ

where μ is the friction coefficient and δt is the tangential relative displacement. Before failure
Dt was used as a damage parameter, now employed as a scale factor able to decrease the value
of the penalty parameter for the tangential DOF. From equality (35), the required damage

parameterD*
t related to the tangential relative displacement δt, which generate the right amount

of friction, can be determined from the following relation:

D*
t ¼ 1−

2μFn

γt ∫
s
δtds

ð38Þ

3 Numerical Results

3.1 Mode I, Mode II, and Mixed-Modes I and II Delamination Growth

The experimental considered for the validation of the numerical model are taken from the
works of Camanho and Dávila [18]. The available data concern the displacement load curves
of five delamination tests: a DCB test, an ENF test and 3 MMB tests respectively with a mixed
mode coefficient κ = 20%, 50% and 80%. The Mixed Mode Bending (MMB) test, see Fig. 9,
allows to perform mixed I / II delamination tests in unidirectional FRP laminated specimens,

Table 2 Properties for AS4/PEEK [18]

GIC [N/mm] T [MPa] GIIC [N/mm] S [MPa]

0.969 80 1.719 100

Table 3 Specimen geometry

L [mm] B [mm] h [mm]

51 25.4 1.56

Table 4 Experimental data: initial delamination length [18]

0% (DCB) 20% (MMB) 50% (MMB) 80% (MMB) 100% (ENF)

a0 [mm] 32.9 33.7 34.1 31.4 39.3
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including the DCB test, which is a pure Mode I, and the ENF tests, which is a pure Mode II,
that are two special cases. The test was designed by Reeder and Crews in the late 1980s [28],
improved by the same authors over the years and finally regulated by ASTM International in
2014 [29]. The main advantages of the MMB test method are the possibility of using virtually
the same specimen configuration for the I mode tests and the possibility of obtaining different
mixed-mode ratios, ranging from pure I to II modes, changing the length c of the loading lever

Table 5 Length of rigid lever c
ĸ 20% 50% 80%

c [mm] 97.4 42.2 27.6

0

100

200

300

400

500

600

700

800

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

)
N(

d
a

o
L

Displacement (mm)

Experimental

Numerical
ENF

MMB  (GII/GI=80%)

MMB  (GII/GI=50%)

MMB  (GII/GI=20%)
DCB

Fig. 10 Numerical and experimental load-displacement results for the DCB test, ENF test and 3 MMB tests

Fig. 11 Map of von Mises stresses of the DCB test in the final deformed configuration of the numerical
simulation. The inset shows a magnification of the area where the crack tip is located
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shown in Fig. 9. The unidirectional FRP laminated specimens are 24-ply unidirectional AS4/
PEEK (APC2) carbon fibre reinforced composites, mechanical properties of the material of the
specimens are listed in Tables 1 and 2. The specimens dimensions, with reference to Fig. 9, are
reported in Table 3. The initial delamination length of the specimens (a0) for the different
experiments are shown in Table 4, while the length c of the loading lever for the three MMB
tests are listed in Table 5.

Models able to simulate the DCB, ENF and MMB test cases and using cohesive elements
along the length of the specimens were built. Two independent meshes compose the finite
element models of the upper and lower part of the specimens; they are joined by several
cohesive elements. Along the initial delamination length of the specimens (a0), whose lengths
are indicated in Table 4, the cohesive elements used do not connect the two faces but only
avoid overlap. Three different convergence analyses of the solutions have been performed to
set up accurate finite element models: convergence with the number of elements along the
length of the specimens, convergence with the number of load increments, convergence with
number of cohesive elements and with the intervals in which the cohesive elements are
divided. For a high degree of accuracy, as result of the convergence study, 510 elements were
used along the length of the specimens for the mesh of the two domains connected by the
cohesive elements. The predictions from coarse meshes contain many local Bbumps^, this
phenomenon was analyzed by Mi et al. [30], concluding that coarse meshes can induce these
Bfalse instabilities^.

Fig. 12 Map of von Mises stresses of the MMB 20% test in the final deformed configuration of the numerical
simulation. The inset shows a magnification of the area where the crack tip is located

Fig. 13 Map of von Mises stresses of the MMB 50% test in the final deformed configuration of the numerical
simulation. The inset shows a magnification of the area where the crack tip is located
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The convergence study proved that a good level precision can be reached with 400 load
increments, however for the maximum accuracy 800 load increments were used. For the
discretization of the interface each cohesive element connects six elements, three for each side
of the two domains to be connected. As discussed previously, the damage technique imple-
mented in our model allows portions of the interface, intervals, much smaller than the finite
element length, to be released. A convergence study was performed progressively reducing the
size of the n intervals in which the cohesive element is divided, 8 intervals were used for
maximum precision.

The experimental results relate the load to the displacement of the point of application of the
load P in the lever, see Fig. 9. A comparison among the numerical and experimental results for
the DCB test, ENF test and 3 MMB tests are shows in Fig. 10. A good agreement was found
between the numerical predictions and the experimental results. Figures 11, 12, 13, 14 and 15
show the maps of the von Mises stresses of the 5 tests in the final deformed configuration of
the simulations. For the MMB tests, at the end of the analysis, the point of application of the
load P in the lever c are equal to: 10.5 mm for the 20%MMB test (Fig. 12), 7 mm for the 50%
MMB test (Fig. 13), 6 mm for the 80% MMB test (Fig. 14). For the DCB test in the final
deformed configuration, Fig. 11, the total opening at the end of the specimen is 7 mm. For the
ENF test in the final phase of the simulation, Fig. 15, the displacement of the load applied to
the center on the top of the sample is 4.2 mm. The insets in Figs. 11, 12, 13, 14 and 15 show a
magnification of the area where the crack tip is located.

Fig. 14 Map of von Mises stresses of the MMB 80% test in the final deformed configuration of the numerical
simulation. The inset shows a magnification of the area where the crack tip is located

Fig. 15 Map of von Mises stresses of the ENF test in the final deformed configuration of the numerical
simulation. The inset shows a magnification of the area where the crack tip is located
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4 Conclusions

A cohesive element capable of joining and simulating crack growth between independently
modeled finite element subdomains with non-matching meshes was presented and validated. It
can be effectively used to model delamination in composite materials or adhesive failure in
composite-composite or metal-composite joints. The approach is based on: penalty constraints,
an automatic choice of the penalty parameter, a displacement-based damage parameter applied
in a model with bilinear softening law, and a novel method for modeling the crack growth in
mixed mode I + II conditions. The approach has several advantages over conventional FE one,
the most important is the ability to release sub-regions of the interface surface whose length is
smaller than that of the finite elements, thereby allowing for a mesh-independent tracking of
the crack front. Furthermore, it is possible to vary the penalty parameter within the cohesive
element, allowing to apply the damage model to a chosen fraction of the interface between the
two meshes. This formulation leads to a very efficient computational approach that is
completely compatible with existing commercial software. The proposed methodology has
been validated by comparing numerical simulations with experimental data from DCB, ENF
and MMB tests. The results indicate that the method is able to accurately predict the growth of
delamination.
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