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Abstract In many engineering applications, 3D braided composites are designed for primary
loading-bearing structures, and they are frequently subjected to multi-axial loading conditions during
service. In this paper, a unit-cell based finite elementmodel is developed for assessment ofmechanical
behavior of 3D braided composites under different biaxial tension loadings. To predict the damage
initiation and evolution of braiding yarns and matrix in the unit-cell, we thus propose an anisotropic
damage model based on Murakami damage theory in conjunction with Hashin failure criteria and
maximum stress criteria. To attain exact stress ratio, force loading mode of periodic boundary
conditions which never been attempted before is first executed to the unit-cell model to apply the
biaxial tension loadings. The biaxial mechanical behaviors, such as the stress distribution, tensile
modulus and tensile strength are analyzed and discussed. The damage development of 3D braided
composites under typical biaxial tension loadings is simulated and the damage mechanisms are
revealed in the simulation process. The present study generally provides a new reference to themeso-
scale finite element analysis (FEA) of multi-axial mechanical behavior of other textile composites.

Keywords 3Dbraided composites . Unit-cell . Mechanical behavior . Biaxial tension .Meso-
scale FEA

1 Introduction

Laminated composites have been increasingly used in the aeronautics and astronautics industry
over the past few decades owing to their high performance-weight ratio and admirable design
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flexibility. However, poor through-thickness properties and low delamination resistance have
limited their applications in the primary loading-bearing components. As a kind of new
lightweight textile composites, 3D braided composites are believed to have broad applications
as the primary loading-bearing structures in the aerospace industry because of their excellent
integrated mechanical properties over laminated composites. Currently, because of the lack of
comprehensive knowledge of mechanical behavior of 3D braided composites under complex
stress states, composite structures are always over-safely designed, leading to the fact that their
advantages of weight reduction and high load-bearing capacity have never been maximized.
For the effective and improved safety-relevant design, a better understanding of their mechan-
ical response under multi-axial loading cases is essential.

In physical experiments, multi-axial stress states of compositematerial are generally produced by
off-axis specimens under tension/compression loading, cruciform specimens under biaxial loading
and tube specimens under tension/compression-torsion loading [1]. Owing to the intrinsic anisotropy
of composite material, an inherent multi-axial stress state can be obtained under uniaxial off-axis
loading condition, which is termed as local multiaxiality. On the other hand, global multiaxiality
happens when external loadings are imposed along different directions, as that in cruciform or tube
specimens [2]. It should be noted that the loading ratio in off-axis specimen is pre-determined under
uniaxial loading at a given off-axis angle while various biaxial loading ratios can be generated in
cruciform specimen by changing the ratios of external loadings. Recently, off-axis and cruciform
specimens are extensively used by researchers and designers to study multi-axial mechanical
behavior of laminated composites and textile composites [3–10].

It is well-known that physical experiments are often expensive, time-consuming, and restrained
to certain test conditions. Nowadays, with the development of FEA technique and commercial finite
element (FE) software, considerable insights can be achieved by using numerical virtual experi-
ments. Since the textile composites have good structural periodicity and are considered to be
constructed by repeating unit-cells, the unit-cell based meso-scale FE model is commonly
established to simulate the mechanical behavior of textile composites under multi-axial loading
conditions. Zhou et al. [11] proposed a progressive damage analysis model to study the damage and
failure behavior of 2D plain weave composites under various uniaxial and biaxial loadings. Lu et al.
[12] evaluated the on-axis and off-axis tensile strength of 2.5D woven composites by a multi-scale
damage analysis approach. Zhang et al. [13] studied the strength characteristics of 3D 5-directional
braided composites subjected to uniaxial and biaxial loading through a combination of experiment
investigation and meso-scale FE modeling. Wang et al. [14] implemented the damage models of
braiding yarn and matrix in the meso-scale numerical simulation to reproduce the damagemodes of
3D 4-directional braided composites observed in experiment. By this simulation, numerous failure
points of the braided composites under biaxial loadings with different stress ratios were obtained.

3D braided composites own complicated microstructure and exhibit complex failure
behavior under external loadings, which bring in great difficulties in the strength prediction
and damage mechanism analysis. To date, the existing meso-scale FEA works are always
focused on their mechanical behavior under uniaxial on-axial loadings [15–21] while those
under other loading conditions are extremely limited. However, 3D braided composites are
intended to design for primary loading-bearing structures in engineering applications and they
are frequently subjected to multi-axial loading conditions during service. Therefore, it is of
great value to propose a meso-scale damage analysis model to characterize failure behavior
and predict strength properties of 3D braided composites under such loading cases.

The primary objective of this paper is to develop a unit-cell based FE model for assessment
and investigation of mechanical behavior of 3D braided composites subjected to different
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biaxial tension loadings with distinct stress ratios. The damage initiation and evolution of
braiding yarns and matrix in the unit-cell are numerically predicted by proposing an aniso-
tropic damage model in terms of Murakami damage theory with Hashin failure criteria and
maximum stress criteria. The present anisotropic damage model is subsequently implemented
in the numerical simulation. In addition, the force loading mode of periodic boundary
conditions which never been attempted before is first employed in the meso-scale FEA, which
aims to attain exact stress ratio under biaxial tension loadings. We focus on numerical
interpretation of biaxial mechanical properties of 3D braided composites under such afore-
mentioned loading cases. The present study would provide a new reference for studying the
multi-axial mechanical behavior of other textile composites by meso-scale FEA.

2 Unit-Cell Based Progressive Damage Model

In this section, a unit-cell based progressive damage model is described, which integrates stress
analysis, failure analysis and material property degradation scheme. Stress analysis involves appro-
priate constitutive relations of constituents in the unit-cell model. Failure analysis requires proper
damage initiation criteria able to identify main failure modes of composite material. Besides, a
suitable damage evolutionmodel is necessary to degrade thematerial property after damage initiation.

2.1 Damage Initiation Criteria

In this work, the unit-cell model of 3D braided composites consisting of braiding yarns and
resin matrix is considered. 3D Hashin failure criteria and maximum stress criteria are selected
to determine the damage initiation of braiding yarns and matrix. For ease of reference, the
expressions of four distinct failure modes in Hashin criteria are repeated as follows [22]:

Yarn tensile failure in L direction (σL ≥ 0)

φLt ¼
σL

Ft
L

� �2

þ α
σLT

SLT

� �2

þ α
σLZ
SLZ

� �2

≥1 ð1Þ

Yarn compressive failure in L direction (σL < 0)

φLc ¼
σL

Fc
L

� �2

≥1 ð2Þ

Yarn tensile and shear failure in T and Z direction (σT + σZ ≥ 0)

φT Zð Þt ¼
σT þ σZ

Ft
T

� �2

þ 1

S2TZ

� �
σ2TZ−σTσZ
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Yarn compressive and shear failure in T and Z direction (σT + σZ < 0)

φT Zð Þc ¼
σT þ σZ
2STZ

� �2

þ σT þ σZ

Fc
T

� �
Fc
T

2STZ

� �2

−1

" #
þ 1

S2TZ
σ2TZ−σTσZ
� �þ σLT
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� �2

þ σLZ

SLZ

� �2

≥1

ð4Þ
In the above equations, Ft

L and Fc
L are the longitudinal tensile and compressive strengths of

braiding yarn; Ft
T and Fc

T are the transverse tensile and compressive strengths; SLT, SLZ and STZ are
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the LT, LZ and TZ shear strengths, respectively; α is the contribution coefficient of shear stresses on
yarnL tensile failure, andα is set as 0.5 here.L-T-Z is the local coordinate definition of braiding yarn,
and L, T and Z axis represent the longitudinal and two transverse directions.

2.2 Damage Evolution Model

Once the damage initiation criteria are reached, a damage evolution model is necessary to
degrade the stiffness properties of the composite material. In this simulation, a gradual
degradation scheme proposed by Lapczyk et al. [23] and Fang et al. [15] is introduced to
characterize the damage evolution process of braiding yarns and matrix.

Considering the irreversibility of damage, the evolution of damage variables corresponding
to distinct damage modes are defined by

dΙ ¼ max dΙ;
δ fΙ;eq δΙ;eq−δ0Ι;eq

� �
δΙ;eq δ fΙ;eq−δ

0
Ι;eq

� �
8<
:

9=
; Ι ¼ Lt; Lc; Tt; Tc; Zt; Zc;Mt;Mcð Þ ð5Þ

where δ0Ι;eq and δ fΙ;eq are the initial and complete failure equivalent displacements for a certain

failure mode, and they can be computed by

δ0Ι;eq ¼ δΙ;eq=
ffiffiffiffiffi
φΙ

p ð6Þ

δ f
Ι;eq ¼ 2GΙ= σΙ;eq=

ffiffiffiffiffi
φΙ

p� � ð7Þ

In Eqs. (5–7), φΙ is the value of damage initiation criterion and GΙ is the fracture energy
density; δΙ, eq and σΙ, eq are the equivalent displacement and equivalent stress related to a certain
failure mode, and they are expressed by

δΙ;eq ¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2ii þ αΙ ∑

3

j¼1; j≠i
ε2ij

s
i ¼ 1; 2; 3ð Þ ð8Þ

σΙ;eq ¼ l σiih i εiih i þ ∑
3

j¼1; j≠i
σijεij

 !
=δΙ;eq i ¼ 1; 2; 3ð Þ ð9Þ

where l is the characteristic length of element.

2.3 Damage Constitutive Model

Murakami damage model [24] is adopted to describe the damage of constituents in the unit-
cell. Three principal damage variables are used to represent the damage state, namely

D ¼ ∑
i
Dini⊗ni i ¼ L; T ; Zð Þ ð10Þ

where Di and ni are the principal value and principle unit vector of the damage tensor.
For the damaged composite material, the effective stress is defined as

σ* ¼ 1

2
I−Dð Þ−1σþ σ I−Dð Þ−1

h i
¼ M Dð Þσ ð11Þ

Here σ∗ is symmetric and M(D) is a transformation matrix.
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The energy identification is implemented in order to involve the damage variable into
stiffness matrix as

C Dð Þ ¼ M−1 Dð Þ : C0 : MT ;−1 Dð Þ ð12Þ
where C(D) and C0 are the damaged and undamaged stiffness tensor.

The damaged stiffness matrix, which is the function of the undamaged stiffness constants
and the principal values of damage tensor, can be expressed more explicitly as [25].

C Dð Þ ¼

b2LC11 0 0 0 0 0
bLbTC12 b2TC22 0 0 0 0
bLbZC13 bTbZC23 b2ZC33 0 0 0

bTZC44 0 0
sym bZLC55 0

bLTC66

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð13Þ

In the above equation,

bL ¼ 1−DL; bT ¼ 1−DT ; bZ ¼ 1−DZ ;

bTZ ¼ 2bTbZ
bT þ bZ

� �2

; bZL ¼ 2bZbL
bZ þ bL

� �2

; bLT ¼ 2bLbT
bL þ bT

� �2

Cij, is the component of undamaged stiffness tensor.
For braiding yarn, the principal damage variables in L, T, and Z direction are determined by

DL ¼ dLt σ11≥0ð Þ
dLc σ11 < 0ð Þ

	
ð14Þ

DT ¼ dTt σ22≥0ð Þ
dTc σ22 < 0ð Þ

	
ð15Þ

DZ ¼ dZt σ33≥0ð Þ
dZc σ33 < 0ð Þ

	
ð16Þ

For matrix, it is regarded as isotropic material and the damage variables are determined by

DM ¼ DL ¼ DT ¼ DZ ¼ max dMt; dMcð Þ ð17Þ

3 Finite Element Modeling Strategies

3.1 Meso-Scale Finite Element Model and Periodic Boundary Conditions

Based on the microscopic image analysis results [26], Xu and Xu [27] established an accurate
unit-cell structural model of 3D braided composites, which is employed here to conduct the
meso-scale FEA. As displayed in Fig. 1(a), an octagon containing an inscribed ellipse is
assumed to approximate the cross-section shape of the braiding yarns. For the major radius a
and minor radius b of the ellipse, one has

a ¼
ffiffiffi
3

p
bcosγ ð18Þ
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where γ is the interior braiding angle and it can be obtained by the braiding angle α on the
surface of composite specimen, namely

tanγ ¼
ffiffiffi
2

p
tanα ð19Þ

According to geometry relations, the width W, thickness T and height h of the unit-cell
model can be determined by

W ¼ T ¼ 4
ffiffiffi
2

p
b ð20Þ

h ¼ 8b=tanγ ð21Þ
In this simulation, two specimens with typical braiding angles are selected for FEA and

their structural parameters of the unit-cell models are given in Table 1. Even the meso-scale
FEA is based on a single unit-cell model, it does not mean that this single unit-cell is isolated
from its neighboring unit-cells in the composite structure. The boundary effects from the
neighboring unit-cells, that is, the displacement and traction continuity conditions, should be
ensured at the opposite boundaries of the unit-cells. Thus, the periodic boundary conditions
[28–30] should be employed and taken into account in the meso-scale FEA, and periodic mesh
should be generated at the unit-cell opposite boundaries in the meshing process. Actually,
because of the complicated microstructure of 3D braided composites, periodic mesh generation
is one of the main difficulties to implement meso-scale FEA. In this paper, considering the
excellent geometry adaptability, solid tetrahedral element (C3D4) is particularly used to mesh
the unit-cell model, as depicted in Fig. 1(b).

Force control is normally implemented to perform multi-axial loading physical experiments to
attain exact stress ratios, while the displacement loading mode is always adopted in the current

Table 1 Structural parameters of unit-cell models of the specimens

Specimen Braiding yarn α (o) γ (o) W=T (mm) h (mm) Vf (%)

4DS1 12 K 19.2 26.2 1.904 5.473 50
4DS2 6 K 36.6 46.4 1.662 2.239 50
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Fig. 1 Meso-scale finite element model of 3D braided composites (a) Unit-cell structural model (b) Corre-
sponding finite element mesh



numerical simulations. In fact, either displacement or force can be used as the applied loading when
employing periodic boundary conditions in the unit-cell based simulation subjected to any uniaxial
or muti-axial loading cases. The feasibility and effectiveness of the force loading mode in the meso-
scale FEA will be examined in the following section. The application of periodic boundary
conditions to the unit-cell model is given in detail in our previous work [30].

3.2 Material Properties of Constituents and Unit-Cell Homogenization

The reinforcement architecture can be well reflected in the meso-scale unit-cell model. The
braiding yarn regularly consisting of thousands of fibers is considered as a transversely
isotropic material; the resin matrix is modeled as an isotropic material. The braiding yarns in
different directions are intertwined such as to form the spatial reinforcement architecture and
embedded into the resin matrix. The material properties of the constituents directly influence
the homogenized macroscopic mechanical behavior of 3D braided composites, as given in
Table 2. The stiffness and strength properties of braiding yarns used in the simulation are
calculated using Chamis micromechanics formulae [31]. In addition, in order to facilitate the
local material coordinate definition of braiding yarns in different directions, the yarns with the
same direction are united into the same element set.

In the meso-scale FEA, the macroscopic mechanical properties of the composite material
can be computed by a proper unit-cell homogenization technique. Based on the small
deformation assumption, the constitutive relation of a unit-cell can be expressed as

σij ¼ Eijklεkl ð22Þ
where Eijkl is the effective stiffness matrix. The average stresses σij and average strains εkl of
the unit-cell can be obtained by homogenization, namely

σij ¼ 1

V
∫
V
σijdV ; εkl ¼ 1

V
∫
V
εkldV ð23Þ

where V is the volume of the unit-cell.

3.3 Numerical Analysis Process

In order to conduct the meso-scale FEA, the proposed progressive damage model is coded and
implemented by a user-material subroutine UMAT based on ABAQUS/Standard platform.
Figure 2 schematically describes the flow chart of the entire numerical analysis process, which
contains stress analysis, failure analysis and material property degradation. During each
loading increment, the stress analysis and failure analysis are performed at each Gauss
integration point of the elements. Once a failure criterion is triggered, material stiffness

Table 2 Material properties of the constituents

E11
(GPa)

E22
(GPa)

G12

(GPa)
G23

(GPa)
μ12 XT

(MPa)
XC
(MPa)

S
(MPa)

GL

(N/mm)
GT

(N/mm)
Gm

(N/mm)

T300 221 13.8 9.0 4.8 0.2 3528 2470 8.0 1.5
Matrix 3.5 0.35 103.4 241 89.6 1.0
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properties degradation is carried out by updating the damage variables corresponding to the
failure modes. The numerical analysis continues until the final loading increment is reached.

4 Numerical Results and Discussions

4.1 Prediction of Elastic Properties

To predict the tensile modulus of 3D braided composites in x, y and z direction, three uniaxial
loading cases are needed to be employed. It is well reported in the literature, e.g., see [32–35],
that accurate elastic properties results can be predicted with the displacement loading mode.

Therefore, first, the displacement loadings, ε0x ¼ 0:1%, ε0y ¼ 0:1% and ε0z ¼ 0:1% are applied

separately, and the elastic properties and reaction forces can be taken from the computation.
Then, these obtained reaction forces are implemented as the concentrated forces to the unit-cell
models again to attain the elastic properties with force loading mode. By comparison, it is
found that the predicted elastic properties, including the stiffness constants, deformation states
and stress distributions, of the unit-cell models with displacement and force loading modes are
precisely identical in small deformation conditions. To get the exact stress ratios, force loading

146 Appl Compos Mater (2019) 26:139–157

Fig. 2 Flow chart of numerical analysis process



modes are thus selected for predicting the elastic properties of 3D braided composites under
biaxial tension loadings.

The predicted tensile moduli of unit-cells under different loading cases are provided in
Table 3. Under biaxial tension, the deformation in the two directions is mutually
restricted, so that the deformation resistance ability of the material is improved to some
extent and the tensile moduli are both increased. For x-y biaxial tension, with the
decrease of stress ratio (σx: σy), the tensile modulus Ex increases significantly and Ey

decreases. When the stress ratio was reduced to a certain level, the strain in x direction
would become negative due to the Poisson effect. For x-z biaxial tension, the variation
trend of tensile moduli is similar to that under x-y biaxial tension. Figure 3 illustrates the
stress distributions on the deformed shape of unit-cell models under corresponding
uniaxial and biaxial force loading cases (the deformation scale factor is 150). Attribut-
able to the spatial rotation characteristics of 3D braided composites, the deformation and
stress distribution of the unit-cell model under x and y tension are similar [34] thus only
the numerical results under x tension are presented in this work. Obviously, the defor-
mation states and stress fields correctly reflect the related loading features and continuity
conditions of the applied periodic boundary conditions.

4.2 Prediction of Stress-Strain Curves

4.2.1 Uniaxial Loading Cases

For the available works on strength properties prediction and damage mechanism
analysis of 3D braided composites under uniaxial or biaxial loading, only the displace-
ment loading is used in the meso-scale FEA [13–21]. However, it is generally impossible
to achieve exact stress ratios with biaxial displacement loadings. Herein, first, the stress-
strain curves of unit-cell models of the two specimens under uniaxial tension with
displacement and force loading modes are predicted for the comparison study, as
sketched in Fig. 4. It can be found that the predicted stress-strain curves consistent with
each other with displacement and force loading mode in the loading stage. After the peak
stress, the curves with displacement loading decrease suddenly or gradually according to
the loading direction and specimen type. On the other hand, an obvious turning point
appears on the curves with force loading and the curves become very gentle after the
turning point. Actually, the carbon-fiber 3D braided composites always express brittle
breaking characteristics under tension loadings thus the extended stage of stress-strain
curve after the peak stress or turning point appears in numerical simulation will not take

Table 3 Predicted tensile moduli of unit-cells under different loading cases

Loading cases 4DS1 4DS2

Ex (Gpa) Ey (Gpa) Ez (Gpa) Ex (Gpa) Ey (Gpa) Ez (Gpa)

Uniaxial tension 7.22 7.22 59.50 7.59 7.59 13.45
Biaxial tension (σx: σy = 1:1) 11.53 11.53 11.07 11.07
Biaxial tension (σx: σy = 1:2) 28.65 8.88 20.44 9.00
Biaxial tension (σx: σz = 1:1) 11.50 33.97
Biaxial tension (σx: σz = 1:2) 8.89 97.14 23.73 19.26
Biaxial tension (σx: σz = 1:4) 11.57 73.80
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place in physical experiment. Accordingly, the numerical artifact stage can be ignored
and the force loading mode is effective to predict the strength properties and damage
mechanism of 3D braided composites.
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Fig. 3 Stress distributions on the deformed shape of unit-cell models under corresponding loading cases (a)
4DS1 (b) 4DS2

Fig. 4 Predicted stress-strain curves of unit-cell models under x and z uniaxial tension (a) 4DS1 (b) 4DS2



4.2.2 Biaxial Loading Cases

The force loading mode is first adopted in the current biaxial tension loading cases and thus the
stress ratios can remain constant throughout the entire simulation process. Figure 5 and Fig. 6
display the predicted stress-strain curves of the two specimens under biaxial tension loadings with
different stress ratios. It can be found that the stress-strain curves show good linearity in the
loading stage and present a little non-linearity when reaching the turning points. As shown in Fig.
5(a) and Fig. 6(a), when σx: σy = 1:1, the curves are completely coincident, indicating that the
composite material has the same properties in these two directions. When σx: σy = 1:2, the failure
strain in x direction is much smaller than that in y direction. The larger tensile loading in y direction
causes an apparent increase of tensile modulus in x direction, as shown in Figs. 5(b) and 6(b). For
specimen 4DS1 with a small braiding angle, the tensile modulus in z direction is much larger than
that in x direction. The stress-strain curves in x and z direction have evident difference under x-z
biaxial tension loading, as given in Fig. 5(c, d). The strain in z direction has a decreasing trend
after the turning point, especially when σx: σy = 1:2. Since the force loading cannot be reduced in
the simulation process and the strain in x direction after the turning point is relatively large,
Poisson effect will cause the strain shrinkage trend in z direction. For specimen 4DS2 with a large
braiding angle, the difference of tensile modulus in x and z direction is not such significant. As
seen Fig. 6(c, d), the decreasing trend of strain in z direction after the turning point also exists
when σx: σz = 1:1, however, it disappears when σx: σz = 1:2.
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In this simulation, no peak stress appears on the predicted stress-strain curves with
force loading mode. The strength is defined as the related stress of turning point on the
stress-strain curves since it is considered as the maximum stress when the extended
artificial stage is neglected. Table 4 summarizes the predicted tensile strengths of unit-
cells under different force loading cases. Under x-y biaxial tension, the strengths are
identical and lower than uniaxial strength when σx: σy = 1:1. The strength in x direction
decreases while that in y direction increases when the stress ratio changes to 1:2, but both
of the strengths are lower than uniaxial strength. Under x-z biaxial tension, with these
determined stress ratios, the strength in one direction exceeds the corresponding uniaxial
strength. Such phenomena were also reported in Ref. [13, 14] even biaxial displacement
loadings were used in their simulation. It is clear that the uniaxial stiffness and strength
in x and y direction are identical while those in z direction are much larger. The large
difference of mechanical properties in these two directions may contribute to these
phenomena. That is also the reason why the interaction coefficients between the two
normal failure stresses should be considered strictly in this case to establish a reasonable
strength criterion. In addition, from Table 4, it can also be found that under biaxial
loadings, the predicted strength ratios are not equal to the corresponding applied stress
ratios, which is in agreement with the experimental observation [4, 5]. However, for the
failure point of composite material, it is determined by the stress of the turning point in
one direction which is reached earlier in the simulation, and the stress in another
direction can be computed with the stress ratio. For example, (44.00, 88.00) is regarded
as a failure point of specimen 4DS2 under biaxial tension loading with σx: σy = 1:2.
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Fig. 6 Predicted stress-strain curves of specimen 4DS2 under different biaxial tension loadings (a) σx: σy = 1:1
(b) σx: σy = 1:2 (c) σx: σz = 1:1 (b) σx: σz = 1:2



4.3 Analysis of Damage Evolution and Failure Mechanisms

The damage evolution process and associated failure mechanisms, which are difficult to
be observed and determined by physical experiment, can be simulated and analyzed
conveniently by meso-scale FEA. Once the damage initiates, the stiffness reduction is
governed by the damage evolution model. That is, the damage variables related to
distinct failure modes keep evolving from 0 to 1 irreversibly, and the stiffness properties
of the corresponding elements degrade accordingly until complete failure. Herein, the
damage evolutions on the unit-cells of specimen 4DS1 under biaxial tension loadings
with σx: σy = 1:1 and σx: σz = 1:4, and specimen 4DS2 under biaxial tension loadings
with σx: σy = 1:2 and σx: σz = 1:1 are selected to analyze, as illustrated in Figs. 7, 8, 9,
and 10. It is noticed that the stress concentration is always serious in the yarn/yarn
contact zones, and thus damage initiation usually happens in these zones. In order to

Table 4 Predicted tensile strength of unit-cells under different loading cases

Loading cases 4DS1 4DS2

Sx (Mpa) Sy (Mpa) Sz (Mpa) Sx (Mpa) Sy (Mpa) Sz (Mpa)

Uniaxial tension 78.69 78.69 699.27 98.19 98.19 166.26
Biaxial tension (σx: σy = 1:1) 56.32 56.32 69.20 69.20
Biaxial tension (σx: σy = 1:2) 35.52 69.12 45.60 88.00
Biaxial tension (σx: σz = 1:1) 122.25 131.25
Biaxial tension (σx: σz = 1:2) 96.60 198.45 91.80 187.20
Biaxial tension (σx: σz = 1:4) 116.35 507.00

Appl Compos Mater (2019) 26:139–157 151

Fig. 7 Damage evolution of specimen 4DS1 under biaxial tension with σx: σy = 1:1 (a) Yarn T tensile shear
failure (b) Yarn Z tensile shear failure



clearly demonstrate the damage distribution in the braiding yarns, only the braiding yarns
in one-direction are given here.

For specimen 4DS1, under x-y biaxial tension with σx: σy = 1:1, the main failure modes are
yarn T and Z tensile shear failure, which are similar to that under x uniaxial loading. Yarn L
failure, T and Z compressive shear failure do not exist before the occurrence of turning point.
When the stress-strain curve reaching near the turning point, matrix cracking appears in some
matrix elements but the quantity is limited. As displayed in Fig. 7(a), yarn T tensile shear
failure starts in the braiding yarns when σx = 46.08 Mpa, and propagates around the yarn/yarn
contact zones discretely. The propagation speed accelerates after σx = 51.84 Mpa, and at the
turning point, that is σx = 56.32 Mpa, the number of damaged elements is relatively large.
After that, this failure mode spreads suddenly even with a little increasing of applied loading.
Seen from Fig. 7(b), Z tensile shear failure occurs comparatively late. The propagation speed is
slow and the number of damaged elements is relatively small in the simulation.

The main failure modes are yarn T tensile and compressive shear failure, yarn Z
tensile shear failure and matrix cracking for specimen 4DS1 under x-z biaxial tension
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Fig. 8 Damage evolution of specimen 4DS1 under biaxial tension with σx: σz = 1:4 (a) Yarn T tensile shear
failure (b) Yarn Z tensile shear failure (c) Matrix cracking



with σx: σz = 1:4, which are completely different to that under x or z uniaxial loading.
Before the occurrence of turning point, yarn L failure does not emerge and the number of
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Fig. 9 Damage evolution of specimen 4DS2 under biaxial tension with σx: σy = 1:2 (a) Yarn T tensile shear
failure (b) Matrix cracking

Fig. 10 Damage evolution of specimen 4DS2 under biaxial tension with σx: σz = 1:1 (a) Yarn T tensile shear
failure (b) Yarn Z tensile shear failure (c) Matrix cracking



Z compressive shear failure is relatively small. As shown in Fig. 8(a), yarn T tensile
shear failure occurs first in the yarn/yarn contact zones when σx = 93.60 Mpa and
propagates mainly along the transverse direction of the braiding yarn. The propagation
speed is steady at the beginning and increases gradually with the increasing of applied
loading. From Fig. 8(b), the development trend of Z tensile shear failure is basically
similar as that of T tensile shear failure except for the earlier appearance and more
serious damage state. Matrix cracking appears comparatively late in the intersecting
edges of the braiding yarns and matrix and propagates quickly along the fiber axial
direction in these intersection regions, resulting in large numbers of damaged elements,
as given in Fig. 8(c).

For specimen 4DS2, under x-y biaxial tension with σx: σy = 1:2, the main failure modes are
yarn T and Z tensile shear failure and matrix cracking, which are also similar to that under x
uniaxial loading. Yarn L failure and T compressive shear failure do not exist while Z
compressive shear failure only emerges in some elements before reaching the turning point.
When σx = 31.20 Mpa, yarn T tensile shear failure occurs first in the yarn/yarn contact zones
and propagates quickly along the fiber axial and transverse directions simultaneously, as
presented in Fig. 9(a). After σx = 44.00 Mpa, the damage state is rather serious with large
number of damaged elements. Matrix cracking appears first in the intersecting edges of the
braiding yarns and matrix when σx = 42.80 Mpa and propagates with a steady speed in these
intersection regions, as shown in Fig. 9(b).

The main failure modes are yarn T and Z tensile shear failure and matrix cracking for
specimen 4DS2 under x-z biaxial tension with σx: σz = 1:1, which are also different to that
under x or z uniaxial loading. The development trend of yarn T and Z compressive shear failure
is similar, and the failure elements are limited before reaching the turning point. Yarn L tensile
failure exists in some elements, which can be attributed to the relatively larger shear stress
components under x-z biaxial tension. As displayed in Fig. 10(a, b), with the increase of the
applied biaxial loading, yarn T and Z tensile shear failure propagates progressively in the yarn/
yarn contact zones and the propagation speed increases gradually. As can be observed in
Fig. 10(c), matrix cracking initiates in the intersecting edges when σx = 123.00 Mpa. It appears
quite late but propagates rapidly in the intersection regions. This is interesting and due to the
fact that matrix cracking happens later than yarn damage modes (especially some yarn L
tensile breaking) and in this condition, resin matrix will bear greater amount of further external
loadings.

5 Conclusions

This paper has outlined the development of an accurate approach based on the meso-scale FEA
for assessment of mechanical behavior of 3D braided composites. The fact is that in many
engineering applications, 3D braided composites are frequently subjected to multi-axial
loading conditions during service. However, their mechanical behavior, especially the strength
and failure mechanisms under such loading cases have not yet been well understood. In this
study, a unit-cell based progressive damage model is derived and implemented in the meso-
scale FEA to evaluate the mechanical behavior of 3D braided composites under different
biaxial tension loadings. The stress distribution, tensile modulus, ultimate strength, failure
response and other aspects are computed and analyzed in detail. Some major conclusions
drawn from the study are summarized as follows:
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& In meso-scale FEA, to attain exact stress ratios of external loadings, the force loading
mode of periodic boundary conditions should be employed to the unit-cell model subjected
to multi-axial loading cases.

& Under biaxial tension, the deformation in the two loading directions is mutually restricted.
Therefore, the deformation resistance ability of the material is improved and the tensile
moduli are both increased. When the stress ratio σx: σy or σx: σz decreases, the larger tensile
loading in y or z direction causes a significant increase of tensile modulus Ex while Ey or Ez
decreases. However, the biaxial tensile modulus always larger than uniaxial tensile
modulus.

& For the biaxial strength properties, under x-y biaxial tension, the biaxial loading has a
weakening effect on the tensile strength in both directions. Under x-z biaxial tension, the
strength in one direction exceeds the corresponding uniaxial strength. It may be attributed
to the large difference of material properties associated to these two directions. Therefore,
the interaction coefficients between the two normal failure stresses should be considered
strictly in this case to establish a reasonable strength criterion.

& Under x-y biaxial tension, the main failure modes of 3D braided composites are yarn
T and Z tensile shear failure and matrix cracking, which are similar to the observed
under x uniaxial loading. However, under x-z biaxial tension, the main failure modes
are yarn T and Z tensile shear failure and matrix cracking, which are quite different to
that under x or z uniaxial loading. Yarn T and Z compressive shear failure also exist
but the failure elements are relatively few before reaching the turning point. Largely,
the mechanical properties and failure modes of the composite material subjected to
the biaxial tensile loadings are determined by the components of the fiber yarns
parallel to the loading directions.

& The present meso-scale finite element model is able to predict the mechanical properties
and analyze the damage mechanism of 3D braided composites under biaxial tension
loadings and this numerical model is naturally general. It might be an appropriate new
reference for future investigations on the mechanical behavior of other textile composites
under multi-axial loadings by meso-scale FEA.
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