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Abstract The purpose of this paper is to study micromechanical progressive failure properties
of carbon fiber/epoxy composites with thermal residual stress by finite element analysis
(FEA). Composite microstructures with hexagonal fiber distribution are used for the represen-
tative volume element (RVE), where an initial fiber breakage is assumed. Fiber breakage with
random fiber strength is predicted using Monte Carlo simulation, progressive matrix damage is
predicted by proposing a continuum damage mechanics model and interface failure is simu-
lated using Xu and Needleman’s cohesive model. Temperature dependent thermal expansion
coefficients for epoxy matrix are used. FEA by developing numerical codes using ANSYS
finite element software is divided into two steps: 1. Thermal residual stresses due to mismatch
between fiber and matrix are calculated; 2. Longitudinal tensile load is further exerted on the
RVE to perform progressive failure analysis of carbon fiber/epoxy composites. Numerical
convergence is solved by introducing the viscous damping effect properly. The extended Mori-
Tanaka method that considers interface debonding is used to get homogenized mechanical
responses of composites. Three main results by FEA are obtained: 1. the real-time matrix
cracking, fiber breakage and interface debonding with increasing tensile strain is simulated. 2.
the stress concentration coefficients on neighbouring fibers near the initial broken fiber and the
axial fiber stress distribution along the broken fiber are predicted, compared with the results
using the global and local load-sharing models based on the shear-lag theory. 3. the tensile
strength of composite by FEA is compared with those by the shear-lag theory and experiments.
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Finally, the tensile stress-strain curve of composites by FEA is applied to the progressive
failure analysis of composite pressure vessel.

Keywords Micromechanical progressive failure .Matrix cracking . Interface stress transfer and
interface debonding . Fiber breakage . Carbon fiber/epoxy composites . Finite element analysis
(FEA)

1 Introduction

It is widely recognized progressive damage and failure properties of lightweight composites
are essentially multiscale ranging from microscopic to macroscopic scales, which are involved
in such as fiber breakage, matrix cracking and interface failure. Moreover, there complicated
micromechanical failure mechanisms evolve and interact, leading to macroscopic performance
degradation and ultimate failure of composites. In order to predict the damage tolerance and
load-bearing ability of composite structures, an ultimate strategy is to perform multiscale
analysis by developing advanced theory and numerical technique [1].

In general, comprehensive research on the damage and failure of composites should
consider the fiber/matrix/interface phases integrately. An initial matrix crack due to defects
nucleates, propagates and reaches the interface, leading to the fiber bridging effect for fiber-
reinforced composites. Once the fiber bridging stress exceeds the fiber strength, quasi-brittle
fiber breakage results in the load redistribution and excessive load-bearing on neighbouring
fiber and matrix near the broken fiber. At small scale, the conventional shear-lag theory [2]
analyzes the interface stress transfer and interface fracture properties well by establishing the
relationship between the interface frictional stress and the fiber tensile stress. Later, many
scholars [3–9] further studied the single fiber and multiple fiber/matrix interface stress transfer
with elastic and elastic-plastic matrix using the shear-lag theory although it neglected some
factors such as the Poisson’s effect and the fiber and matrix shear, radial and hoop stresses. No
matter from theory and experiment, fiber pull-out becomes an effective approach to test the
interface bonding properties of composites [10–12], where the stress-based and energy release
rate-based interface fracture criteria are widely adopted. As an extension over the shear-lag
theory, the Green’s function-based method [13, 14] was also proposed to predict the damage
evolution and tensile strength of large-scale composite models with multiple fibers. A central
feature for these advanced theories is to emphasize the effect of multiple fiber breakage on the
stress concentration, interface stress transfer and statistical tensile strength of composites.

For non-homogenized composites, the stress concentration and strain localization phenom-
ena due to broken fibers inevitably aggravate the damage and failure of different phases [15,
16]. Currently, two types of load-sharing models based on the shear-lag theory were developed
to describe the stress redistributions after fiber breakage: the global load-sharing(GLS) model
[17] and the local load-sharing (LLS) model [18]. Landis et al. [19] showed the failure of
composites can fall between the extremes of GLS and nearest neighbouring LLS. GLS is
associated with the material where fiber breakage does not cause distinct stress concentrations
in neighbouring fiber and the stress along a broken fiber recovers to the applied stress linearly
from the break. In contrast, LLS assumes that intact fiber experiences a stress concentration in
the presence of a fiber break. Although these models achieved large success at different scales
to a large extent, there are still some defects for LLS since it does not accurately describe the
extent of load redistribution and the influence of some micromechanical parameters.

546 Appl Compos Mater (2018) 25:545–560



With the increase of computer ability, finite element analysis (FEA) has becomes a
powerful tool to predict the multiscale damage and failure behaviors of large-scale composite
structures. Xia et al. [20] showed it is insufficient to focus only on the single fiber breakage
problem and myriad detail associated with it. In large-scale analysis on the representative
volume element (RVE), all details from the local micromechanical fiber/matrix/interface
failure to the macroscopic damage evolution of composite structures are expected to be
evaluated appropriately. Many scholars have performed FEA by micromechanical modeling
to predict progressive failure properties of composites [21–24], but little work concentrates on
the longitudinal progressive failure analysis of large-scale composite structures by 3D FEA. In
FEA by Xia et al. [13, 20], zero interface bonding strength and completed debonded frictional
interface were assumed by considering thermal residual stress for SiC fiber/metal matrix
composites, but may not be this case for carbon fiber/epoxy composites with much lower
processing temperature. Essentially, it is beyond doubt complete failure characteristics of
different phases should be considered in multiscale FEA, particularly in the presence of
thermal residual stress.

Liu et al. [25] developed a set of theoretical model and numerical technique to predict
micromechanical damage and failure behaviors of small-scale composite models with square
fiber distribution. In this research, these methods are further employed to predict the damage
and failure behaviors of large-scale composite models, in which RVE with hexagonal fiber
distribution is established for FEA. It is noted the hexagonal cell model describes more precise
load transfer and stress concentration behaviors than the square cell model. Fiber breakage
with random fiber strength is predicted using Monte Carlo simulation, progressive matrix
cracking is predicted by proposing a continuum damage mechanics model and interface failure
is simulated using Xu and Needleman’s cohesive model. Numerical results are presented in
terms of the stress concentration, progressive damage behaviors and tensile strengths of
composite model. The developed numerical technique helps to gain deeper insight into the
multiscale failure mechanisms and the strength prediction of composite pressure vessel and
other composite structures.

2 Micromechanical Damage Modeling and FEA on the RVE

2.1 Finite Element Model of the RVE

According to microscopic observation of composites, two relatively regular fiber distribu-
tions in the matrix for T700/epoxy composites exist: square and hexagonal distributions
[26]. In this work, the hexagonal RVE for large-scale micromechanical model is established
for the failure analysis. The fiber radius is Rf = 3.5e-3 mm, the fiber volume fraction is
62% and the axial length is L = 80e-3 mm. FEA of the RVE is performed with ANSYS-
APDL (ANSYS PARAMETRIC DESIGN LANGUAGE). 3D eight-node Solid45 element
is used to mesh the fiber and matrix. Fiber breakage is simulated using the Weibull
distribution, the zero-thickness Inter205 element using the Xu and Needleman’s interface
cohesive model [27] is employed to simulate the crack initiation and propagation of the
fiber/matrix interface. In order to capture the stress concentration accurately, the mesh is
refined at the initial broken fiber. The finite element model is shown in Fig. 1. The axial
length Δz = L/20 = 4e-3 mm of each element is selected. The number of fiber and matrix
is 11,360 and 4480, respectively.
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2.2 Failure Criteria and Damage Models of the RVE

2.2.1 Failure criterion and strength distributions for carbon fiber

Fiber is considered as transversely isotropic and quasi-brittle. The maximum stress failure
criterion for fiber is assumed as

σfz
�� �� < X f ð1Þ

where Xf is the statistical tensile strength obeying the Weibull distributions.
Similar to Li [28], the strength distribution of each fiber element is written by the two-

parameter Weibull function

F σ fð Þ ¼ 1−exp −
Δz
L0

σ f z

σ0

� �m� �
ð2Þ

where F is the failure probability of fiber element at a stress level equal to or smaller than the
axial fiber stress σf, m is the shape parameter that characterizes the flaw size distributions and
σ0 is the scale parameter at a gauge length L0 that describes the characteristic strength of fibers.
After a random number η within the interval [0,1] is selected, the tensile strength Xf of each
fiber element is obtained

X f ¼ σ0 −
L0
Δz

ln 1−ηð Þ
� �1=m

ð3Þ

where m = 12.06 is Weibull modulus, L0=8 mm and σ0=4.41e3GPa for T700 fiber based on
the fiber bundles theory and statistical theory [29].

2.2.2 Failure criterion and damage modeling for epoxy matrix

In the conventional shear-lag model [3–9], the epoxy matrix is considered to be linear elastic
without damage and failure. In this work, the initial damage and progressive failure are
introduced for epoxy matrix.

Fig. 1 The finite element model for the hexagonal RVE
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By considering the hydrostatic effect, Ha et al. [30] proposed a modified Mises failure
criterion

σeq

σcr
eq

 !2

þ J 1
J cr1

¼ 1 ð4Þ

where σeq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2 S : S

q
is the Mises effective stress, J1 = tr(σ) is the first stress invariant

and S =σ − tr(σ)/3I2 is the deviatoric stress tensor and I2 is the two-order unit tensor.

σcr
eq ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
TmCm

p
and J cr1 ¼ CmTm= Cm−Tmð Þ are critical values. Cm = 120MPa and Tm =

80MPa are the compressive and tensile strengths of the epoxy matrix, respectively.
Liu et al. [25] developed a continuum damage mechanics-based model for isotropic epoxy.

The relationship between the effective elastic tensor C and the nominal tensor C is given by

C ¼ C
.

1−dð Þ; C ¼ λI2⊗I2 þ 2μI4 ð5Þ

where d is the damage variable, I4 is the four-order unit tensor. λ and μ are Lamé constants.
The damage variable d is written as [25]

d ¼ 1−exp −Y
.
Yc

� 	
ð6Þ

where Yc is the critical value of the thermal conjugate force Y that is given by Lemaitre and
Desmorat [31]

Y ¼ σeq
2Em

2

3
1þ νmð Þ þ 3 1−2νmð Þ tr σð Þ

3σeq

� �� �
ð7Þ

where Em and νm are the Young’s modulus and Poisson’s ratio of epoxy. From Eqs.(6) and (7),
the damage variable d is obtained.

2.2.3 Exponential cohesive model for interface debonding

Xu and Needleman’ exponential cohesive model [27] is used, as shown in Fig. 2a. The surface
potential function ϕ(δ) is given by

ϕ δð Þ ¼ eσmaxδn 1− 1þΔnð Þe−Δn e−Δ
2
t

h i
Tn ¼ eσmaxΔne−Δn e−Δ

2
t

T t ¼ 2eσmax
δn
δt
Δt 1þΔnð Þe−Δn e−Δ

2
t

Δn ¼ δn

δn
; Δt ¼ δt

δt

8>>>>>>>>><
>>>>>>>>>:

ð8Þ

where Tn and Tt are the normal and tangential tractions, respectively. Δn and Δt are the

normalized normal and tangential opening displacements, respectively. σmax and δ are the
maximum traction and the corresponding displacement jump at that point, respectively.
Cohesive model is implemented using middle-plane interpolation technique, as shown in
Fig. 2b.
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After interface debonding, the debonded interface may contact with friction. From
micromechanical damage and failure analysis of metal matrix composites, Xia et al. [13, 20]
showed the composite tensile strength is rather insensitive to the friction coefficient. Thus, the
frictional contact of the debonded interface is not considered in this work.

2.3 Mori-Tanaka Homogenization Method for Composite with Interface Debonding

Hori and Nemat-Nasser [32] pointed out the fundamental assumption of the mean-field
homogenization method is that the strain and stress are piecewise uniform in each phase in
an RVE. The volume average of the strain ε and stress σ for fiber and matrix is given by
respectively

εh ip ¼ 1

Vp ∫
Vp
εdV ; σh ip ¼ 1

Vp ∫
Vp
σdV ; p ¼ f ;mð Þ ð9Þ

where V is the volume.
The conventional Mori-Tanaka method does not consider the effect of interface debonding.

Hori and Nemat-Nasser [32] showed the macroscopic strain must introduce an additional strain
due to interface failure. For composites with interface debonding, the average macroscopic
stress 〈σ〉 and strain 〈ε〉 are written as [33]

σh i ¼ f σh i f þ 1− fð Þ σh im;
εh i ¼ f εh i f þ 1− fð Þ εh im þ f εh iint;
εh iint ¼ 1

2V f ∫sint u½ � � nþ n� u½ �ð ÞdA; u½ � ¼ um−u f

8>><
>>: ð10Þ

where f is the fiber volume fraction. 〈ε〉int is the superimposed strain due to interface
debonding. sint denotes the discontinuous interface. n is the unit normal vector on the interface
pointing to the matrix. um and uf are the displacements on the interface from the matrix side to
the fiber side, respectively. Vf is the fiber volume in the RVE.

The strain concentration factors Bε and Aε are defined as follows

εh i f ¼ Bε : εh im ¼ Aε : εh i ¼ Aε : f εh i f þ 1− fð Þ εh im þ f εh iint
h i

ð11Þ

Liu et al. [25] performed multiscale analysis of composite structures using the asymptotic
homogenization method that involves the interaction between the macroscopic and

Fig. 2 (a) Xu and Needleman’s exponential cohesive model and (b) Middle-plane relative-displacement
interpolation technique for cohesive model
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microscopic data. However, this requires a huge amount of computational resources for
large composite structures. By comparison, the Mori-Tanaka mean-field method is easier to
implement by FEA and requires several orders of magnitude smaller computational time.

2.4 Material Parameters and Finite Element Analysis

The Young’s modulus Ef and Poisson’s ratio νf for T700 fiber are 227GPa and 0.3, respec-
tively. The longitudinal and transverse thermal expansion coefficients αf for T700 fiber are
−0.52 × 1E − 6/∘C and 10 × 1E − 6/∘C, respectively [25]. Yc = 1000MPa in Eq.(6) is used. The

cohesive interface parameters in Eq.(8) are taken as σmax = 75MPa and δn ¼ δt ¼ 2E−4mm,
respectively. The Poisson’s ratio νm of epoxy is 0.4. Experiments showed that the Young’s
modulus and thermal expansion coefficient of epoxy depend on temperature largely. The
Young’s modulus Em(T) of epoxy can be written by three expressions [34]

að Þ Em Tð Þ ¼ Em Tg−ΔT1


 �
exp −k2

T−Tg þΔT1

ΔT1 þΔT2

� �
; Tg−ΔT1≤T ≤Tg þΔT 2;

bð Þ Em Tð Þ ¼ Em Trð Þexp −k1
T−Tr

Tg−ΔT1 þ Tr

� �
; T ≤Tg−ΔT 1;

cð Þ Em Tð Þ ¼ 0:01� Em Trð Þ; T ≥Tg þΔT2

ð12Þ

The thermal expansion coefficient αm of epoxy is assumed to vary linearly with temperature
and the slope is written as [34]

k ¼ α1−αm Trð Þ
Tg−Tr

ð13Þ

where the glassy transition temperature Tg = 110
∘C, Tr = 23

∘C, ΔT1 =ΔT2 = 35
∘C, Em(Tr) =

3.35GPa, Em(Tr −ΔT1) = 0.7Em(Tr), Em(Tr +ΔT2) = 0.01Em(Tr), k1 = 0.35667, k2 = 4.2485,
αm(Tr) = 58 × 1E − 6/∘C, α1 = 139 × 1E − 6/∘C.

Fig. 3 The distributions of
thermal residual stress (Mises
stress) of RVE after curing
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Progressive failure analysis of the RVE is implemented using ANSYS-APDL
(ANSYS Parametric Design Language). FEA is divided into two steps: 1. periodic
boundary conditions [35] are exerted on all opposite sides of the RVE for calcu-
lating the thermal residual stress from curing temperature of epoxy 149 °C to room
temperature 20 °C, in which discrete thermal expansion coefficients with temper-
ature are used. In addition, all constraints are exerted on any one selected node to
eliminate the rigid displacement. 2. periodic boundary conditions for the broken
fiber surface are removed and the axial tensile load is applied on the opposite
surfaces at room temperature. The restart analysis is used to update the degraded
material parameters of fiber and matrix after each load increment and the viscous
stabilization method is used to solve the numerical convergence problem at the
strength limit of the RVE.

Fig. 4 The progressive damage evolution processes for fiber and matrix elements at the tensile strains (a) 1%,
(b) 1.125%, (c) 1.25%, (d) 1.75% and (e) 2.125% respectively

Fig. 5 The interface debonding process at the tensile strains (a) 0.25%, (b) 0.625%, (c) 1.25% and (d) 1.875%
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3 Numerical Results and Discussion

Figure 3 shows the distributions of thermal residual stress after curing. Since the temperature
dependent thermal expansion coefficients of epoxy are higher than those of fiber, thermal
residual stress occurs mainly at the epoxy. However, the thermal stress does not lead to the
initial failure of matrix. Figure 4 shows the progressive damage evolution process for fiber and
matrix elements. Figure 5 shows the interface debonding process. At about the strain 0.5%, the
RVE starts to fail in the form of matrix cracking with 6 failed matrix elements, which appears
at near the initial broken fiber. The fiber/matrix interface starts to debond near the broken fiber
at about the strain 0.625%, accompanied by 16 failed matrix elements. At the strain 1.125%,
there are 1137 failed matrix elements. Fiber breakage starts to appear at the strain 1.25% and at
this time all matrix elements (4480) have failed and more severe interface debonding appears.
At the strain 2.125%, 26 fiber elements and 4480 matrix elements fail, indicating complete
damage of the RVE. It is noted the initial broken fiber induces the accumulation of failed fiber,
matrix and interface elements, which accelerates the localized damage of RVE. The

Fig. 6 The axial stresses on fiber and matrix elements at the tensile strains (a) 0.25%, (b) 0.625%, (c) 1.25% and
(d) 1.875% respectively

Fig. 7 The axial fiber stress distributions on the broken fiber from the fracture surface at the tensile strains
0.625% and 1.25% respectively
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progressive failure properties of the RVE can be compared with the acoustic emission (AE) test
results on T700 fiber/epoxy composites under tension [25]. AE is mainly represented by the
amplitude parameters reflecting the signal strength of different failure modes. The damage
evolution process of composites is divided into three stages: (a) At the early stage (0–200 s),
the matrix cracking with the 50-60 dB amplitude other than fiber fracture appears. (b) At the
middle damage stage (200–1000s), the dominating failure modes are still matrix cracking,
accompanied by very little fiber breakage with beyond 80 dB amplitude. (c) At the stage of
fracture (1000–1200s), the number of fiber fracture adds, indicating the ultimate collapse of
specimen. Experimental results are consistent with numerical analysis.

The initial broken fiber introduces the stress redistribution and localized damage on
neighbouring fibers. Figure 6 shows the axial stresses on fiber and matrix elements at different
strains. It is noted severe stress concentration appears the broken fiber and neighbouring
matrix, and gradually extends to neighbouring fibers. Since the cohesive model belongs to a
phenomenological model, true interface shear and normal stresses are not given here. Figure 7
shows the axial stress distributions on the broken fiber from the fracture surface (normalized
by the far-field fiber stress σ∞ and averaged over the fiber cross-section) at the tensile strains
0.625% and 1.25% respectively. The axial fiber stress first recovers gradually from zero at the
fracture surface to the smooth far-field fiber stress and then remains constant. Xia et al. [13, 20]
showed the slip length ls for the initially debonded interface (or called as the stress recovery
length or inefficient load transfer length for initially bonded interface) can be evaluated by the
formula ls = rfσ∞/2τ using the simple shear-lag model and constant interface friction stress τ. If

Fig. 8 The axial stress concentration factor k(z) of neighbouring fibers around the initial broken fiber with the
increase of tensile strain

Table 1 Stress concentration factor (SCF) at the tensile strain 1.25%

Square RVE [25] Hexagonal RVE [18] GLS model [17] LLS model

1 1.085 1.035 1.0011 1.1046
2 1.055 1.002 1.0011 1.0100

where ‘1’ and ‘2’ represent the first and second nearest-neighbouring fibers around the broken fiber
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the frictional stress is replaced by the cohesive traction, the analytical ls is about 0.02 mm at the
tensile strain 0.625%, close to the numerical solution in Fig. 7. However, the numerical result
for the slip length is larger than the analytical solution when the strain continues to increase.

Figure 8 shows the axial stress concentration factor k(z) (SCF, the local axial fiber stress
normalized by the far-field fiber stress σf∞, and averaged over the fiber cross-section) of
neighbouring fibers around the broken fiber. The SCF adds slightly with the increase of tensile
strain. More stresses are redistributed on the first nearest-neighbouring fibers than those on the
second and third nearest-neighbouring fibers. By comparison, the analytical solutions using the
global load-sharing (GLS) model [17] and the local load-sharing (LLS) model [18] are also
provided. The GLS model assumed all intact fibers share the applied loads equally and thus
equally carry the loads lost from broken fibers, where sufficiently low interfacial shear stress is
assumed. In the LLS model, only the immediate unbroken neighbouring fibers carry these lost
loads, thereby causing more severe overloads than those that appear by the GLS model. The
LLS model considered a fiber composite consisting of infinite hexagonally aligned fibers
embedded in the elastic matrix and is more accurate than the GLS model because it accounts
for the effects of the elastic deformations of the fiber and matrix on the redistribution of tensile

Fig. 9 The tensile experiments of unidirectional carbon fiber/epoxy composite specimens

Fig. 10 The tensile stress-strain curves of composites by FEA and experiments
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stress based on the shear-lag theory. Further, the modified shear-lag model [13, 14] considered
the geometry of finite periodic patches based on the shear-lag model and applied an influence
function technique to solve a 3D stress field around the broken fiber. Table 1 compares the
SCFs obtained by FEA and analytical models. The SCFs obtained by the GLS model are the
smallest among all models. The GLS model decreases the stress concentration around the
broken fiber and underestimates the sharing portions of the loads borne by the neighbouring
intact fibers. For the second-neighbouring fibers, the SCF obtained by the RVE is basically
consistent with that by the LLS, but large difference appears for the first nearest-neighbouring
fibers. This can be interpreted as: the LLS model neglects the matrix tensile stress and assumes
the matrix to be in a state of only pure elastic shear. Therefore, the first nearest-neighbouring
fibers bears more stresses in the LLS. In addition, Blassiau et al. [26] compared the SCF using
the square and hexagonal cell models of for carbon fiber/epoxy composites with initially
bonded and debonded interface. They considered the elastic matrix without damage evolution
and used the interface node bonding technique to simulate the interface debonding. From the
present FEA, the hexagonal cell model leads to slightly smaller SCF for the same neighbouring
fibers, which can be explained by the fact that more fibers in the hexagonal cell model share
the redistributed loads, consistent with the conclusion with Blassiau et al. [26]. However, it
deserves pointing out the progressive failure of matrix also accelerates the localized fiber
damage to some extent, which was not considered in the work of Blassiau et al. [26]. Besides,
the cohesive interface model for predicting the interface failure is more advantageous than the
interface bonding technique. Thus, modeling the transition from the initially bonded interface

Table 2 Composite tensile strengths, as predicted and measured

Hexagonal RVE Curtin’s model [13, 14, 17, 18, 20] Experiments (Average value)
τ = 20 − 120MPa

UTS(MPa) 2475 2256–2586 2585

Fig. 11 The finite element model for 74 L–capacity composite vessel
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to debonded interface is significant to describe the load transfer and damage evolution of
composites in this work, different from the work of Xia et al. [13, 20].

Figure 9 shows the tensile experiments and fracture specimens of carbon fiber/epoxy
composites and Fig. 10 shows the tensile stress-strain curves of composites by FEA and
experiments for four composite specimens. Based on the shear-lag model and Weibull distri-
bution, the expression for the ultimate tensile strength (UTS) σu is given as [13, 14, 17, 18, 20]

σu ¼ f σc
2

mþ 2

� �1= mþ1ð Þ mþ 1

mþ 2

� �
þ 1− fð Þσm; σc ¼ σm

0 τL0
r f

� �
ð14Þ

where τ is the frictional shear stress at the debonded interface.
The UTS of composites by analytical solutions, FEA and experiments are listed in

Table 2. By comparison, the UTS obtained by FEA is smaller than the experimental
results. Besides, the UTS predicted using the analytical model approaches the experimen-
tal UTS when the interface sliding stress becomes large. They considered the initially
debonded interface due to high residual stresses, and the interface slips against each other
obeying the Coulomb friction law. However, the loading sharing model is required to
highlight the effect of high SCF on the UTS when the interface stress τ becomes large. In
contrast, the present FEA considered an initially perfect interface and subsequent interface
crack initiation and propagation. Thus, the interface stress transfer and stress concentration
effect are more accurately described.

Finally, the stress-strain tensile curve of carbon fiber/epoxy composites by FEA is
further applied to the progressive failure analysis of composite pressure vessel. Since the
Young’s modulus and tensile strength in the fiber principal direction dominate the burst
strength of composite vessel, the tensile curve is taken as the longitudinal direction.
Figure 11 shows the finite element model of composite vessel with 74 L capacity, which
includes one 30° inner aluminum layer and ten 30° outer composite layers. The mesh

Table 3 Geometry parameters for the 74 L–capacity composite vessel

Thickness (mm) Wound angle (°)

Aluminum liner layer 5.0 --
First composite layer 2.1 90
Second composite layer 0.87 12.3
Third composite layer 0.87 15.4
Fourth composite layer 0.87 18.6
Fifth composite layer 2.1 90
Sixth composite layer 0.87 22
Seventh composite layer 0.87 27
Eighth composite layer 0.87 32
Ninth composite layer 0.6 38
Tenth composite layer 0.54 90

Table 4 Mehanical parameters of 6061 Al liner and carbon fiber/epoxy composites

E1(GPa) E2(GPa) E3(GPa) ν12 ν23 ν13 G12 (GPa) G23 (GPa) G13 (GPa)

6061Al 70 70 70 0.3 0.3 0.3 27 27 27
Composite 120 11.41 11.41 0.33 0.49 0.33 7.92 3.792 7.92

E is the Young’s modulus, v is the Poisson’s ratio and G is the shear modulus
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model includes 38,958 elements. Table 3 lists the winding geometry parameters and
Table 4 shows the material parameters. The inner radius for cylinder is 183 mm. Figure 12
shows the fiber principal stresses at different internal pressure. Figure 13 shows the burst
specimen of composite vessel. The burst pressure for composite vessel by FEA is about
90 MPa, close to the experimental result 94 MPa.

Fig. 12 The maximum principal stresses of composite vessel in the fiber principal direction at internal pressure
(a) 40 MPa, (b) 60 MPa and (c) 80 MPa respectively

Fig. 13 Burst specimen of 74 L–
capacity composite vessel
specimen [25]
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4 Conclusions

Based on the microscopic structures of carbon fiber/epoxy composites, this paper develops a
large-scale finite element model with the hexagonal cell to study the progressive failure
properties of composites. Different from most of existing works including Xia et al. [13, 20]
and Blassiau et al. [26], all failure modes including fiber breakage, matrix damage evolution
and interface debonding are considered in this work, where Monte Carlo simulation is used for
fiber breakage, damage mechanics method is used for matrix damage and cohesive model is
used for interface debonding. We originally develop a restart analysis-based finite element
technique to predict all real-time progressive failure properties of micromechanical RVE.

From FEA, the following conclusions are obtained:

(1) Relatively small thermal residual stress due to curing appears mainly at the matrix, which
also affects the initial interface debonding to some extent.

(2) During the early stage, rapidly increased matrix cracking and interface debonding are
dominating failure modes that leads to severe stiffness degradation. During the later
stage, few fiber breakage and fiber pullout appear, marking the collapse of structures.

(3) The LLS model predicts the stress concentration on the second neighbouring fibers
around the broken fiber accurately, but overestimates that on the first neighbouring fibers
because it still neglects many factors including the matrix damage evolution and the
initiation and propagation of interface crack. In addition, the hexagonal cell model as a
more precise model leads to slightly smaller stress concentration for the same fibers
around the broken fiber than the square cell model. Finally, the composite tensile strength
predicted using the shear-lag model is consistent with the experimental result only when
the frictional shear stress is large.
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