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Abstract The microstructure of 3D braided composites is composed of three phases: braiding
yarn, matrix and interface. In this paper, a representative unit-cell (RUC) model including
these three phases is established. Coupling with the periodical boundary condition, the damage
behavior of 3D braided composites under quasi-static axial tension is simulated by using finite
element method based on this RUC model. An anisotropic damage model based on Murakami
damage theory is proposed to predict the damage evolution of yarns and matrix; a damage-
friction combination interface constitutive model is adopted to predict the interface debonding
behavior. A user material subroutine (VUMAT) involving these damage models is developed
and implemented in the finite element software ABAQUS/Explicit. The whole process
of damage evolution of 3D braided composites under quasi-static axial tension with
typical braiding angles is simulated, and the damage mechanisms are revealed in detail
in the simulation process. The tensile strength properties of the braided composites are predicted
from the calculated stress-strain curves. Numerical results agree with the available
experiment data and thus validates the proposed damage analysis model. The effects of certain
material parameters on the predicted stress-strain responses are also discussed by numerical
parameter study.
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1 Introduction

Laminated composites are being widely used in many industries because of their high
performance-weight ratio. However, poor out-of-plane properties, low damage tolerance and
high production costs have limited their application in primary loading-bearing structures. In
the past two decades, 3D braided composites have received much attention due to their
abundant advantages over the laminated composites. The distinct feature of 3D braided
composites is the integrated near-net-shape structures, which can provide outstanding
through-thickness mechanical properties. Due to these merits, 3D braided composites are
believed to have broad potential application as the primary loading-bearing structures in the
aeronautics and astronautics industries.

Before the application of 3D braided composites, a rational characterization of their
mechanical properties is essential. The spatial configuration of the braiding yarns is complex,
however, the microstructure of 3D braided composites shows a good periodicity. Therefore, a
representative unit-cell (RUC) model is generally developed to investigate the mechanical
properties of the materials and remarkable achievements have been obtained on the prediction
of stiffness and strength properties.

Zeng et al. [1] established a multiphase finite element model to determine the stress field
and tensile strength of 3D braided composites. Yu and Cui [2] predicted the stiffness and
strength properties of 3D braided composites via a two-scale finite element method. Fang et al.
[3] and Lu et al. [4] investigated the progressive damage behavior of 3D braided composites
under uniaxial tension by introducing continuum damage theory. Dong and Feng [5]
applied the asymptotic expansion homogenization method combined with the three
unit-cells model to study the nonlinear tension response of 3D braided composites. Wang et al.
[6] and Zhang et al. [7] developed the RUC-based finite element model to evaluate the strength
characterizations of 3D braided composites under complex biaxial loadings. Similar works on
damage analysis and strength prediction of braided composites have also been reported in
references [8–11].

In the above research works, the interface was not considered in the RUC models. Thus, the
interface debonding, which is a typical failure mode of 3D braided composites was ignored.
Recently, with the rapid development of finite element simulation technology and the in-depth
study of the micromechanical properties, the interface behavior of 3D braided composites has
been subjected to special concern.

Fang et al. [12] proposed a RUC involving the interface damage model to predict the
progressive damage evolution of 3D braided composites with large braiding angle. Lu et al.
[13] discussed the effect of interfacial properties on the mechanical behavior of 3D braided
composites. Xu et al. [14] developed a multi-layers micromechanical model to predict the
elastic modulus of 3D multi-phase braided composites. In their model, the interfacial mechan-
ical properties could be defined. By using X-ray tomography, Sharma et al. [15] constructed a
microstructure model to predict the elastic properties of 3D carbon/carbon composites, in
which frictional cohesive surfaces were used to model the yarn/matrix interfaces.

3D braided composites are composed of three phases: braiding yarn, resin matrix and
interface. Up to now, few attempts have been made to establish a robust numerical damage

1180 Appl Compos Mater (2017) 24:1179–1199



analysis model incorporate these three phases simultaneously with appropriate constitutive
models. Meanwhile, the difficulties of convergence during the numerical calculation caused by
severe damage of interface elements have not been studied well. In this paper, a RUC-based finite
element model, which truly reflects the microstructure of 3D braided composites, is established.
Coupling with the periodical boundary condition, the RUC is presented to simulate the damage
propagation of 3D braided composites under quasi-static tension loadings. In this RUC model, a
continuum damage model is proposed to predict damage evolution of yarns and matrix; a
damage-friction combination interface constitutive model is applied to evaluate the debonding
behavior of interface. All these constitutive models are coded by a user material subroutine
VUMATand implemented in the finite element software ABAQUS/Explicit. The whole process
of damage initiation, propagation and final failure is carried out and the damage mechanisms in
this process are revealed in detail. The effects of certain material parameters on the mechanical
properties of 3D braided composites are also investigated.

The organization of the paper is as follows. Section 2 describes briefly the establishment of
the RUCmodel of 3D braided composites. The damage evolution models of the three phases in
3D braided composites are given in section 3. The complete finite element model is described in
section 4. Section 5 discusses the numerical results and reveals the damage mechanisms in
detail. Finally, based on the results reported herein, some conclusions are drawn.

2 Unit-Cell Structural Model

3D braided composites are manufactured by braided preforms impregnated and consolidated
with resin materials. 3D braiding preform is fabricated by four-step 1 × 1 braiding technology.
Each machine cycle consists of four movement steps of yarn carriers on the machine bed. After
a machine cycle, a finite length of preform is obtained and called as a braiding pitch, denoted
by h. Owing to the complexity of the architecture, a representative unit-cell (RUC) model is
always established to study the mechanical properties of the composites. Through experimen-
tal observation, it is found by Chen et al. [16] that the braiding yarns axes remain straight and
keep surface contact with each other due to mutual squeeze. A unit-cell structural model
proposed by Xu et al. [17], which considered the contact and squeeze situation of yarns in 3D
braided composites is employed here.

Figure 1 shows the unit-cell structural model of 3D braided composites. The cross-section
shape of the braiding yarns is considered as octagon containing an inscribed ellipse. The
relationship between the major and minor radii of the ellipse, a and b, is expressed as

a ¼
ffiffiffi
3

p
bcos γ ð1Þ

where γ is the interior braiding angle of 3D braided composites. As shown in Fig. 1,W, T and h
represent the width, thickness and height of the unit-cell model respectively, and they can be
computed by

W ¼ T ¼ 4
ffiffiffi
2

p
b ð2Þ

h ¼ 8b=tan γ ð3Þ

Generally, the interior braiding angle γ is difficult to measure since the interior of the
preform cannot be observed without cutting the specimen. However, the angle of inclination of
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the yarns on the surface of composites can be measured readily. The relationship between the
braiding angle α on the surface of composites and the interior braiding angle γ can be
expressed as [16]

tanα ¼
ffiffiffi
2

p
=2

� �
tan γ ð4Þ

3 Progressive Damage Model of 3D Braided Composites

The progressive damage process can be simulated by damage model, which consists
of damage initiation criteria and damage evolution law. The damage mechanism of 3D
braided composites contains three types: yarn breaking, matrix cracking and interface
debonding.

3.1 Progressive Damage Model of Yarns and Matrix

3.1.1 Damage Initiation Criteria

3D Hashin failure criterion [18] is one of the most well-known criteria for predicting the failure
initiation of braiding yarns. In this paper, it will be adopted in the simulation. In the following
equations, the L-T-Z rectangular coordinate is employed as the local coordinate definition of
braiding yarn, where L-, T- and Z- axes indicate the longitudinal and two transverse directions.
The 3D Hashin’s failure criterion is given by

Yarn tensile failure in L direction (σL ≥ 0)

φLt ¼
σL

Ft
L

� �2

þ β
σLT

SLT

� �2

þ β
σLZ

SLZ

� �2

≥1 ð5Þ

Fig. 1 Unit-cell structural model a 3D model of unit-cell b Topological relationship of braiding yarns
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Yarn compressive failure in L direction (σL < 0)

φLc ¼
σL

Fc
L

� �2

≥1 ð6Þ

Yarn tensile and shear failure in T and Z direction (σT + σZ ≥ 0)

φT Zð Þt ¼
σT þ σZ

Ft
T

� �2

þ 1

S2TZ

� �
σ2
TZ − σTσZ

� �þ σLT

SLT

� �2

þ σLZ

SLZ

� �2

≥1 ð7Þ

Yarn compressive and shear failure in T and Z direction (σT + σZ < 0)

φT Zð Þc ¼
σT þ σZ

2STZ

� �2

þ σT þ σZ

Fc
T

� �
Fc
T

2STZ

� �2

−1

" #
þ 1

S2TZ
σ2
TZ − σTσZ

� �þ σLT

SLT

� �2

þ σLZ

SLZ

� �2

≥1 ð8Þ

In the above equations, Ft
L and Fc

L are the longitudinal tensile and compressive strengths of
braiding yarn; Ft

T and Fc
T are the transverse tensile and compressive strengths; SLT, SLZ and

STZ are the LT, LZ and TZ shear strengths, respectively.
In Eq. (5), the shear failure coefficient β (0 ≤ β ≤ 1) is applied to determine the contribution

of shear stresses on the yarn tensile failure in L direction. As pointed by Zhang et al. [9], the
strength properties of the braided composites are sensitive to this coefficient under tension
load. The inclusion of this shear coefficient can serve as a compensation of in-situ shear
strength and free-edge-effect induced premature damage.

The maximum stress criterion is adopted as matrix initiation failure criterion, namely

φMt ¼
σt1
Ft
m

				
				≥1 ð9Þ

φMc ¼
σc3
Fc
m

				
				≥1 ð10Þ

where Ft
m and Fc

m are tensile and compressive strength of matrix; σt
1 and σ

c
3 are the maximum

tensile and compressive stress of matrix.

3.1.2 Damage Evolution Model

The damage of yarns and matrix can be characterized by Murakami damage model [19]. The
damage model uses three principal damage variables to express the damage station, which is
expressed as

D ¼ ∑
i
Dini ⊗ ni i ¼ L; T ; Zð Þ ð11Þ

whereDi and ni are the principal value and principle unit vector of damage tensor, respectively.
The principal damage variables range from 0 to 1.0 according to damage station. Di = 0

represents the initial undamaged materials andDi = 1 implies the completely damaged materials.
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For yarns, the principal damage variables in L, T, and Z direction, are given by

DL ¼ max dLt; dLcð Þ ð12Þ

DT ¼ max dTt; dTcð Þ ð13Þ

DZ ¼ max dZt; dZcð Þ ð14Þ
For matrix, one has

DL ¼ DT ¼ DZ ¼ max dMt; dMcð Þ ð15Þ

In the above equations, dΙ(Ι = Lt, Lc, Tt, Tc, Zt, Zc) are the damage variables corresponding
to six damage modes of braiding yarns; dMt and dMc are the damage variables corresponding to
tension and compression damage of matrix, respectively.

The damage variable dΙ to a particular mode can be calculated by damage evolution,
defined as [20]

dΙ ¼
δ fΙ;eq δΙ;eq − δ0Ι;eq

� �
δΙ;eq δ fΙ;eq − δ0Ι;eq

� � Ι ¼ Lt; Lc; Tt; Tc; Zt; Zc;Mt;Mcð Þ ð16Þ

where δ0Ι;eq is the initial equivalent displacement at which the failure criterion is satisfied. δ fΙ;eq
is the full equivalent displacement at which the material is completely failure. They can be
computed by

δ0Ι;eq ¼
δΙ;eqffiffiffiffiffi
φΙ

p ð17Þ

δ fΙ;eq ¼
2GΙ

σΙ;eq=
ffiffiffiffiffi
φΙ

p ð18Þ

Here, φΙ is the value of damage initiation criterion, GΙ is the fracture energy density. δΙ , eq
and σΙ , eq are the equivalent displacement and stress for a failure mode, respectively. Their
expressions are similar to those given in references [4, 9] and are summarized in Table 1,
where lc is the characteristic length of the element.

For the damaged material, the effective stress is defined as

σ* ¼ 1

2
I−Dð Þ−1σþ σ I−Dð Þ−1

h i
¼ M Dð Þσ ð19Þ

Here σ* is symmetric and M(D) is a transformation matrix.
Next, the constitutive equation of the damaged material is given by

ε ¼ H Dð Þσ ð20Þ
In the above equation, H(D) is derived by the notion of energy identification.

H Dð Þ ¼ M Dð Þð ÞT : C0 : M Dð Þ ð21Þ
where C0 is the undamaged elastic tensor.
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This, in turn, leads to the damaged stiffness matrix, which is the function of the undamaged
elastic constants and the principal values of damage tensor, as shown below [21]

C Dð Þ ¼ H−1 Dð Þ ¼

b2LC11 0 0 0 0 0
bLbTC12 b2TC22 0 0 0 0
bLbZC13 bTbZC23 b2ZC33 0 0 0

bTZC44 0 0
sym bZLC55 0

bLTC66

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð22Þ

In the above equation,

bL ¼ 1−DL; bT ¼ 1−DT ; bZ ¼ 1−DZ

bTZ ¼ 2bTbZ
bT þ bZ

� �2

; bZL ¼ 2bZbL
bZ þ bL

� �2

bLT ¼ 2bLbT
bL þ bT

� �2

Cij, is the component of undamaged stiffness tensor.
After damage occurred, the yarn and matrix materials are still considered to be elastic and

the damage response of the integration points are governed by the stiffness matrix reduction
via updating damage variables given in Eq. (22).

3.2 Progressive Damage Model of Interface

The zero-thickness cohesive element is used to simulate the interface debonding in the yarn/
matrix and yarn/yarn interfaces of 3D braided composites. The traction stress and separation
displacement of the nodes on the interface are governed by traction-separation law. In general,
the interface debonding growth is likely to occur under mixed-mode loading, and damage
initiation and the corresponding reduction behavior may occur before any of the involved
traction components reach their respective allowable values. In this paper, the mix-mode
bilinear constitutive model of interface element proposed by Camanho et al. [22] is utilized.
In order to describe the damage initiation and evolution under mixed-mode loading, the
effective relative displacement, δm, is introduced as

δm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ1h i2 þ δ2

2 þ δ3
2

q
ð23Þ

Herein, the Macaulay bracket is used to indicate that the pure compressive load will not
cause any damage.

A quadratic nominal stress criterion is used to control the damage initiation

displacement, i.e. δ0m, of the interface, which is given by

t1h i
N

� �2

þ t2
S

� �2

þ t3
T

� �2

¼ 1 ð24Þ

where t1, t2 and t3 represent the normal and shear stresses, respectively. N, S and T
denote the interface tensile and shear strengths.
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A interaction power law of the energy is applied to determine the final displacement, i.e. δ fm,
of the interface, which is given by

GI

GIC

� �2

þ GII

GIIC

� �2

þ GIII

GIIIC

� �2

¼ 1 ð25Þ

where GΙ, GII and GIII are current energy release rates of mode I, II and III while GΙC, GIIC and
GIIIC are critical fracture energies of mode I, II and III, respectively.

Defining the maximum relative displacement, δmax
m ¼ max δmax

m ; δm

 �

, the constitutive
equation for interface element without consideration of friction is expressed as

ts ¼ Dsrδr s ¼ 1; 2; 3 ; r ¼ 1; 2; 3ð Þ ð26aÞ

Dsr ¼

δsrK
δsr 1−dð ÞK

δsr 1−dð ÞK þ Kdδs1
h i

0
δs1δ1rK

8>>>>><
>>>>>:

δmax
m ≤δ0m

� �
δ0m < δmax

m < δ fm; δ1 > 0
� �
δ0m < δmax

m < δ fm; δ1≤0
� �

δmax
m ≥δ fm; δ1 > 0

� �
δmax
m ≥δ fm; δ1≤0

� �
ð26bÞ

where K represents the initial stiffness of the interface and δij is the Kronecker operator. The
damage evolution function d, is expressed by

d ¼ δ fm δmax
m −δ0m

� �
δmax
m δ fm−δ

0
m

� � d∈ 0; 1½ � ð27Þ

In this paper, the influence of the friction force on the interface response is considered. The
traction on the interface element is the sum of traction τs determined by Eq. (26) and friction τf
generated on the damaged interface, namely [23]

τ ¼ τ s þ τ f ð28Þ
The detail expression of friction force is expressed as follows.

τ f 1 ¼ 0

τ fr ¼
0
0

−μKdδ1δr= δrj j
−μKδ1δr= δrj j

8>><
>>:

δ1≥0ð Þ
δmax
m ≤δ0m; δ1 < 0

� �
δ0m < δmax

m < δ fm; δ1 < 0
� �

δmax
m ≥δ fm; δ1 < 0

� � r ¼ 2; 3ð Þ

8>>>><
>>>>:

ð29Þ

where μ is the interface friction coefficient.

4 Finite Element Model

4.1 Periodic Boundary Conditions and Finite Element Meshing

3D braided composites are regarded as periodic structures consisting of periodic array of unit-
cells. In order to obtain more reasonable micro-mechanical response, the unified periodical
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displacement boundary conditions proposed by Xia et al. [24] will be employed to combine
with the damage simulation model in this paper. The general formulas of the boundary
conditions are given as:

ui ¼ εikxk þ u*i ð30Þ

ujþ
i ¼ εikx

jþ
k þ u*i ð31Þ

uj−
i ¼ εikx

j−
k þ u*i ð32Þ

ujþ
i − uj−

i ¼ εik x jþk − x j−k
� � ¼ εikΔx jk ð33Þ

In Eq. (30), εik is the average strain of the unit-cell; u*i is the periodic part of the
displacement components on the boundary surfaces and it is generally unknown. For a
unit-cell, the displacements on a pair of parallel opposite boundary surfaces (denoted
as Bj+^ and Bj−^) can be expressed as in Eq. (31) and Eq. (32). Eq. (33) represents

the difference between Eq. (31) and Eq. (32). SinceΔx jk are constants for each pair of boundary
surfaces, once εik is specified, the right side of Eq. (33) becomes constant. Eq. (33) does not
contain the periodic part of the displacement components and can be carried out easily in the
finite element analysis by setting the nodal displacement using linear constraint equations.

In order to satisfy the periodicity, the node distributions in the opposite paired
faces of the unit-cell should be identical. The map meshing method is used in the
surface mesh and the periodic boundary conditions are imposed on the paired nodes by a
FORTRAN pre-compiler code.

Due to the complexity of the microstructure of 3D braided composites, mesh generation is
an extremely difficult task when the interface is considered. Herein, 3D solid tetrahedral
element (C3D4) available in ABAQUS is adopted for the discretization of yarns and matrix
because of its geometry adaptability. Actually, it is difficult to generate zero-thickness cohesive
elements in complicated microstructure directly by general finite element software or mesh
generation tools. Therefore, another FORTRAN pre-compiler code involving the cohesive
element generation is written and implemented to modify the INP model file in ABAQUS.
Through this way, the zero-thickness cohesive elements (COH3D6) in the yarn/matrix and
yarn/yarn interfacial zones are introduced in the unit-cell model of 3D braided composites. The
finite element mesh of unit-cell of 3D braided composites is shown in Fig. 2.

Table 1 Equivalent displacement and stress of different failure modes

Failure modes Equivalence displacement Equivalence stress

L tension (σ11 ≥ 0) δLt;eq ¼ lc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε11h i2 þ βε12

2 þ βε13
2

q
lc(〈σ11〉〈ε11〉 + βσ12ε12 + βσ13ε13)/δLt , eq

L compression (σ11 < 0) δLc , eq = lc〈−ε11〉 lc〈−σ11〉〈−ε11〉/δLc , eq
T tension (σ22 ≥ 0) δTt;eq ¼ lc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε22h i2 þ ε122 þ ε232

q
lc(〈σ22〉〈ε22〉 + σ12ε12 + σ23ε23)/δTt , eq

L compression (σ22 < 0) δTc;eq ¼ lc
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−ε22h ip

2 þ ε122 þ ε232 lc(〈−σ22〉〈−ε22〉 + σ12ε12 + σ23ε23)/δTc , eq
Z tension (σ33 ≥ 0) δZt;eq ¼ lc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε33h i2 þ ε132 þ ε232

q
lc(〈σ33〉〈ε33〉 + σ13ε13 + σ23ε23)/δZt , eq

Z compression (σ33 < 0) δZc;eq ¼ lc
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−ε33h ip

2 þ ε132 þ ε232 lc(〈−σ33〉〈−ε33〉 + σ13ε13 + σ23ε23)/δZc , eq
Matrix tension (σ1 ≥ 0) δMt , eq = lc|ε1| lc|σ1||ε1|/δMt , eq

Matrix compression (σ3 < 0) δMc , eq = lc|ε3| lc|σ3||ε3|/δMc , eq
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In the model, the element size keeps small at the edges intersecting braiding yarns and resin
matrix, and relative small element size is also required to obtain more accurate stress
distribution, especially near the intersection boundaries of the RUC. In this study,
the quality of the mesh is ensured by performing a mesh sensitivity analysis and
checking the element distortion.

4.2 Material Properties of Constituents

The material response of the constituents directly influences the macro-mechanical behavior of
the braided composites. In this work, the resin matrix is assumed to be isotropic; the braiding
yarns containing thousands of fibers and matrix are modeled as transversely isotropic
material in the local material coordinate system. The local material coordinate systems
1–2-3 are defined for the braiding yarn. Local 1-axis follows the yarn centerline and
local 3-axis is in the upright plane perpendicular to the x-y plane of the global coordinate, as
shown in Figs. 1a and 3. In Fig. 3, 2-axis is removed for clarity. The stiffness and strength
properties of the braiding yarns can be calculated using the rule of mixture given by Chamis
[25].

4.3 Homogenization of Unit-Cell

To obtain the macroscopic stress-strain curve of the composites, the homogenization approach
is employed. The stress-strain relationship of a unit-cell can be computed by

σi ¼ Eijε j ð34Þ
Once the global strain εij is applied in the finite element analysis by Eq. (33), the

stress distribution of the unit-cell can be obtained, and the global stress σij can be
determined by

σij ¼ 1

V
∫
V
σijdV ð35Þ

Fig. 2 Finite element mesh of unit-cell a Unit-cell mesh b Interface mesh
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The global stresses can be related to the ratios of resultant traction forces on the boundary
surfaces to corresponding areas of the boundary surfaces, namely

σij ¼
Pið Þ j
S j

no summation over jð Þ ð36Þ

where (Pi)j is the ith resultant forces on the jth boundary surface and Sj is the area of the jth
boundary surface.

4.4 Damage Analysis Process

For the explicit progressive damage analysis of the unit-cell model subjected to tensile loads,
the simulation process consists of two parts: the stress calculation and damage
analysis. In order to conduct this analysis process, the constitutive model of each
constituent, the failure criteria and the damage evolution model are implemented by
using the user-defined material subroutine (VUMAT) available in ABAQUS with
FORTRAN code. During each time increment, ABAQUS transmits the information
of strain increments to VUMAT. With the constitutive models, the stress level and
damage state in each constituent of the unit-cell can be obtained. Once the failure
criterion is satisfied, the material properties reduction is carried out by updating the
damage variables. The stresses at the integration points of elements are updated by
using the reduced stiffness matrix. Finally, the updated state variables are returned to
ABAQUS for next step analysis. Figure 4 presents the flow chart of the damage
analysis process.

Fig. 3 Material orientation
definition of a braiding yarn
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5 Results and Discussion

In order to verify the proposed damage simulation method and reveal the damage mechanisms
of 3D braided composites under quasi-static axial tension, the tensile experiment results of two
specimens with typical braiding angles (specimen 1 is 19.2o and specimen 2 is 36.6o) from
reference [26] are selected for comparisons. The braiding preforms of specimens herein are
fabricated by four-step 1 × 1 procedure. The finite element model of specimen 1 consists of 31,
943 nodes, 129, 686 C3D4 elements and 14, 388 COH3D6 elements; the finite element model
of specimen 2 consists of 11, 143 nodes, 40, 811 C3D4 elements and 5, 926 COH3D6
elements. Table 2 gives the geometric parameters of the specimens and the structure param-
eters of the unit-cell models. The material properties of all the constituents are listed in Table 3.

5.1 Tensile Stress-Strain Curves

Figure 5 illustrates the comparison of experimental and predicted stress-strain curves of two
specimens with typical braiding angles under axial tension loads. Note that due to the brittle
breaking characteristics of carbon-fiber reinforced braided composites, the experimental stress-
strain curves stop after reaching the peak stresses. As shown in Fig. 5a, the computed stress-
strain curves of specimen 1 with a small braiding angle keep approximately linear response
before reaching the peak stresses and this linear feature is consistent with the experimental
data. After reaching the peak stresses, the computed curves decrease rapidly thus the material
loss the load-bearing capacity suddenly. As shown in Fig. 5b, the computed stress-strain curves
of specimen 2 with a large braiding angle present some extent nonlinear feature before
reaching the peak stresses. The nonlinear feature is due to the effects of local damage
propagation. After reaching the peak stresses, the computed curves decrease gradually. The
accumulation of various damage modes leads to the final failure of the material. Actually, once
the stress-strain curves reach the peak stresses, the test specimens would break immediately.
However, for finite element calculation, the extended unloading process observed in the
computed stress-strain curves is a numerical technique, which can promote the numerical
stability and display the continuing damage evolution process of the composites.

Table 4 presents the comparison of predicted tensile strength and failure strain with
experiment data. For specimen 1, the tensile strength and fracture strain predicted by the
unit-cell model with interface are larger than that without interface. For specimen 2, the
prediction results obtained from these two models are very close. However, it can be found
that the numerically predicted tensile strengths are always larger than the experiment data. This
can be attributed to the initial geometrical and manufacturing defects, such as voids, micro-
crack, fiber misalignment, and etc., which are not considered in the present meso-scale finite
element models. Overall, the predicted results fit with the experimental data, which
indicates that the proposed damage analysis model is reasonable. It deserves mention-
ing that even the meso-scale models with and without interface both provide reasonable stress-
strain response, the interface debonding can only be simulated thoroughly by the RUC model
considering interface.

5.2 Damage Evolution Mechanism Analysis

During the simulation, the damage mechanisms in 3D braided composites, such as yarn
breaking, matrix cracking and interface debonding, can be captured by the proposed modeling
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strategy. For specimen 1 with a small braiding angle, the main failure mode of braiding yarn is
L tensile failure; while for specimen 2 with a large braiding angle, the main failure mode is
yarn T compressive shear and Z tensile shear failure. Herein, only the damage evolution of
interface debonding, yarn L tensile failure and matrix cracking are noted for specimen 1, as

Fig. 4 Flow chart of numerical analysis process

Table 2 Geometric parameters of the specimens and the structure parameters of the unit-cell models

Specimen Yarn Dimensions (mm) α(o) γ(o) W(mm) h(mm) Vf(%)

Specimen 1 12 K 20.6×6.32×250 19.2 26.2 1.904 5.473 60.69
Specimen 2 6 K 20.6×8.58×250 36.6 46.4 1.662 2.239 52.04
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shown in Fig. 6, while only the damage evolution of interface debonding, yarn T compressive
shear failure andmatrix cracking are noted for specimen 2, as shown in Fig. 7. It is observed that
the stress concentration is serious in the interlaced zones of braiding yarns under axial tension,
and thus the micro-cracks and damage always generate in these regions. Therefore, in order to
clearly demonstrate the damage distribution and development in the braiding yarns, the damage
evolution process in one-directional yarns are given here, as shown in Fig. 6b and 7b.

For specimen 1, the main failure modes are yarn L tensile failure, yarn Z tensile shear
failure, matrix cracking and interface debonding. At εz ¼ 0:20%, the interface debonding
occurs first in the yarn/yarn contact zones near the top and bottom surfaces of the unit-cell.
Then the interface debonding initiates in the yarn/yarn contact zones around the external
boundaries of the unit-cell, as shown in Fig. 6a. With the increase of the axial tensile load, the
interface damage gradually extends in the yarn/yarn contact zones inside the unit-cell and the
extension speed gradually increases. At εz ¼ 0:57%, yarn L tensile failure starts in the braiding
yarn and stimulates the yarn Z tensile shear failure and initial damage of the matrix, as shown in
Fig. 6b, c. At εz ¼ 0:60%, the stress-strain curve reaches the peak value. At this point, except
for the interface damage, the number of damage elements in the braiding yarns and matrix is
relatively small. Thereafter, all the damage modes spread rapidly, especially the yarn L tensile
failure, yarn Z tensile shear failure andmatrix damage, which lead to a sudden drop of the stress-
strain curve and the material exhibits brittle fracture characteristics. After εz ¼ 0:60%, due to
the failure of yarns, resin matrix bears greater amount of loads. Therefore, the number of
damaged elements of matrix cracking ascends faster than other damage modes.

For specimen 2, the main failure modes are yarn T compressive shear failure, yarn Z tensile
shear failure, matrix cracking and interface debonding. At εz ¼ 0:35%, the interface
debonding also occurs first in the yarn/yarn contact zones near the top and bottom surfaces

Fig. 5 Comparison of experimental and predicted results under axial tension loads a Specimen 1 b Specimen 2

Table 4 Comparison of predicted results with experiment data

Specimen Tensile strength (MPa) Failure strain (%)

Predictiona Predictionb experiment data Predictiona Predictionb experiment data

Specimen 1 459.1 449.0 425 0.60 0.58 0.60
Specimen 2 120.6 121.2 99 0.91 0.89 0.59

a indicates with interface
b indicates without interface
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of the unit-cell, as shown in Fig. 7a. Then the interface debonding mainly arises in the yarn/
yarn contact zones inside the unit-cell model, and the interface damage progressively extends
along the fiber axial and transverse directions and the extension rate is steady. Damaged
elements are less in the yarn/matrix contact zones. Seen from Fig. 7b, the yarn T compressive
shear failure first initiates in the interlaced regions of braiding yarns and propagates along the

Fig. 6 Damage evolution process of Specimen 1 under different axial strains a Interface debonding b Yarn L
tensile failure c Matrix cracking

1194 Appl Compos Mater (2017) 24:1179–1199



transverse direction of the braiding yarn, and the propagation speed is fast. The matrix damage
first appears in the intersecting edges of the braiding yarn and matrix and expended gradually
in the intersection regions, as shown in Fig. 7c. With the increase of tensile load, various
failure modes occur, propagate and couple with each other progressively, which lead to the
nonlinear feature of the stress-strain curve. At εz ¼ 0:91%, the stress-strain curve reaches the
maximum value. Compared to specimen 1, the value of uniaxial tensile strength of specimen 2
is relatively small. Under further loading, all kinds of damage modes extend steadily and the
stress-strain curve gradually decreases. The material maintains a certain load-bearing capacity
and shows certain ductility characteristics.

5.3 Parameter Study

Selecting proper material parameters to correctly represent the mechanical response of 3D
braided composites is a very difficult task in the finite element modeling. In the above section,
the validity of constituents’ material parameters in numerical simulation is proved by compar-
isons with experimental results. In this section, to understand how these keymaterial parameters
such as shear failure coefficient, interface strength and fiber volume fraction, contribute to the
effective stress-strain curves, a parametric study is conducted. Note that the change of fiber

Fig. 7 Damage evolution process of Specimen 2 under different axial strains a Interface debonding b Yarn LT
tensile shear failure c Matrix cracking
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volume fraction in the RUC model is realized by setting different yarn packing factors within a
reasonable range.

5.3.1 Shear Failure Coefficient

Figure 8 displays the effect of shear failure coefficient on the predicted stress-strain curves.
From Fig. 8, it is seen that all the predicted stress-strain curves meet well with each other in
modulus but give different strength prediction values. In Fig. 8a, the predicted strength
decreases sharply as the shear failure coefficient β increases. In Fig. 8b, the predicted strengths
are nearly same when β = 0 and β = 0.5 but very small when β = 1.0. This is due to the
influence of shear stress on the axial breaking of braiding yarns. For 3D braided composites,
the braiding yarns are inclined to the z axis of composites with interior braiding angle.
Relatively larger shear stresses are generated in the braiding yarns under axial tension load.
With the shear failure coefficient β increases, larger shear stresses will be more likely to cause
fiber breakage of braiding yarns. For 3D braided composites with small braiding angle, the
tensile strength is controlled by yarn L tensile failure and thus larger shear failure coefficients
will result in lower strength. For 3D braided composites with large braiding angle, when β = 0
and β = 0.5, the main failure modes are yarn T compressive shear and Z tensile shear failure

Fig. 8 Effect of shear failure coefficient on predicted stress-strain curves a Specimen 1 b Specimen 2

Fig. 9 Effect of interface strength on predicted stress-strain curves a Specimen 1 b Specimen 2
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without any yarn L tensile failure. When β = 1.0, yarn L tensile failure occurs and results in
low strength prediction value.

It can be concluded that the shear failure coefficient plays a key role on the stress-strain
response prediction of 3D braided composites and different coefficients can be used to
calculate the contribution of shear stresses to the axial tensile failure of braiding yarns.

5.3.2 Interface Strength

In this section, the strength parameters of interface in Table 3 are termed as base strength S0. In
order to study the effect of interface strength, three different strengths, 0.5S0, S0 and 2.0S0, are
used. Figure 9 presents the effect of interface strength on the predicted stress-strain curves of
3D braided composites. From Fig. 9, it could be observed that weaker interface strengths lead
to lower predicted strengths of the composites and vice versa. Herein, for both specimen 1 and
2, the interface debonding would initiate earlier if the interface strength is weaker and stimulate
other types of damage in yarns and matrix. However, since the effective stress-strain behavior
of 3D braided composites is mainly determined by the braiding yarns other than the interface,
provided the interface strength is not too low, the effect of interface strength on the predicted
stress-strain response is not very significant. Due to the different damage mechanisms of
braiding yarns under axial tension load, the interface strength effect on specimen 2 with a large
braiding angle is more remarkable than that on specimen 1. When the interface strength
increases, the damage of interface elements becomes less and even no debonding damage
emerges before the fracture of the specimen.

Moreover, it should be pointed out that although the effect of interface strength on the
predicted stress-strain response is not evident, it has significant influence on the damage evolution
of interface elements and thus it must be considered in the meso-scale finite element modeling.

5.3.3 Fiber Volume Fraction

Fiber volume fraction is another important structural parameter which controls the overall
mechanical properties of 3D braided composites. Figure 10 illustrates the effect of fiber
volume fraction on the predicted stress-strain curves. From Fig. 10a, it is observed that the
fiber volume fraction has vital influence on the tensile modulus, strength and failure strain of
3D braided composites with small braiding angle. The tensile modulus and strength increase

Fig. 10 Effect of fiber volume fraction on predicted stress-strain curves a Specimen 1 b Specimen 2
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gradually with the increase of fiber volume fraction. In contrast, the failure strain decreases as
the fiber volume fraction increases. Similarly, Fig. 10b shows that for 3D braided composites
with large braiding angle, the tensile modulus increases while the failure strain decrease as the
fiber volume fraction increases. However, the effect of fiber volume fraction on the predicted
strength is not very evident. This is because that the strength of 3D braided composites with
large braided angle is mainly determined by the transverse strength and shear strength of
braiding yarns, which are relatively less influenced by the variation of fiber volume fraction.

In general, the effects of fiber volume fraction on the tensile modulus and failure strain of 3D
braided composites are always significant. However, for the effect on the predicted strength, it is
obvious when the braiding angle is small and not evident when the braiding angle is large.

6 Conclusions

In this paper, a RUC-based finite element model including three phases: braiding yarn, matrix
and interface, is established to simulate the damage evolution and predict the tensile properties
of 3D braided composites under quasi-static axial tension. 3D Hashin criterion and maximum
stress criterion with a gradual degradation scheme are applied to predict the damage evolution
of yarns and matrix, while a damage-friction combination interface constitutive model is
proposed to capture the interface debonding behavior. A user-material subroutine (VUMAT)
involving all the damage models of constituents is coded in the finite element software
ABAQUS/Explicit. Two specimens with typical braiding angles are selected to verify the
proposed modeling strategy. The whole process of damage evolution of 3D braided compos-
ites under quasi-static axial tension is simulated and the damage mechanisms are revealed in
the simulation process. According to the simulation results, the main failure modes of 3D
braided composites with a small braiding angle are yarn L tensile failure, yarn Z tensile shear
failure, matrix cracking and interface debonding; the main failure modes of the composites
with a large braiding angle are yarn T compressive shear failure, yarn Z tensile shear failure,
matrix cracking and interface debonding. By adopting the averaging method, the effective
stress-strain curves are predicted, from which the ultimate strength and failure strain are
obtained. The numerical results show good agreement with the available experimental results
and the effectiveness of the damage simulation model is verified. In addition, the effects of
shear failure coefficient, interface strength and fiber volume fraction on the macroscopic stress-
strain response of 3D braided composites are discussed in detail. The numerical results may be
helpful for understanding the damage mechanisms of 3D braided composites and optimizing
the structural design.
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