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Abstract A new parameterized finite element model, called the Full-cell model, has
been established based on the practical microstructure of 2.5D angle-interlock woven
composites. This model considering the surface layer structure can predict the me-
chanical properties and estimate the structural performance such as the fiber volume
fraction and inclination angle. According to introducing a set of periodic boundary
condition, a reasonable overall stress field and periodic deformation are obtained.
Furthermore, the model investigates the relationships among the woven parameters
and elastic moduli, and shows the structural variation along with the corresponding
woven parameters. Comparing the results calculated by FEM with the experiments,
the veracity of calculation and reasonability based on the Full-cell model are con-
firmed. In the meantime, the predicted results based on the Full-cell model are more
closed to the test results compared to those based on the Inner-cell model.

Keywords 2.5Dwoven resin composites . Microstructure . Finite elementmodel . Periodic
boundary conditions . Geometric characteristics . Mechanical properties

1 Introduction

In recent years, 2.5D woven resin composites have been significant attracted
researcher s ’ a t ten t ion in advanced eng ineer ing , owing to the i r good
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comprehensive mechanics performance. Although the structure is relatively com-
plex in comparison with the laminate composites, 2.5D woven composites pro-
vides more advanced properties in the fabric plane and higher delamination
resistance than laminates [1, 2]. Therefore, it is of great important to study the
microstructure of this class of woven composites so that the mechanical proper-
ties are accurately predicted [3].

Until now, some numerical analysis methods have been proposed based on the
structure of textile composites. Hallal and Younes [4] proposed an analytical model,
called three stages homogenization method, to predict the elastic properties of 2.5D
interlock composite. Later, Zheng [5] and Qiu [6] predicted the elastic modulus of 2.5D
woven composites based on the selective averaging method. The representative volume
element (REV) is first divided into arrays that are decomposed into slices and the iso-
stress and iso-strain assumption were used in these slices. Ultimately, the mechanical
properties were obtained by the iso-strain assumption once more. Jiang et al. [7]
studied the effective modulus of 2D textile composites using a stress and strain
averaging procedure. The cell was initially divided into many sub-cells and an aver-
aging was conducted again by assuming uniform stress distribution in each sub-cell to
obtain the effective stress and strain of the whole cell. Ishikawa and Chou [8–10]
proposed first the bridging model, which was used to analyses the elastic behaviors of
2D woven composites. Tan et al. [11] proposed a new numerical method named as
XYZ-model according to a mixed iso-stress and iso-strain to predict the thermo-elastic
properties of 3D woven composites. Sankar and Marrey [12] proposed the selective
averaging method based on iso-stress assumption to predict the thermo-elastic proper-
ties of textile composites.

Finite element method (FEM) has been also used to estimate the mechanical proper-
ties of textile composites. Lu et al. [13, 14] studied the failure behaviors of 2.5D textile
composites based on the unit cell model and the progressive damage model calculated by
FEM were conducted to predict the on-axis and off-axis tensile strength of this class of
material. According to the same method, Li and Lu [15, 16] predicted the effective
elastic properties of 3D four-directional braided composites based on a new three-
dimensional finite element model. Fang [17] established a new damage evolvement
model according to Murakami-Ohno damage theory to predict the uniaxial tensile
behavior of 3D four-directional braided composites. Dong [18] studied the stiffness,
strength and damage extended issues of 2.5D woven composites based on commercial
finite element analysis software ANSYS.

At present, although several works have analyzed the mechanical properties of 2.5D
textile composites by FEM, most of the models only took inner cell into consideration,
which inevitable introduces error. Meanwhile, the corresponding mechanical properties
of 2.5D woven composites based on finite element analysis are relatively limited and
the reasonable periodic boundary conditions for the periodic cell also need to be
studied.

In the first part of this work, a realistic parameterized finite element model of 2.5D
angle-interlock woven composites considering the outmost layer structure is established.
And then the periodic boundary conditions are elaborately given. The validation of the
FEM will be further verified by predicting the mechanical properties and the influence of
the fiber volume fraction and the inclination angle on the elastic properties of this material
are investigated in detail. Additionally, based on the FEM, the geometric characteristics of
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the unit cell are analyzed. Finally, comparison validation between experimental data and
predicted results is performed.

2 Woven Fabric Structure

In order to improve the simulation precision, it is necessary to investigate the actual
microstructure of 2.5D angle-interlock woven composites. Thus, optical photomicro-
graphs of cross sections of composites manufactured by RTM technology were obtained
to investigate the configuration of fabric yarns. A typical photomicrograph of 2.5D
woven composites (T300/QY8911-IV) was illustrated in Fig. 1. From Fig. 1a, it can be
seen that the cross-sectional configurations of weft yarn are diversity and it can be
artificially divided into four categories, namely the end weft, the deformed end weft,
middle inner weft and middle inner weft. Moreover, the undulations of the warp yarn are
significant difference and hence, the warp yarns are defined by two various types: the
outer warp and the inner warp, respectively. Figure 1b illustrates that the weft yarn is
quasi-straight shape and the cross-sectional configuration of the warp yarn is closed to
rectangular shape. Interesting in this structure given in Fig. 1, it is difference from the
structures shown in the previous research where the difference between the inner and
outer layer was neglected so that the finite model only took the inner cell into account.
However, owing to the relatively large differences between the inner and outer layer, it is
reasonable to consider the outer structure and establish a more precise finite element
model to predict the mechanical properties of 2.5D braided composites. Additionally,
since the characteristics of 3D textile structure, the microstructure naturally possesses the
smallest repeatable unite (as shown in Fig. 2) which merely considers the inner cell.
Therefore, a new model called Full-cell finite element model is proposed based on the
following assume:

①A rectangular and two anti-quadratic curve shapes are selected to describe the cross-
sections of warp and weft yarns with the interaction in the composites, respectively. ②The
weft yarn is assumed to be straight but the outline of the warp yarn is composed of two parts: a
quadratic curve in the weft yarn regions depending on the configuration of the weft yarn, and a
straight line in the rest part representing the tightening effect in the braiding process. ③The
yarn is regarded as unidirectional composite composed of fiber and matrix where the interface
between fiber and matrix is ideal.

(a) Longitudinal cross-section (b) Transverse cross-section

Fig. 1 Cross-sectional photomicrographs of actual 2.5D woven composites (T300/QY8911-IV)
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Additionally, the sizes of the representative unit cell without the outer structure can be
obtained from the woven parameters, while the cross-sections of tows can be measured from
the microscopic observation. The rest parameters, as illustrated in Figs. 2 and 3 (In these
images, the axes x, y, z are defined as longitudinal, transverse and thickness direction), can be
calculated as follows:

& The boundary dimensions of the inner cell

Lx ¼ 10 N f −1
� �

=Mw ; Ly ¼ 10N j=M j ð1Þ
where Lx and Lyare the longitudinal and transverse length (mm), respectively. Nf

means the number of weft yarn at the same height in which Nf=3. Nj means the
number of warp yarn in the transverse direction, in which Nj=2. Mj. and Mw

represent the warp and weft arranged density, in which Mj=10 (tows/cm) and
Mw=3.5 (tows/cm).

Fig. 2 Microstructure of 2.5D angle-interlock woven composites without the outer layer structure

Fig. 3 Illustration of the geometric relation in the inner structure (Local amplification of Fig. 2)

32 Appl Compos Mater (2016) 23:29–44



& The cross-sectional sizes of the warp yarn

Aj ¼ T

1000ρP j
;W 1 j ¼ 10

M j
; W 2 j ¼ Aj

W 1 j
ð2Þ

where Aj is the cross-sectional area of warp yarn (mm2). T is the linear density of yarns
(g/1000 m). ρ is the material density (g/cm3). Pj is the packing factor of fiber in warp yarn.

& The cross-sectional sizes of the weft yarn and dip angle

Aw ¼ T

1000ρPw
;W 2w ¼ Lz− Nh þ 1ð ÞW 2 j

Nh−2
ð3Þ

where Aw is the cross-sectional area of weft yarn (mm2). Lz is the height in the z direction.

In order to obtain the width of weft yarn W2w and the dip angle of the straight segment of
the warp yarn θ. A series of equations were given in Eqs. 4~8. Furthermore, the configuration
of the weft yarn is assumed quadratic curve presented as follows:

z ¼ ax2 þ bxþ c ð4Þ
Firstly, a condition of the first-order continuous in point C (shown in Fig. 3) must be ensure

the smooth transition in that point where the two curves are connected.

z0jx¼W 1w=2
¼ −tanθ ¼ 2a˙

W 1w

2
ð5Þ

where θ is the dip angle. In addition, the dip angle can also be described by Eq. 6.

tan θ ¼ W 2 j þW 2w þW 2 jcos θ

Lx=2−W 1w−W 2 jsin θ
ð6Þ

By Eq. 6, the dip angle can be obtained by the bisection method on the condition of the
known W1w. Furthermore, according to the continuity condition in point A and C, another
Eq. 7 can be obtained.

c ¼ W 2 j

2
þW 2w;

W 2 j þW 2w

2
¼ a

W 1w

2

� �2

þ b
W 1w

2

� �
þ c ð7Þ

Finally, the configuration of weft yarn is changed by adjusting W1w to make sure that the
area of weft yarn is equal to Aw.

4

Z
W 1w=2

0
ax2 þ bxþ c−

W 2 j þW 2w

2

� �
dx ¼ Aw ð8Þ

Therefore, the shape parameters (W1w, a, c) and dip angle θ can be calculated according to
simultaneous Eqs. 4~8. Ultimately, the Inner-cell model shown in Figs. 2 and 3 can be
established by the above parameters, as shown in Fig. 4.

The Full-cell model can be then established based on the Inner-cell model which
can be obtained by mentioned method. In my view, the reason for formatting this type
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of complex microstructure is due to the influence of molding pressure which leads to
the fact that the outer weft yarn deviate the center line of the inner weft yarn.
Figure 5 illustrates the forming process of 2.5D woven composites based on RTM
technology. From Fig. 5, it can be clearly seen that the outer weft yarn is squeezed
deviated from the center line and the configuration of that is determined by three
aspects: the outermost layer warp yarn (closed to horizontal) and the two secondary
layer warp yarns which are upward or downward extension. Similarly, the middle
inner or outer weft yarn is generated by four warp yarns: two upward warp yarns and
two downward warp yarns. To sum up, based on the assumptions, the sizes calculated
by braided parameters and the Inner-cell model, a new model with outer cell can be
established in this work as illustrated in Fig. 6.

Fig. 4 Microstructure finite element model of 2.5D woven composites without outer cell

1#wrap yarn

Adding Pressure Adding Pressure Adding Pressure
RTM

Generated by squeezing

Fig. 5 Molding process of 2.5D woven composites based on RTM technology
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3 Boundary Conditions of the FEM

Woven compoistes can be envisaged as a periodical array of the RVEs. In order to assure
forces continuity and displacements compatibility of the opposite faces of the representative
volume unit cell (RVC) with/ without the outer cell, the periodic boundary conditions (BCs)
should be imposed in this simulation. Additionally, the periodic conditions of the inner RVC is
more complicated than that of the Full-Cell model owing to taking the extra conditions in Z
direction into account. Thus, the periodic boundary conditions for the inner RVC considering
six independent macroscopic deformational cases (εx, εy, εz, γxy, γxz, γxz) are studied as
follows.

Suquet [19] in 1987 stated that for any parallelepiped RVC models, the periodicity can be
expressed as Eq. 9 on the boundary ∂V.

ui ¼ εikxk þ u*i ð9Þ

where εik is the average strain. ui
* is the periodic part of the displacement items on the

boundary surfaces but unfortunately, it is generally unknown. Xia [20] in 2003
proposed a more explicit form of periodic boundary conditions based on the above
general expression. This is for any parallelepiped RVC models, such as a cubic
structure, the following unified periodic boundary conditions are obtained:

ujþ
i x; y; zð Þ−uj−

i x; y; zð Þ ¼ c ji i; j ¼ 1; 2; 3ð Þ ð10Þ

where c1
1, c2

2 and c3
3 correspond to the normal deformations, whereas the other three

pairs of constants, c1
2(c2

1), c1
3(c3

1) and c2
3(c3

2) correspond to the shear deformations.
To describe Eq. 10 in the FEM software using, the periodic boundary conditions

are achieved by using the discrete nodes which exist in the opposite surfaces, edges
and vertices of the cubic RVC model. All of the constraint equations applied in the
FEM software will be given as followed in accordance with the cubic structure as
shown in Fig. 7.

Fig. 6 Full-Cell finite element model of 2.5D angle-interlock woven composites
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& For three groups of the opposite surfaces:
I. the opposite surfaces perpendicular to X, Y and Z axis:

ujx¼Lx=2
−ujx¼−Lx=2 ¼ Lxεx

vjx¼Lx=2
−vjx¼−Lx=2 ¼ 0

wjx¼Lx=2
−wjx¼−Lx=2 ¼ 0

8<
: ð11Þ

ujy¼Ly=2
−ujy¼−Ly=2 ¼ Lyγxy

vjy¼Ly=2
−vjy¼−Ly=2 ¼ Wyεy

wjy¼Ly=2
−wjy¼−Ly=2 ¼ 0

8<
: ð12Þ

ujz¼Lz=2
−ujz¼−Lz=2 ¼ Lzγxz

vjz¼Lz=2
−vjz¼−Lz=2 ¼ Lzγyz

wjz¼Lz=2
−wjz¼−Lz=2 ¼ Lzεz

8<
: ð13Þ

& For 12 edges divided into three types: ①AD, BC, FG and EH parallel to X axis. ②CD,
BA, EF and HG parallel to Y axis.

③HD, EA, FB and GC parallel to Z axis.
I. the edges parallel to X axis

ujBC−ujAD ¼ Lyγxy
vjBC−vjAD ¼ Lyεy
wjBC−wjAD ¼ 0

8<
: ð14Þ

ujFG−ujAD ¼ Lyγxy þ Lzγxz
vjFG−vjAD ¼ Lyεy þ Lzγyz
wjFG−wjAD ¼ Lzεz

8<
: ð15Þ

ujEH−ujAD ¼ Lzγxz
vjEH−vjAD ¼ Lzγyz
wjEH−wjAD ¼ Lzεz

8<
: ð16Þ

For the other edges, the corresponding periodic boundary conditions can be obtained
refer to Eqs. 14~15.

Fig. 7 Cuboid-shaped unit and its geometric dimensions
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& For eight vertices: the constraint equations are established between the vertex D and the
rest of vertices.

I. the vertices of E, F, G and D

ujE−ujD ¼ Lxεx þ Lzγxz
vjE−vjD ¼ Lzγyz
wjE−wjD ¼ Lzεz

8<
: ð17Þ

ujF−ujD ¼ Lxεx þ Lyγxy þ Lzγxz
vjF−vjD ¼ Lyεy þ Lzγyz
wjF−wjD ¼ Lzεz

8<
: ð18Þ

ujG−ujD ¼ Lyγxy þ Lzγxz
vjG−vjD ¼ Lyεy þ Lzγyz
wjG−wjD ¼ Lzεz

8<
: ð19Þ

For the other vertices, the corresponding periodic boundary conditions can be obtained
refer to Eq.

According to the discrete method mentioned above, it is convenient to adopt Eq. 11~29
in a finite element procedure, instead of applying Eq. 10 directly as the boundary
conditions. In addition, It is assumed that the average mechanical properties of a RVC
are equal to the average properties of 2.5D woven composites. The average stresses σij in
the case of given strains εij are defined by

σi j ¼ 1

V

Z
V
σi jdV ð20Þ

By using the Gauss integral and equilibrium equation σij,j=0, the average stress can be
expressed as

σi j ¼ 1

V

Z
S
σikx jnkdS ð21Þ

Mj=6 , Mw=3.5
Full-cell model

Mj=6 , Mw=3.5
Inner-cell model

Mj=7 , Mw=3.5
Full-cell model

Mj=7 , Mw=3.5
Inner-cell model

Mj=8 , Mw=3.5
Full-cell model

Mj=8 , Mw=3.5
Inner-cell model

Mj=9 , Mw=3.5
Full-cell model

Mj=9 , Mw=3.5
Inner-cell model

Mj=10 , Mw=3.5
Full-cell model

Mj=10 , Mw=3.5
Inner-cell model

Fig. 8 3D finite element model of 2.5D woven composites with the Mj increases (Rich-reisn regions removed)
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To satisfy the periodic condition at the opposite boundaries, the related points on the
two opposite planes must have the same stresses. Thus, Eq. 31 can be reduced to

σi j ¼ 1

V

Z
Sþm

σþ
im
xþ

j
dS−

Z
S−m

σ−
im
x−

j
dS

 !
¼ 1

V

Z
Sþm

σþ
im

xþ
j
−x−

j

� �
dS ð22Þ

where m is a dummy suffix, when m≠j, the coordinates xj+=xj− and when m=j, xj
+–xj

−=
Δxj, therefore,

σi j ¼ Δx j
V

Z
S j

σi jdS ¼ Pi j

S j
; no summation over jð Þ ð23Þ

From Eq. 33, the average stresses can be simply calculated by the resultant tractions on
the boundary surfaces and the corresponding boundary surfaces.

In particularly, for the Full-cell model, since the upper and lower boundary is the actual
boundary of the 2.5D woven composites, the periodic boundary condition mentioned above

Mw=2 , Mj=10
Full-cell model

Mw=2.5 , Mj=10
Full-cell model

Mw=3 , Mj=10
Full-cell model

Mw=3.5 , Mj=10
Full-cell model

Mw=4 , Mj=10
Full-cell model

Mw=2 , Mj=10
Inner-cell model

Mw=2.5 , Mj=10
Inner-cell model

Mw=3 , Mj=10
Inner-cell model

Mw=3.5 , Mj=10
Inner-cell model

Mw=4 , Mj=10
Inner-cell model

Fig. 9 3D finite element model of 2.5D woven composites with the Mw increases (Rich-reisn regions removed)

Table 1 Compared results of fiber volume fraction of 2.5D woven composites

Composite panel I Composite panel II

Woven fabric m1 Composites m2 Woven fabric m1 Composites m2

Mass (Kg) 422.90 826.50 424.00 820.00

Volume fractiona 42.67 % 43.20 %

Average value 42.94 %

Predictive value 43.89 %

Error 2.22 %

Predictive value is obtained based on the example shown in Section 4.4
a Fiber volume fraction (measured) Vf=m1/ρf/(m1/ρf+(m2-m1)/ρm), m1: pre-casting mass, kg. m2: post-casting
mass, kg. ρf,ρm: density of fiber and matrix, respectively. The specific values above parameters are also shown in
Section 4.4
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can be simplified as the boundary condition neglecting the equations corresponding to the Z
direction.

4 Results and Discussion

4.1 3D Finite Element Model and Model Verification

Figure 8 illustrates the Full-cell and Inner-cell finite element models with different woven
parameters.

According to the Figs. 8 and 9, as the increase ofMj, the width of models decreases steadily
under fixed Mw. When Mj is constant, the width of models has an upward trend with the Mw

rises.
In order to verify the veracity of this model (Full-cell model), some experiments related to

the fiber volume fraction and inclination angle were conducted.
For the Full-cell model, the fiber volume fraction can be calculated as follows:

V f ¼ njP jV j0 þ nwPwVw0

LxLyLz
� 100% ð24Þ

where Vj, Vw and Vf represent the fiber volume fraction of warp, weft and total in a 2.5D woven
composites. Vj0 and Vw0 are the each component volume fraction directly obtained by finite
element software.

Table 2 Compared results of inclination angles of 2.5D woven composites

Measure valuesa (°) Average
Value (°)

Dispersion
Coefficient

Predictive
value (°)

Error
(%)

No. 1 No. 2 No. 3 No. 4

θo 18.125 17.216 17.961 17.650 17.738 2.254 % 17.467 1.528

θi 21.266 19.797 18.252 21.485 20.200 7.423 % 21.776 7.802

Predictive value is obtained based on the example shown in Section 4.4
aMeasure data are obtained according to observing the microstructure by optical microscopy (HIROX made in
Japan)

Label Result

AN1 18.125°

AN2 17.216°

AN3 17.961°

AN4 17.650°

Label Result

AN1 21.266°

AN2 19.797°

AN3 18.252°

AN4 21.485°

Fig. 10 Measure photographs of inclination angles
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Table 1 gives the compared result between the prediction values calculated by
Eq. (24) and measured values by weighing method. It can be seen that the error
between the experimental measure value and predicted value of fiber volume fracture
is only 2.22 %. Additionally, the internal and the outmost layer inclination angles
predicted based on Eqs. (1)~(8) and deviation with the test measured results are listed
in Table 2 (Fig. 10 shows the corresponding observing results). According to the
results, the maximum error is also only 7.802 %. Therefore, the modeling approach
proposed in this study is available to establish the finite element model of 2.5D
woven composites, precisely.

Fig. 11 Deformed von Misses stress nephograms of FEM (a) Deformation under X tensile loading, (b)
Deformation under Y tensile loading

Fig. 12 Stress nephograms of the FEM under tensile loading in the warp direction
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4.2 Stress Nephograms of the FEM with/Without the Outmost Layer Structure

Figure 11 shows the stress distribution together with the deformation based on the Full-cell
model. According to the Fig. 11, it can be seen that even though the boundary surfaces do not
remain plane any more, the opposite surfaces maintain the identical deformation, which
suggests that the periodic boundary condition is reasonable. The stress distribution in each
yarn shows different stress state but presents a periodic distribution characteristic in X-Yplane
(see the Fig. 11a, b). The main reason for these phenomena is that the requirement of the

Fig. 13 Stress nephograms of the FEM under tensile loading in the weft direction
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Fig. 14 Effect of (a) Mj and (b) Mw on the effective elastic constants. δi (i=1,2) and φi (i=1,2) represent the
maximum variation of Ex and Ey based on different models, respectively. For the performance of Ex,
δ1=+20.17GPa, δ2=+24.87GPa, δ3=−2.62GPa, δ4=+2.47GPa. For the performance of Ey, φ1=−17.99GPa,
φ2=−20.76GPa, φ3=+9.21GPa, φ4=+12.91GPa
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periodical condition mentioned above and the spatial geometrical structure complexity of the
yarns in 2.5D woven composites.

Figure 12 presents the stress nephogram of the component materials under tensile loading
in the warp direction (X direction as well). As can be seen from the Fig. 12a and b, the stress
levels in warp yarns are obviously greater than that in weft yarns, aiming at about 40 times,
which indicates that the warp yarns are the primary load-carrying objects when the load is
paralleled to the warp direction. Additionally, from Fig. 12c and d, an obvious stress concen-
tration can be found in the crossing points of warp yarns, and the stress states of internal
inclination warp yarns are more seriously than other parts of the corresponding warp yarns (see
Fig. 12d), suggesting that the damages, such as transverse micro-cracks, might be preliminary
generated in these regions subjected to the load in the warp direction. The stress concentration
phenomenon is produced in the contact edges of warp yarns caused by the tensile and shear
stress.

Figure 13 presents the stress nephogram of the component materials under the load
in the weft direction. The maximum value of stress in the weft yarns is approximately
30 times more than that in the warp yarns, indicating that the weft yarns are main
load-carrying objects (see Fig. 13a). Furthermore, the stress concentrations are ob-
served at the outmost lay weft yarns (see Fig. 13b), which indicates that the initial
damage might be found in these domains. Although the stress concentration phenom-
enon still exists, uniform stress field has been found in the internal weft yarns, which
almost bear entire load in the weft direction (Fig. 13c and d).

4.3 Discussion on the Elastic Modulus Properties

Figure 13 illustrates the variation of the elastic moduli Ex and Ey with the main woven
parameters Mj and Mw.

In general, it can be found from the Fig. 14 that the variation trends and related
values of Ex and Ey calculated based on the Full-cell model are consistent with those
based on the Inner-cell model. Although an opposite change tendency consists in the
performance of Ey with the Mj increases, the variation values are quite small (δ3=
−2.62GPa, δ4=+2.47GPa). Thus, it can be recognized that the influence of Mj on the
Ey is basically unchangeable.

Table 3 Material parameters of the specimens

Ef1/Em Ef2 Gf12/Gm Gf23 uf12/um

T300-3 K 230 40 17 4.8 0.3

QY8911-IV 4.16 – – – 0.34

Table 4 Woven parameters of the specimens

Mw(tows/cm) Mw(tows/cm) Nf Nh Lz(mm)

S1a* 10 3.5 3 6 1.95

S2b* 10 3.5 3 6 1.95

a* (b*) represent that the specimens subjected to the uniaxial load in the warp (weft) direction
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4.4 Compared with the Experimental Results

In order to verify the validity of the FEM, a total of 10 specimens (T300-3 K/QY8911-IV)
made by RTM technics were prepared along the warp (6 specimens) and weft (4 specimens)
directions, respectively. An MTS 810 hydraulic servo dynamic material test machine with a
25.4 mm MTS-634-25 extensometer was used to perform the tests at room temperature
(20 °C). The material parameters and woven parameters of specimens are shown in Tables 3
and 4. The corresponding results are illustrated in Table 3.

Good coincidence between experimental and theoretical prediction based on the Full-cell
model results suggests the feasibility of the proposed model and method in predicting the
elastic properties of 2.5D angle-interlock woven resin matrix composites. Additionally, the
prediction results based on the Full-cell model are more close to the related test results than
those based on the Inner-cell model, especially the weft modulus (Table 5).

5 Conclusion

In this work, a new parameter FEM based on the microstructure of 2.5D angle-interlock woven
resin composites has been established and some meaning conclusions are presented as follows:

(1) The face structure has been taken into consideration in this work, and the more precise
prediction results of fiber volume fraction and inclination angle based on the model can
be obtained compared to those only considering the internal model.

(2) A comparison of finite element predicting based on Full-model and experimental results
demonstrate the validity of the proposed model in predicting the elastic properties of
2.5D woven composites.

(3) According to analyzing the stress nephogram, the periodic stress distribution indicates
that the periodic boundary condition proposed in this work is reasonable, which can
guarantee the continuity of the displacement. Furthermore, the reasonable overall stress
fields exhibit that the stress concentration phenomenon is more serious in the surface
layer than that in the interior.

(4) Based on the Full-cell model, the modulus Ex is increased obviously with the increase of
the warp arrange density Mj, however, it decreases significantly as the weft arrange
densityMw increases. According to the Inner-cell model, the influence of Mj on the Ex is
slight, with only −2.62GPa~+2.47GPa affected.

(5) The main effective elastic moduli are obtained based on the Full-cell model and Inner-
cell model using the finite analysis approach. The results show that the theoretical results
are suitable for the experimental results and the theoretical method is validity.

Table 5 Prediction results in comparison with test data

Experimental average (range) Prediction

Full-cell
model

Error Inner-cell
model

Error

Ex(GPa) 48.39 (46.71–50.24) 49.96 3.24 % 51.20 5.81 %

Ey(GPa) 32.30 (29.67–34.79) 32.55 0.77 % 33.81 4.67 %
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Further work will focus on the mechanical behavior analysis, strength predictive method
and damage mechanism research of 2.5D woven composites under the tensile loading in the
warp (or the weft) direction.
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