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Abstract Tensile experiments were performed for open-hole composite plates with three
different layups. With the limited number of experimental results, a probabilistic neural
network (PNN) based approach is proposed to predict the tensile strength of composite plates
with an open-hole. The predictive model takes the geometric parameters, the layup features
and the average tensile stress of open-hole composite plates as the inputs and produces the
safety status as the intermediate output with the classification function of PNN. Then the
critical safety point, that is the open-hole tensile strength, where the safety status turns from
survival to failure, is determined with the bi-section searching method. The predictions produce
acceptable results whose errors are comparable to the coefficient of variation of experimental
results. With experimental data from other studies, further assessments are also made to prove
the capability of this model in predicting the open-hole tensile strength of composite plates.

Keywords Open-hole tensile strength . Experimental results . Composite plate . Probabilistic
neural network

1 Introduction

Fiber reinforced polymer (FRP) composites are widely used in structural applications owing to
its unique features such as the high stiffness, high strength and the potential in tailor-made
design. However, composite materials have much more complex failure mechanism compared
to that of metal materials [1–3], in particular for the case of composite structures with an open
hole. The open-hole effect on the composites, as a classical issue, has been long concerned by
many researchers [4–13].

Theoretical methods, such as the fracture mechanics models [5, 6], the progressive damage
models [7] and the Continuum damage models [9], were developed to predict the open-hole
tensile strength of composite plates. These theoretical models, which are mostly based on the
classical mechanics, are very meaningful in finding out the true failure mechanism and
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improving the applications. However, the limitation of knowledge results in more uncertainties
when these models are adopted in engineering practice.

Experiments are usually conducted to account for the open-hole effect in engineering
practices. Based on characteristic distances determined through experiments, Whitney and
Nuismer [4] proposed the point stress criterion and average stress criterion, which are seen as
classical methods in the failure prediction of notched structures. However, uncertainties,
especially the variability, inevitably exist in experiments. To address this important issue, the
experimental results are usually conservatively processed with statistical methods to cover the
effect of variability. This makes the experiments costly and time-consuming. In order to reduce
the cost of experiments and utilize the experimental results more sufficiently, many researchers
have developed various methods for predicting material properties or structural performances
based on a limited number of experimental results.

The artificial neural network (ANN), which is a simulation to the nervous system, is often
used to make predictions on the properties/behaviors of composites [14–26]. Pidaparti and
Palakal [14] developed a back-propagation neural network to predict the non-linear stress–
strain behavior of laminates. Labossiere and Turkkan [15] used ANN to predict the failure of
composites under plane stress conditions. Lee et al. [16] compared the Tsai-Wu criterion with
ANN on the predictive accuracy based on a set of biaxial tests of cross-ply composite tubes
made of T300 carbon/epoxy and concluded that ANN showed smaller root-mean-square-error
(RMSE). Lee et al. [17] used ANN to predict the fatigue life of carbon/glass fiber reinforced
plastic laminates and recognized the effect of the ANN architecture on the prediction. Velten
et al. [18] used ANN to predict the wear properties of short-fiber/particle reinforced thermo-
plastics. Al-Assaf and El Kadi [19] carried out an ANN prediction to get the fatigue life of
unidirectional glass fiber/epoxy composites and a satisfactory predictive quality was got with
the RMSE less than 20 %. Zhang et al. [20] predicted the storage modulus and damping of
short fiber-reinforced composites with ANN. Perera et al. [23] used a back-propagation neural
network to predict the ultimate strength of reinforced concrete beams retrofitted in shear by
means of externally bonded FRP and further carried out a parametric study with the trained
neural network. Camara and Freire [24] developed three types of neural network architectures
to model the transverse elasticity modulus of unidirectional composites and got more accurate
predictions compared with the Halpin-Tsai mathematical model. Bashir and Ashour [25]
modeled the shear strength of FRP- bars-reinforced concrete members with ANN and carried
out a parametric study with the trained neural network. Varol et al. [26] used a feed forward
back propagation ANN to model the effect of reinforcement properties on the physical and
mechanical properties of Al2024-B4C composites and concluded that the well-trained feed
forward back propagation ANN model is a powerful tool to predict the effect of reinforcement
properties on physical and mechanical properties of composites.

The conventional predicting methods with ANN, whose target is to get the training data
fitted as accurately as possible, take the predicted object (e.g. , material properties / structural
performances) as certain values. Actually, the experimental results are full of uncertainties, and
therefore, the accurate fitting is often meaningless or even makes against finding out the true
relationships between the inputs (material properties, structural dimensions and etc.) and
outputs (structural performances). For example, for a row of given inputs, the tests may
produce different outputs, which is in conflict with the accurate-fitting target of the conven-
tional ANN. Although the conventional ANN based predicting methods pre-select/pre-process
the training data before feeding them to the ANN, it is very hard to find out which output is
more valid, even with the statistical methods.

The probabilistic neural network (PNN) was designed to make decisions based on proba-
bilistic methods [27, 28], which means PNN can be used to learn from training data with
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uncertainties. In this paper, PNN is used to predict the open-hole tensile strength of composite
plates based on a limited number of experimental results.

2 Problem Description

Figure 1 shows a composite plate with a central circular hole having diameter D. The plate has
length L, width W and thickness h. The volume fraction of 0-ply in the laminate is P0, while
that of 90-ply is P90. The open-hole composite plate is loaded at two ends in the longitudinal
direction (direction x) by a uniform distributed tension force σt. It is assumed that the
composite plate, whose design object is usually the ply stacking sequence, should not fail
under the ultimate load at a very high probability.

As we know from the design and manufacturing practice, variability exists both in the
material properties and structural parameters. The variability may result from the high porosity
caused by insufficient resin flow / vacuum-pumping or inaccurate laying-up. Although the
improvement of forming technology of composites, such as the automated prepregs laying-up,
has made the variability smaller, it is still a big concern to designers and researchers [29–31].

The open-hole tensile strength of a composite plate, which is related to the material
properties and structural parameters, is a value full of uncertainty.

3 Open-Hole Tensile Strength Experiments

Experimental tests were conducted in the Laboratory of Civil Aircraft Structures Testing,
Shanghai Jiao Tong University. The layup and the nominal thickness of the laminated test
specimens, which are made of T800/Epoxy, are listed in Table 1. The specimens are grouped
into TS1, TS2 and TS3 based on their layups. The specimens are named as “TS#-#”, where the
first “#” represents the group number and the second “#” represents the specimen number in
the group. Table 2 shows the typical material properties of T800/Epoxy. All the specimens
have a nominal length of 300 mm and a nominal width of 36 mm. The nominal diameter of the
circular hole is 5.8 mm. According to the measured data before the tests, obvious variability
exists in these geometric parameters.

The experiments were implemented on a SANS CMT5305 300 kN electronic universal
testing machine, as shown in Fig. 2. The specimens were fixed on the testing machine and
loaded by the increasing displacement at a rate of 2 mm/min until the specimens’ breakage
makes the axial force decrease. During the loading, the force-displacement curves were
recorded. The typical curves of TS1-1, TS2-1 and TS3-1 are shown in Fig. 3. The failure
mode of all the test specimens is breakage through the circular hole as shown in Fig. 4. The

t t

Fig. 1 A composite plate with an open hole subjected to tension

Appl Compos Mater (2014) 21:827–840 829



experimental results are listed in Tables 3, 4, and 5, where “tensile strength” means the
maximum end tensile force divided by the cross-section area of the specimen.

4 Modeling

4.1 Probabilistic Neural Network

Probabilistic neural network (PNN), which was proposed by Specht [27, 28], is a special form
of radial basis function network. It is mainly suitable for classification problems. The archi-
tecture of PNN is shown in Fig. 5. It contains four layers, which are named as the input layer,
the pattern layer, the summation layer and the output layer, respectively [27, 28].

The input layer contains one input node for each input attribute. In the pattern layer, there is
one neuron for each training instance in the training set, which means the amount of neurons in
the pattern layer is equal to that of training instances. Each neuron in the pattern layer has a
center point, which is the input vector of the related instance. The pattern layer, together with
the summation layer, implements the Parzen windows probability density approximation
method [32], in which the conditional probability of class i can be estimated as,

gi xð Þ ¼ 1

2πð Þn=2 ∏
j¼1

n
l ijN i

X
r¼1

Ni

e
−
P
j¼1

n x j−X i
rjð Þ2

2l 2
ij ð1Þ

where n is the dimensionality of the input patterns, Ni is the amount of training points
belonging to class i, xj is the j-th input attribute of the input pattern to be classified, Xrj

i denotes
the j-th input attribute of the r-th training point belonging to class i, λij is the smoothing
parameter across dimension i of the patterns for the training points belonging to class j. λij could

Table 1 T800/Epoxy test specimens

Test specimen group Lay up Nominal thickness (mm) Quantity

TS1 [+45/−45/0/0/+45/−45/90]s 2.632 16

TS2 [+45/−45/0/0/+45/−45/0/0/90]s 3.384 18

TS2 [+45/−45/0/+45/−45/+45/−45/+45/−45/90]s 3.760 18

Table 2 Typical material
properties of T800/
Epoxy

Property

Density, ρ (g/mm) 194

Fiber volume fraction, Vf (%) 35 %

Thickness, t (mm) 0.188

Longitudinal modulus, E11 (MPa) 157,600

Transverse modulus, E22 (MPa) 8,295

Poisson’s ratio, μ12 0.32

In-plane shear modulus, G12 (MPa) 4,370

Longitudinal tensile strength, Xt (MPa) 2,400

Longitudinal compressive strength, Xc (MPa) 1,400
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be adjusted to reflect the significance of each input attribute in the generation of the outputs. The
adjustment of λij could be seen as an important learning step of the PNN.

Fig. 2 The test setup

Fig. 3 The typical axial force-displacement curves of test specimens
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The output layer implements the category selection by the Bayesian decision criterion. The
two-category Bayesian decision criterion can be expressed as follows,

d xð Þ ¼ θA if hAlA f A Xð Þ > hBlB f B Xð Þ
d xð Þ ¼ θB if hAlA f A Xð Þ < hBlB f B Xð Þ

�
ð2Þ

where the state can be classified into θA and θB (e.g., survival and failure). fA(X) and fB(X) are
respectively the probability density function for category A and B. hA and hB are respectively
the a priori probability of occurrence of patterns from category A and B. lA is the loss

Fig. 4 The failure mode of test specimens

Table 3 Experimental results of TS1

Test specimen
number

Geometric parameters (mm) Max load (kN) Max displacement
(mm)

Tensile
strength (MPa)

L W h D

TS1-1 300.2 36.1 2.61 5.79 56.61 4.15 600.82

TS1-2 300.0 36.0 2.60 5.82 58.27 3.50 622.54

TS1-3 300.0 36.1 2.61 5.82 57.10 4.07 606.02

TS1-4 300.1 36.0 2.60 5.84 59.61 5.23 636.86

TS1-5 300.1 36.0 2.60 5.81 58.16 3.57 621.37

TS1-6 300.1 36.0 2.60 5.81 58.32 3.20 623.08

TS1-7 299.8 36.0 2.60 5.80 58.11 3.47 620.83

TS1-8 300.1 36.0 2.60 5.81 54.07 4.33 577.67

TS1-9 299.8 36.0 2.60 5.80 59.22 4.31 632.69

TS1-10 300.4 36.2 2.61 5.81 61.02 4.35 645.84

TS1-11 300.2 35.8 2.59 5.79 57.62 3.40 621.43

TS1-12 300.1 36.2 2.61 5.81 60.10 3.88 636.10

TS1-13 300.1 36 2.62 5.8 55.56 3.34 589.06

TS1-14 300.1 36 2.61 5.8 58.6 3.24 623.67

TS1-15 300.5 35.9 2.61 5.81 58.04 3.84 619.43

TS1-16 300.1 36 2.6 5.81 57.7 3.37 616.45
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associated with the decision d(x)=θA when θ=θB, while lB is the loss associated with the
decision d(x)=θB when θ=θA.

When an input pattern is feed to a trained PNN, the output is produced based on the
approximated probability density of different classes. The validity of each training point is
reflected in the probability density calculation in an implicit way. PNN often learn more
quickly than many neural network models such as back-propagation network, and have had
success in the classification field.

4.2 Modeling and Predicting Approach

The geometric parameters (e.g. D, W, h) and layup features (e.g. P0 and P90) of the open-hole
composite plates are assumed to be related to the tensile strength in this paper. The influence of
the ply material properties is neglected because the modeling object here is only the open-hole
tensile strength of composite plates with the same material. To produce the safety status of the
plate, the average axial stress (σt) of the plate, together with the above parameters, are taken as
the inputs of the PNN. The output of PNN is set to be S, which is equal to 0 or 1 to represent
the safety status (1 denotes survival while 0 denotes failure) of the plate.

The flowchart for modeling and predicting the open-hole tensile strength of composite
plates may be given as shown in Fig. 6 with details as follows:

1) By using the existing knowledge /experience, the available experimental results are
extended to produce the training/testing data. It is also processed to satisfy the input/
output requirement of PNN. As shown in Fig. 7, when we have some open-hole tensile
strength experimental results of laminate plates, we can extend them by using the

Table 4 Experimental results of TS2

Test specimen
number

Geometric parameters (mm) Max load (kN) Max displacement
(mm)

Tensile strength
(MPa)

L W h D

TS2-1 299.7 36.1 3.47 5.82 109.83 5.37 876.77

TS2-2 300.8 36.6 3.38 5.84 100.04 3.96 808.68

TS2-3 300.4 35.9 3.46 5.84 107.54 5.20 865.76

TS2-4 301.0 36.2 3.41 5.79 101.27 5.21 820.39

TS2-5 300.1 36.1 3.47 5.83 106.22 4.92 847.95

TS2-6 300.2 36.1 3.39 5.83 103.85 4.97 848.59

TS2-7 299.8 36.2 3.50 5.81 108.09 3.75 853.12

TS2-8 300.3 35.9 3.40 5.78 107.73 3.92 882.60

TS2-9 299.8 36.1 3.48 5.82 107.97 6.35 859.44

TS2-10 300 36.0 3.41 5.79 105.06 5.90 855.82

TS2-11 300.2 36.1 3.46 5.83 107.09 5.74 857.36

TS2-12 300.1 36.1 3.39 5.80 96.03 5.49 784.69

TS2-13 300.2 35.8 3.43 5.84 94.11 4.62 766.41

TS2-14 299.5 35.9 3.47 5.80 108.63 6.34 872.02

TS2-15 301.4 36.0 3.44 5.84 110.99 5.93 896.24

TS2-16 300.4 36.0 3.44 5.83 111.47 6.27 900.11

TS2-17 300.8 35.8 3.40 5.86 101.15 4.45 831.01

TS2-18 300.0 36.0 3.43 5.79 107.61 3.93 871.48
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following settings, that is, for a row of experimental results (here means all the experi-
mental results got from one specimen in one successful test), when other parameters are
fixed, a) the structure would fail ifW decreases, and survive ifW increases; b) the structure
would fail if D increases, and survive if D decreases; c) the structure would fail if P0
decreases, and survive if P0 increases; d) the structure would fail if P90 increases, and
survive if P90 decreases; e) the structure would fail if σt increases (to be larger than the
experimental tensile strength), and survive if σt decreases (to be smaller than the
experimental tensile strength).

Table 5 Experimental results of TS3

Test specimen
number

Geometric parameters (mm) Max load (kN) Max displacement
(mm)

Tensile strength
(MPa)

L W h D

TS3-1 299.9 36.1 3.80 5.86 43.10 3.05 314.19

TS3-2 300.1 36.2 3.78 5.84 45.80 3.22 334.71

TS3-3 299.8 36.0 3.77 5.85 42.56 2.83 313.59

TS3-4 299.8 35.7 3.73 5.84 41.85 4.10 314.28

TS3-5 300.0 35.7 3.74 5.88 42.57 2.88 318.83

TS3-6 300.0 36.0 3.75 5.89 40.87 2.88 302.74

TS3-7 299.8 36.2 3.77 5.87 42.11 3.00 308.56

TS3-8 300.3 36.1 3.75 5.93 42.72 3.36 315.57

TS3-9 300.1 36.2 3.77 5.88 40.80 2.68 298.96

TS3-10 300.5 36.1 3.75 5.92 42.82 3.14 316.31

TS3-11 300.3 35.9 3.74 5.93 41.57 2.74 309.61

TS3-12 300.4 36.1 3.76 5.93 41.83 2.95 308.17

TS3-13 300.0 35.8 3.74 5.89 40.85 3.02 305.10

TS3-14 300.0 35.9 3.74 5.89 42.17 2.99 314.08

TS3-15 300.5 36.1 3.76 5.92 41.30 3.16 304.27

TS3-16 300.3 36.3 3.76 5.93 40.77 3.26 298.71

TS3-17 299.8 36.0 3.75 5.85 41.50 3.14 307.41

TS3-18 300.4 36.2 3.76 5.93 41.24 3.33 302.99

X1

X2

Xn

H1
1

HN1
1

HNi
i

H1
i

S1

Si

Input
Layer

Pattern
Layer

Summation
Layer

Output
Layer

P1

Fig. 5 The architecture of probabilistic neural network

Appl Compos Mater (2014) 21:827–840834



We can also train the PNN with constraints under following three cases. For
case (a), the tensile strength of an un-notched (D=0 mm) standard ASTM 3039
0-deg unidirectional composite plate (L=250 mm, W=15 mm, h=1.0 mm ) is
equal to Xt (the longitudinal tensile strength) of a lamina; for case (b), the tensile
strength of an un-notched (D=0 mm) standard ASTM 3039 90-deg unidirectional
composite plate (L=175 mm, W=25 mm, h=2.0 mm ) is equal to Yt (the
transverse tensile strength) of a lamina; and for case (c), the tensile strength is
zero when D/W=1 or h=0 or W=0. So a set of training/testing data can be
derived from each experimental result row by slightly changing the parameter
values in the specified spaces.

2) The training data is used to train the PNN. The genetic algorithm optimization is used to
train the PNN to get the fittest λij corresponding to each input attribute and each class.
Each λij is encoded into a gene, while a PNN with a series of λij is encoded into a
chromosome and chromosomes form a population. The population evolves generation by
generation to get the optimal combinations of λij through the crossover and the mutation
operations. The fitness function is set to be the root-mean-square-error (RMSE), which
can be expressed as,

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
k¼1

m

Ypr
k

.
Yex
k −1

� �2

m

vuuut
ð3Þ

Fig. 6 The flowchart of the modeling and prediction
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where Yk
pr is the k-th predicted value , Yk

ex is the k-th experimental value and m is the
amount of predictions. The evolution of the population terminates when RMSE becomes
smaller than a specified value.

3) The testing data are used to test the PNN.
4) After the training and testing, the PNNmodel can be adopted to predict the safety status of

notched composite plates with different D, W, h, P0 , P90 and σt.
5) For an open-hole composite plate with given W, h, D, P0 and P90, a critical safety points,

where the safety status S turns from 1 (survival) to 0 (failure), can be determined through
the PNN model. This is an important step that transforms the safety-status classification
problem back to a tensile-strength-prediction problem.

Here we set the allowable error (%) in the prediction of the tensile strength to be EA.
We use the following expression to represent the output of the trained PNN model,

S ¼ PNN W ; h;D;P0;P90;σtð Þ ð4Þ

By finding the root (σmax as the unknown tensile strength) of the following equations,
we can get the tensile strength predicted.

PNN W ; h;D;P0;P90;σmaxð Þ ¼ 1
PNN W ; h;D;P0;P90;σmax 1þ EAð Þð Þ ¼ 0

�
ð5Þ

Here the bi-section searching method is used to find the root.

Fig. 7 Schematic of training/testing data generation
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5 Predictions

5.1 Implementation

In the first example, experimental results from TS1, TS2 and TS3 are extended and processed to
produce the training/testing data of the predictive model. As shown in Fig. 7, a set of training/
testing data can be derived from each experimental result row through the following procedures:

1) To generate a set of parameters (D, W, h, P0, P90, σt) corresponding to different safety
status. It is expected that W, h and P0 will be decreased, while D, P90 and σt will be
increased for the failure status. In contrast,W, h and P0 will be increased, whileD, P90 and
σt will be decreased for the survival status.

2) To select the generated parameter values corresponding to each specified safety status
randomly to form rows of training/testing data.

3) Repeat steps 1) and 2) to get a new set of training/testing data.

The training data obtained is then used to train the PNN. After about 10,000 generations of
evolution (with a population of 100) with the genetic optimization, the learning of PNN is
finished. The testing data obtained is then used to test the predictive accuracy of the PNN. It is
found that the trained PNN produces 20,779 correct results when tested with 20,800 rows of
testing data. The percentage of wrong classifications is about 0.11 %.

The tested PNN can be used to predict the open-hole tensile strengths of composite plates
through the bi-section root finding method, in which EA is set to be 0.1 %.

5.2 Results and Discussion

As shown in Table 6, the open-hole tensile strengths of test specimens in group TS1 are
predicted with the PNN model, which is trained by experimental results of TS2 and TS3.
Similarly, the tensile strengths of test specimens in group TS2 and TS3 are also predicted.

Although there is obvious variability in the experimental results, the proposed PNN model
shows acceptable predictive accuracy, for which the predictive errors are within ±4%.

The accuracy of the proposed PNN model is also evaluated through the predictions on the
open-hole tensile strength of composite plates by using existing experimental data [33, 34].
Each prediction is made based on all the other experimental results of open-hole composite
plates with the same material. The prediction results for the second example are listed in

Table 6 Predicted open-hole tensile strengths of test specimens

Test
specimens

Open-hole tensile strength (MPa) Errora (%)

Experimentalb Predictedc

TS1 618.4 (2.86 %)d 598.2 −3.27
TS2 849.9 (4.23 %) 880.0 3.54

TS3 310.4 (2.75 %) 314.8 1.42

a Error=100 % (predicted/experimental−1)
b The average experimental tensile strength
c Predicted with the PNN model trained by the other two groups of experimental data
d The coefficient of variation
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Table 7. It should be noted that the experimental data from Ref. [33] has been transformed
back to the open-hole tensile strength of composite plates with a finite width. It can be seen
that the maximum error is about −8.49 % which is greater than that in Table 6. This is probably
because the amount of experimental results used in each prediction in Table 6 is 34/36, which
is greater than13/16 in the second example. On the other hand, for experimental results in
Table 6, there is only manufacturing variability in some geometric parameters of test speci-
mens, while in the second example, the geometric parameters of test specimens vary in a much
larger range, which makes the predictions harder.

Table 7 Predicted open-hole tensile strengths of test specimens based on experimental data from references

Reference Material Lay up Geometric parameters
(mm)

Open-hole tensile
strength (MPa)

Errora (%)

D W Experimental Predictedb

Tan [33] AS4/3502 [0/90/±45]s 0 12.7 695.1 713.4 2.63

0.46 12.7 648.9 648.1 −0.12
2.54 12.7 435.7 401.9 −7.76
6.35 25.4 349.0 374.4 7.28

7.62 25.4 325.0 339.7 4.52

10.41 34.8 311.9 298.7 −4.23
15.49 47.5 271.3 290.6 7.11

[0/90/90/0]s 0 12.7 975.0 1046.3 7.31

0.46 12.7 984.6 925.2 −6.03
2.54 12.7 713.3 750.2 5.17

6.35 25.4 569.5 544.4 −4.41
7.62 25.4 441.4 470.4 −6.57
15.49 47.5 510.1 466.8 −8.49

Afaghi-Khatibi
et al. [34]

AS4/Epoxy [0/90]4s 6 30.0 535.6 504.1 −5.88
10 30.0 416.0 428.6 3.03

20 30.0 202.6 195.0 −3.75
10 83.6 448.2 434.5 −3.06
18 82.1 316.7 335.5 5.94

20 83.1 310.1 317.8 2.48

30 82.8 252.2 246.9 −2.10
60 83.8 138.1 129.6 −6.15

[0/±45/90]2s 6 30.0 334.0 350.0 4.79

10 30.0 320.9 334.7 4.30

15 30.0 209.8 211.3 0.71

20 30.0 126.0 119.4 −5.24
12 60.0 338.0 351.2 3.91

20 60.0 291.0 299.5 2.92

30 60.0 188.7 178.4 −5.46
40 60.0 137.4 127.9 −6.91

a Error=100 % (predicted/experimental−1)
b Predicted with the PNN model trained by all the other experimental results of open-hole composite plates with
the same material
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Generally, predictions show that the proposed model is capable of predicting the open-hole
tensile strength of composite plates based on a limited number of experimental results with
acceptable accuracy. However, compared with the existing theoretical models, the limitation of
this model is that it can only predict the open-hole tensile strength of composite plates with the
same material and its predictive ability is highly restricted by the test matrix. It is also should
be noted that in the calculations, the convergence of the PNN optimization usually needs lots
of hours on a PC and the stochastic process in the genetic optimization method makes the
calculation time hardly to be estimated.

6 Conclusion

In this paper a PNN based approach has been proposed to predict the open-hole tensile strength
of composite plates based on a limited number of experimental results. As a probabilistic
method, the PNN can avoid the over-fitting of experimental data. The key issue of this
approach is to utilize the limited experimental results and existing knowledge sufficiently by
converting the strength prediction problem into a classification problem. To evaluate the
predictive accuracy, predictions were implemented based on three sets of open-hole tensile
strength tests of composite plates. Further assessments are also made with experimental data
from other studies. Compared with the variability commonly existing in the experimental data,
the PNN model produces acceptable predictions. It also shows that the proposed model can
make predictions based on limited test data without any pre-selection. We believe that the
proposed model could be extended to make predictions on other performances of composite
structures when there is obvious variability in the observed values for the predicted indices.
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