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Abstract The present paper focuses on composite structures which consist of several layers
of carbon fiber reinforced plastics (CFRP). For such layered composite structures, delami-
nation constitutes one of the major failure modes. Predicting its initiation is essential for the
design of these composites. Evaluating stress-strength relation based onset criteria requires
an accurate representation of the through-the-thickness stress distribution, which can be par-
ticularly delicate in the case of shell-like structures. Thus, in this paper, a solid-shell finite
element formulation is utilized which allows to incorporate a fully three-dimensional mate-
rial model while still being suitable for applications involving thin structures. Moreover,
locking phenomena are cured by using both the EAS and the ANS concept, and numer-
ical efficiency is ensured through reduced integration. The proposed anisotropic material
model accounts for the material’s micro-structure by using the concept of structural tensors.
It is validated by comparison to experimental data as well as by application to numerical
examples.

Keywords Fiber-reinforced composite · Layered composite · Delamination ·
Solid-shell concept · Enhanced strain formulation · Reduced integration

1 Introduction

Fiber-reinforced composites are gaining more and more importance in technical applica-
tions. Their most beneficial characteristics, the very high Young’s modulus and low density,
are particularly important for shell-like lightweight constructions. The composites exam-
ined in this paper consist of multiple layers, each of which is composed of a thermoset
matrix with unidirectional fiber reinforcement.
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There exist different methodologies which describe the macro-mechanical material
behavior and at the same time account for the material’s micro-structure. Among them,
the asymptotic homogenization method for periodic structures [1–3] and the FE2-method
[4–6] are prominent. As an alternative, the special character of the microstructure can be
taken into account by means of an anisotropic model using the concept of structural ten-
sors. The majority of such models formulated for finite strains were developed in the field
of biomechanics. For instance, axisymmetric orthotropic blood vessels were investigated in
[7], whereas biological soft tissues were modeled in [8] on the basis of an incompressible
transversely isotropic law for moderate deformations.

An overview of anisotropic material models developed for reinforced fiber composites
can be found e.g. in [9]. For the experimental validation of such models implemented into
finite element analyses, the reader is referred to [10], while modeling techniques for layered
composites including micro-macro scale transitions are presented in [11]. In the present
paper, the model proposed by Reese in [12] for fiber-reinforced rubber-like composites is
adopted, in which the transition from the micro-scale to the macro-scale is formulated in a
general manner. This model is not restricted to rubber-like materials but also suitable for the
carbon fiber-reinforced plastics (CFRP) considered here.

Structural collapse in fiber composite structures is caused by the evolution of either
matrix transverse cracking, fiber fracture, or delamination. Among these different damage
modes, delamination is particularly important, because it drastically reduces the bending
stiffness of the structure and promotes local buckling in case of compressive loads. Includ-
ing delamination into the computation of composite structures requires the definition of an
appropriate criterion for its onset as well as the prediction of its growth after an initial crack
has evolved. For the initiation of delamination, different criteria exist, formulated in depen-
dence of stress-resistance relations, e.g. [13–17]. After onset of delamination, the high stress
gradients appearing at the crack front prohibit the use of stress-based criteria. Thus, fracture
mechanics approaches are often employed for simulating delamination propagation, such as
the virtual crack closure technique, [18–22]. As an alternative, delamination growth can be
treated within the framework of damage mechanics using cohesive zone models, which are
incorporated into the finite element simulation by interface elements, e.g. [23–26]. In this
paper, the onset of delamination is addressed by means of stress-resistance relations.

Since fiber-reinforced composites are mostly applied in thin shell-like structures, the
element formulation should reproduce the thinness of the structure while at the same time
three-dimensional stress states have to be displayed realistically. Although ’classical’ shell
formulations (e.g. with four nodes) exist which take into account the through the thick-
ness stretching, the implementation of three-dimensional material models is much simpler
in the context of solid elements. On the other hand, the latter typically show a poor per-
formance when being applied to thin shell-like structures. In particular, there are different
locking phenomena to be coped with, which cause an overestimation of the stress state and
an underestimation of the deformation. Using solid-shell elements represents one strategy
to overcome this problem by combining the advantages of both solid elements and shell
elements at the same time. Further, applying the enhanced assumed strain (EAS) concept
eliminates the volumetric locking in case of (nearly) incompressible materials as well as the
Poisson thickness locking, which occurs in bending problems of shell-like structures due to
the non-constant distribution of transverse normal strain over the thickness.

In the literature, one can find several solid-shell formulations incorporating the EAS
concept, see e.g. [27–29], to name only a few. To cure the transverse shear locking, which
is present in standard eight-node hexahedral elements, the assumed natural strain (ANS)
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method is applied. the application of the ANS concept in the context of full integration for-
mulations is discussed by e.g. [30–32].The combination of the ANS approach with reduced
solid-shell formulations can be found in e.g. [33–36]. The formulation presented in this
paper is based on the works of Schwarze and Reese [34–36].

For laminated layered composites, the accurate determination of the through-the-
thickness stress distribution was recently investigated by several authors. For instance, in
[37] an improved shell formulation was suggested for this purpose, whereas in [38] and
[39] the investigations were based on the solid-shell concept. For a more elaborate litera-
ture overview, the reader is referred to the review papers [40–42] and the references therein.
However, the development of solid-shell formulations, applicable to model the orthotropic
behavior of thin fiber composite structures is still an open field.

2 Micromechanically Motivated Material Model

The fiber composites examined in this paper consist of stacked layers, each of which is
composed of either unidirectional long fibers or a woven fabric embedded in a matrix mate-
rial. The anisotropic material behavior of such composites is taken into account by using the
micromechanically motivated model proposed by Reese [12]. In the following, the basics of
the continuum model are summarized. Therein, parameters are chosen to represent approx-
imately the behavior of carbon fibers in an epoxy resin matrix. Further, for a discussion of
the theoretical background, the reader is referred to [43] and the references therein.

Introducing the deformation gradient F, the deformation of a continuous body is
represented by the right Cauchy-Green tensor

C = FTF (1)

The modelling of a hyperelastic material is based on the existence of a scalar potential,
which is the strain energy density function (SEDF) W = W(C). The second Piola-Kirchhoff
stress tensor is given by

S = 2
∂W(C)

∂C
(2)

In the anisotropic case considered here, the energy function W(C, M1, M2) is a scalar
function of C and the structural tensors Mi (i = 1, 2), which are defined by

Mi = ni ⊗ ni (3)

where the vectors ni are parallel to the fibers. Obviously, for unidirectional layers only one
vector n1 and one structural tensor M1 = n1 ⊗ n1 needs to be defined, whereas for woven
composites with two families of fibers two vectors n1 and n2 of fiber orientation are used,
as shown in Figs. 1 and 2, leading to the two structural tensors

M1 = n1 ⊗ n1 and M2 = n2 ⊗ n2 (4)

Then, the SEDF can be represented in dependence of the three isotropic invariants of C

I1 = tr C, I2 = 1

2

[
(tr C)2 − tr (C2)

]
, I3 = det C (5)

and the pseudo-invariants

Ik = tr (CMi ), k = 2 i + 2 (6a)

Il = tr
(
C2Mi

)
, l = 2 i + 3 (6b)
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Fig. 1 Representative volume element (RVE) of woven composite

The scalar product of C and Mi , represents the weighted square of the stretch in the
direction of the corresponding structural vector. In this way, the anisotropy can be taken
into account within a scalar function, when parts of the SEDF depend on the additional
invariants. It is intuitively understandable, that the structural vectors are associated with the
main fiber directions.

In this work, the anisotropic model of Reese [12] is adopted. In this model it is assumed
that the fibers carry load only in tension. Since this assumption is not realistic for the carbon
fiber reinforced plastics (CFRP) considered here, the model is slightly modified, such that
the fibers can carry load also under compression. Moreover, the fiber volume fractions ϕi ≥
0 are introduced, where

∑
i ϕi ≤ 1 holds. Except of this, we adopt the mentioned model

and use the following strain energy function:

W =
⎛
⎝1 −

∑
(i)

ϕi

⎞
⎠ WNH +

∑
(i)

ϕiWani i (7)

The first part of W, representing the matrix behavior of the composite, is modeled as a
Neo-Hookean material. The corresponding strain energy function reads

WNH (I1, I3) = μ

2
(I1 − 3) − μ ln

√
I3 + �

4

(
I3 − 1 − 2 ln

√
I3

)
(8)

where μ and � denote the Lamé constants. The second part

Wani i = 1

αi

Kani1
i (Ik − 3)αi + 1

βi

Kani2
i (Il − 3)βi (9)

is the contribution of the fibers, inducing anisotropy. In this equation αi , Kani1
i , βi and

Kani2
i are material parameters. Noticeably, in [12] further coupling terms were introduced

which hardly influence the results. Therefore they are dropped here. In the special case of

Fig. 2 Woven fibers and definition of fiber directions n1 and n2
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linear behavior of the fibrous part, Kani1
i can be associated with the Young’s modulus of the

fiber. Then αi = 2 and Kani2
i = 0 holds.

3 Experimental Investigation

The data set used for validation was generated by the experimental investigation of unidirec-
tional carbon fiber reinforced epoxy resin plates under tensile loading. Online digital image
correlation (DIC) provided length change measurements at the surface of the specimens
during the test procedure.

3.1 Specimen

In this series, six unidirectional CFRP plates with varying fiber angles were tested.
Each plate consisted of four layers of UD carbon fiber prepreg, whose specification was
’VTM264/T700SC(24K) -300-40 %RW’ (Toray). Manufacturer’s parameters of the used
materials are itemized in Table 1.

Water jet cutting was used for manufacturing to avoid fiber and matrix damage at the
plates’ sides. The specimen’s geometry and dimensions are given in Fig. 3 and Table 2.

Cap strips, made of the specimen’s material, were applied at the plate ends to prevent
fiber damage during clamping and testing. Furthermore, a random pattern was sprayed at
one of the specimen sides which is needed for the DIC measurements. Titanium dioxide
powder spray was used for the white base coat while graphite spray sparkles induced the
contrast. Invalid tests, e.g. when slippage and/or rupture of the caps was detected, were
discarded.

3.2 Setup

The test setup contains a ‘ZWICK Z100’ testing machine and an ‘ARAMIS M4’ DIC sys-
tem. This setup allowed for almost synchronised recording of force and displacement values.
The ZWICK’s load cell signal as well as the displacement signals of the (external) DIC sys-
tem were recorded using the control software ‘TestXpert II’ of ZWICK/Roell. Analog online
signal transfer — e.g. length change measured by the DIC system — from ARAMIS to the
testing machines software was realized by the integration of a ‘HBM Spider 8’ measuring
amplifier.

Time, force, cross beam displacement and nominal strain were generated by ZWICK’s
(internal) sensors. Unfortunately, the kinematic quantities were insufficient, since the defor-
mation of the load frame and the gliding of the grippers could not be decoupled from the

Table 1 Material parameters from manufacturer

Parameter Fiber Composite

Tensile modulus 230 [GPa] 135 [GPa]

Tensile strength 4900 [MPa] 2550 [MPa]

Tensile strain 2.1 % 1.7 %

Composite values normalized to 60 % fiber volume
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Fig. 3 Geometry of specimen

pure elongation of the specimen. To overcome this problem, an external displacement mea-
surement system was applied. The ARAMIS system supported the observation of up to ten
points at the specimens’ surface in the real-time-sensor (rts) mode. In this mode, ARAMIS
could be seen as an optical extensometer.

Assuming a homogeneous deformation state at the center of the specimen, only two
points at the longitudinal axis of the specimen were needed to determine a ‘global’ length
change and strain values. Another two points at the transversal axis were observed to
generate Poisson’s ratio values (Fig. 4).

3.3 Experimental Results

From the raw force (ZWICK) - displacement (ARAMIS) graphs of the valid measurements
it could be observed, that the variation of the raw data was small over the range of applied
force. Furthermore, the composite’s response was almost linear at 0◦, 45◦, 60◦, 75◦ and
90◦ fiber angle. To the authors’ understanding, the nonlinear response at 15◦ and 30◦ was
caused by the shear loading of the interphase between fiber and matrix material, that leaded
to local debonding of the interface.

However, from the raw data it was possible to calculate the engineering stress - strain
values to obtain the composites’ Young’s modulus. As mentioned before, a homogeneous
deformation state and small deformations were assumed. The homogeneous strain state was
confirmed by local strain field analysis. To obtain stresses, force values were divided by the
plate’s initial cross-sectional area, measured before testing. The initial length was the mea-
sured distance between the two measuring points arranged along the longitudinal axis at the

Table 2 Characteristic
dimensions Parameter Value[mm]

s 300.0

� 200.0

w 40.0

t 1.0

Fiber angles

0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦
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Fig. 4 Position of measuring points for real-time-sensor (rts) mode

reference state. Then, the global Young’s modulus for any of the laminates was calculated
by evaluating the slope of a curve, fitted to the experimental data. Since most graphs showed
a linear shape, a line fitting met our purpose. The mean value and the standard deviation for
every fiber angle are plotted in Fig. 5 in a polar diagram, where the typical UD-response
can be seen.

4 Validation of the Material Model

The before mentioned material model was implemented as a user material routine within
the finite element code FEAP [44]. In the simulation, the total width and thickness of the
specimen were modeled with a sufficiently high number of elements. The distance of the
measuring points in longitudinal direction was used as the initial length of the virtual body.
Displacement boundaries of the nodes at the upper side of the virtual plate were fixed, while
the displacement of the bottom nodes was equal to the experimentally measured length
change. The sum of the reaction forces at the displaced nodes in longitudinal direction and
the force measured during the experiments were compared.

To validate the material model, the parameters were fitted only to the 0◦ and 90◦ data. For
every other angle, only the direction of the structural vector was changed. At first, the matrix
material part was fitted to the 0◦ specimen test data, whereas the fiber part factor Kani1

1 was
increased to suit the behaviour at 90◦. The fiber volume fraction used for the simulations

Fig. 5 Young’s modulus polar
diagram: comparison of
simulation and experiments
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was taken from the manufacurers’ specifications. The determined material parameters are
given in Table 3.

Thereby, the global Young’s modulus of the simulated composite was calculated for the
different fiber orientations and plotted in the polar diagram, see Fig. 5. The simulation cor-
relates with the experimental data, once again, showing the characteristics of UD laminate.
However, at the 15◦ and 30◦ angles a slight deviation appears. This is mainly due to the fact
that the linear data fit of the declining experimental data curve falls into a lower slope than
initially seen, and thus, into a lower Young’s modulus. Nevertheless, the validation of the
material model is highly satisfactory.

5 Delamination Onset Criterion

The onset of delamination can be determined on the basis of stress-strength relations. In
particular, delamination occurs in pure interlaminar tension (mode I), pure interlaminar slid-
ing shear (mode II), and pure interlaminar scissoring shear (mode III), if the corresponding
interlaminar stress component exceeds the respective maximum interfacial strength. Here,
the interlaminar stress components are denoted by σ13, σ23, and σ33, respectively, where the
3-direction is normal to the considered interface. Then, the respective interfacial strengths
are Z13, Z23, and Z33.

To account for mixed-mode loading, the formulation of the onset criterion should incor-
porate the interaction of these modes. Due to the lack of available experimental data, failure
criteria predicting the initiation of delamination have not been fully validated, and hence
only few formulations exist. In this paper, the approach of Ye [14] is adopted, in which a
quadratic interaction of modes is assumed:

if σ33 > 0 :
(

σ33

Z33

)2

+
(

σ31

Z31

)2

+
(

σ32

Z32

)2

≥ 1 (10a)

if σ33 ≤ 0 :
(

σ31

Z31

)2

+
(

σ32

Z32

)2

≥ 1 (10b)

As the formulation presented in this paper is capable of taking into account finite strains,
it is important to accurately represent the corresponding stress components. First of all,
the stresses calculated by the present solid-shell formulation are expressed by the second
Piola-Kirchhoff stress tensor S, which has to be pushed to the current configuration

σ = 1

det F
FSFT (11)

where σ denotes the Cauchy stress tensor. From this, using Cauchy’s theorem t = σn, the
interlaminar traction σn and the interlaminar resultant shear τn can be achieved by

σn = nσ n (12)

τn =
√

||nσ ||2 − σ 2
n (13)

Table 3 Parameter set (non-zero
values) Parameter ϕ1 � μ Kani1

1 α1

Value 0.4 2900 17000 210000 2



Appl Compos Mater (2015) 22:171–187 179

Fig. 6 Traction vectors acting
on infinitesimal surface element

denoting the normal vector of the considered interface by n, see Fig. 6. For consistency,
the maximum interfacial strength in tension and resultant shear are referred to as Zσ and

Zτ =
√

Z2
31 + Z2

32, respectively. Consequently, the condition for delamination onset reads:

if σn > 0 :
(

σn

Zσ

)2

+
(

τn

Zτ

)2

≥ 1 (14a)

if σn ≤ 0 :
(

τn

Zτ

)2

≥ 1 (14b)

This condition has to be checked in each loading step and in each interface of the lam-
inated composite. Thus, the accurate prediction of the stress components in the interfaces
is essential for a reliable prediction of the initiation of debonding. Since the layers are usu-
ally rather thin, solid elements are not suitable to achieve sufficient accuracy. To overcome
this problem, spline approximations for the through-the-thickness stresses can be applied,
as proposed in [16]. Even so, using solid elements in the thin shell-like applications should
be avoided, and solid-shell elements are preferable.

Further, it should be noticed that this kind of criterion is suitable to predict the
delamination onset, but delamination growth is not covered.

6 Solid-Shell formulation

Using standard solid elements in thin structures would require a very high mesh density
to predict the stress distribution with sufficient accuracy. Hence, the solid-shell element
formulation is used as an alternative to avoid inefficient computations. Furthermore, the
different locking phenomena are cured by application of the EAS and ANS concepts. The
following derivation is based on the works of Schwarze and Reese [34–36].

The solid-shell concept is based on the two-field variational functional

g1(u, Ee) =
∫

B0

S(E) : δEc dV + gext = 0 (15)

g2(u, Ee) =
∫

B0

S(E) : δEe dV = 0 (16)
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where gext denotes the virtual work of the external loading. For this formulation, the total
Green-Lagrange strain tensor E is split additively into the compatible part Ec and the
enhanced part Ee coming from the EAS concept:

E = Ec + Ee (17)

In this work, isoparametric eight-node hexahedral finite elements are considered, such
that both the position vector of the reference configuration X(ξ) = [X1, X2, X3]T and the
displacement vector U(ξ) = [U1, U2, U3]T are approximated within the element by

Xi =
8∑

I=1

NIXiI and Ui =
8∑

I=1

NI UiI (i = 1, 2, 3) (18)

using tri-linear shape functions

NI = 1/8(1 + ξI ξ)(1 + ηI η)(1 + ζI ζ ) (I = 1, ..., 8) (19)

The position vector of the current (deformed) configuration reads

x(ξ) = X(ξ) + U(ξ) (20)

Then, introducing D = ∂U/∂ξ , the Jacobian matrices J and J̃ of the reference and the
current configuration, respectively, can be written as follows:

J = ∂X
∂ξ

= [J1, J2, J3] and J̃ = ∂x
∂ξ

= J + D = [J̃1, J̃2, J̃3] (21)

The columns of J and J̃ represent the covariant base vectors with respect to the reference
and current configuration, respectively. The contravariant base vectors with respect to the
initial configuration and the current configuration are denoted by

Hi = ∂ξi

∂Xj
ej = jijej and H̃i = ∂ξi

∂xj
ej = j̃ij ej (22)

These represent the rows of the inverse Jacobian matrices J−1 and J̃−1, respectively, the
coefficients of which are denoted by jij = (J−1)ij and j̃ij = (J̃−1)ij . With this definition,
the Green-Lagrange strain tensor can be written in terms of its Cartesian and covariant
components Eij and Ēij = Eξiξj , respectively,

E = Eij ei ⊗ ej = Ēij Hi ⊗ Hj (23)

Denoting the Voigt notation by (•̂) and exploiting symmetry as well as �ij = 2 Eij, the
latter can be stored into the 6 × 1 vectors

Ê = {E11, E22, E33, �12, �23, �13}T (24)
ˆ̄E = {Eξξ , Eηη, Eζζ , �ξη, �ηζ , �ξζ }T (25)

These can be transformed one to the other with the relation Ê = T ˆ̄E, where T is a
transformation matrix which depends on the coefficients jij . Consequently, the compati-

ble Green-Lagrange strain is written in the form Êc = T ˆ̄Ec. To cure curvature thickness
locking, the ANS concept is implemented. For this, the covariant compatible strain terms
Ec ζ ζ

∣∣
ξK := EK

c ζ ζ are evaluated at the sampling points K = A, ..., D, see Fig. 7, as
proposed in [45].
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Fig. 7 Sampling points of the ANS concept at reference element

Thereby, the covariant compatible strains can be interpolated within the shell mid plane
of the reference element by means of bilinear ansatz functions

N̄K = 1/4(1 + ξKξ)(1 + ηKη) (26)

to be evaluated in the points K = A, ..., D. In consequence, the assumed transverse normal
strain distribution reads

EANS
c ζ ζ = N̄AEA

c ζ ζ + N̄B EB
c ζ ζ + N̄C EC

c ζ ζ + N̄D ED
c ζ ζ =

D∑
K=A

N̄K EK
c ζ ζ (27)

In order to overcome the transverse shear locking, following [33], four sampling points
K = E, ..., H are used for the transverse shear term �c ηζ

∣∣
ξK

:= �K
c ηζ and K = J, ..., M

for �c ξζ

∣∣
ξK

:= �K
c ξζ , see again Fig. 7. Using the ansatz functions (26) for the respective

points, the assumed transverse shear terms read

�ANS
c ηζ =

H∑
K=E

N̄K�K
c ηζ and �ANS

c ξζ =
M∑

K=J

N̄K�K
cξζ (28)

The present solid-shell formulation utilizes a reduced integration scheme within the shell
plane (using one integration point), whereas a full integration is used in thickness direction,
which allows for choosing arbitrary numbers of integration points (at least two), see Fig. 8.
Thus, all integration points are located on the normal through the center of the element
defined by ξ � := (0, 0, ζ )T.

To cure volumetric locking as well as Poisson thickness locking, the EAS concept is
adopted. These locking effects are treated on the level of the integration points, which can
be expressed by Êe = Ê�

e, indicating values to be evaluated in the integration points by �.
Since in (27) the assumed transverse normal strain EANS

eζ ζ has been defined independently
of ζ , the according value Eeζ ζ is constructed as being linear in ζ in order to overcome the
locking effects, which reads

Êe = Ê�
e = T0 B̄�

e We (29)

Fig. 8 Sketch of the fastened
joint
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Fig. 9 Solid-shell element with
integration points at
ξ = ξ � := (0, 0, ζ )T

65

7

3

21

8

4
ξ

ζ η

in which the interpolation matrix B̄�
e = [0, 0, ζ, 0, 0, 0]T requires only one EAS degree-of-

freedom We. Here, T0 is the transformation matrix evaluated in the center of the element.
Concluding, the solid-shell element used in this paper is efficient due to the use of

reduced integration. Stability is achieved by means of a suitable hourglass stabilization. For
further details, the reader is referred to the works of Schwarze and Reese [34–36]. Since the
number of integration points over the thickness can be arbitrarily chosen, the element is pre-
destinated for the computation of thin layered structures where the fully three-dimensional
material behaviour plays an important role.

7 Numerical Examples

7.1 Mechanically Fastened Joint

For validation, the proposed method is applied to a mechanically fastened joint in a com-
posite sheet consisting of 8 layers in a symmetric assembly (0◦, 90◦,+45◦, −45◦)s , each of
which is made of unidirectional CFRP (Hexel T300/914). The length of the sheet is 200 mm,
the height 2 mm, the width 36 mm. It contains two circular holes of diameter 6 mm, which
are located at a distance of 36 mm from the end of the sheet, measured from the hole’s
center. In each of the holes, a very stiff tight-fitting bolt is placed and moved in longitu-
dinal outward direction of the sheet, as shown schematically in Fig. 9, applying 0.01 mm
displacement per time step.

(a) Overall mesh (b) Detailed view on bolt and whole

Fig. 10 Mesh of the fastened joint
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Fig. 11 Resulting zone of delamination onset

Due to the symmetry of the system, only one eighth of the sheet is considered in the
computation (see Fig. 10a), applying symmetric boundary conditions. In addition, the ele-
ments at the upper surface surrounding the hole are fixed in thickness direction to simulate
a finger-tight washer. In order to incorporate delamination, interface elements are located
between all layers, with only matrix material properties assigned. The latter are assumed to
be ten times thinner than the layers. Whereas the described solid-shell element is used for
both layers and interfaces –leading to a total number of 5800 solid-shell elements with 7164
nodes– the bolt is discretized by 375 hexahedral solid elements with 624 nodes (see Fig.
10b).

In order to compare the results with the ones obtained in [16], the material parameters
given therein are used. The parameters for the carbon fibers –taken from the Torayca T300
data sheet– and the epoxy matrix –taken from the HexPly 914 product data– are given in
Table 4. In addition, the values for the interfacial strengths are given as reported in [16].

Fig. 12 Geometry and setup of the panel
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Table 4 Material properties

Tensile modulus fiber [GPa] 230

Tensile modulus matrix [GPa] 3.9

Calc. shear modulus matrix [GPa] 1.4

Poisson’s ratio matrix 0.41

Interfacial traction strength Zσ = Z33 [MPa] 76

Interfacial shear strength Z31 = Z32 [MPa] 79

Interfacial resultant shear strength Zτ [MPa] 79
√

2

Thereby, the non-zero parameters for the described model are computed as follows,
taking into account the fiber volume fraction ϕ1 = 60 %;

� = 6300 MPa, μ = 1383 MPa, Kani 1
1 = 1.15 × 105 MPa, α1 = 2 (30)

The location of delamination initiation is shown in Fig. 11, which corresponds to the
deformation state, where the delamination onset condition is exceeded first. Delamination
occurs at first close to the boundary of the hole in the lower surface of the model, which is
the middle surface of the sheet. The location of delamination is reasonable and in agreement
with the results presented in [16]. Furthermore, experimental data for this problem can be
found in [46]. Therein, the cross head displacement corresponding to delamination onset
is approximately given by 1.15 mm, whereas in the current calculation, the delamination
initiates after time step with 1.2 mm.

7.2 Panel with Co-cured Stiffener

As a second example, the proposed method was applied to a panel with a co-cured stiffener,
which had already been investigated in [17]. The panel’s length and width were 203 mm
and 25.4 mm, respectively, while the stiffener’s length was 50 mm at the panel’s skin and
42 mm at the uppermost layer, see Fig. 12. The flange was composed of 10 plies with
a lay-up of (45◦/90◦/ − 45◦/0◦/90◦)s , whereas the panel consisted of 14 plies with an
(0◦/45◦/90◦/ − 45◦/45◦/ − 45◦/0◦)s assembly.

All layers were made of unidirectional CFRP, the properties of which are the same as in
the previous example (see Table 4) except for the fiber volume fraction ϕ1 = 62 %. The
panel was clamped at the left end, while it was loaded by a force in longitudinal direction
at its right end. Since the onset of debonding was expected at the tip of the stiffener flange,

(a) Overall mesh (b) Detailed view on panel and flanged stiffener

Fig. 13 Mesh of the stiffened panel
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Fig. 14 Resulting zone of delamination onset

the mesh was refined in this region as illustrated in Fig. 13a and b. In order to incorporate
delamination, interface elements were located between all layers, which were furnished
with material properties of the matrix alone. The latter were assumed to be ten times thinner
than the layers. The described solid-shell element was used for both layers and interfaces,
leading to a total number of 9825 solid-shell elements with 25152 nodes.

The location of delamination initiation is shown in Fig. 14, which corresponds to the
time step, in which the delamination onset condition was met first. Delamination occurred
at first at the tip of the stiffener flange, as was expected. This location of delamination is
reasonable and in agreement with the results presented in [17].

In addition, experimental data for this problem are provided in [17]. Therein, the maxi-
mum displacements from extensometer measurements corresponding to delamination onset
are reported to be in the range of 0.11 mm to 0.15 mm. Unfortunately, the exact location
of the measurement points is not given, which does not allow a quantitative comparison.
However, in the current calculation, the computed displacements at delamination onset are
in a higher range up to 0.18 mm. This difference can be explained by the fact that resid-
ual stresses are present in the specimens due to the manufacturing process, which were not
taken into account in the present calculation.

8 Conclusion

For many technical applications of fiber-reinforced composites, predicting the onset of
delamination is essential for appropriately designing the considered structure. For this, a
delamination onset criterion based on stress-strength relations has been suggested in this
paper, which requires an accurate representation of the through-the-thickness stress dis-
tribution. The proposed solid-shell element is particularly suitable to achieve the required
accuracy especially in the thin shell-like applications considered here. The formulation
allows for including either unidirectional long fibers or woven fabrics with two different
families of fibers, incorporating a fully three-dimensional, anisotropic, micromechanically
motivated material model, which has been validated experimentally. Concluding, the pro-
posed method is capable of predicting the initiation of delamination of fiber-reinforced
composites in shell-like structures.
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