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tainable with single phase materials. This paper examines the use of multi-objective genetic
topological optimization to design blast resistant composites. The fundamental problem of
the design of a two-layer composite plate that is subjected to blast is considered using the
finite element method. Two materials are used to form the microstructure of each layer. The
microstructure and thickness of each layer is optimized for the two-layer plate to minimize
the weight and stress-to-strength ratio. A set of optimal blast resistant composite micro-
structures that meet design requirements is demonstrated.

Keywords Finite element method . Composites . Topology . Optimization

1 Introduction

Composite materials are being used for structural applications due to their high strength-to-
weight ratio and flexibility in obtaining desired material properties by intelligently combin-
ing different materials. This issue becomes critical when structural applications require
mechanical properties that are not available with currently used or known materials.
However, the lack of plasticity mechanisms leading to premature failure is a major downfall
of structural composites when used for blast resistance [1, 2]. This limitation may be
overcome if the composite material is designed in such a way that the weak phases are
allowed to fail while the strong phases take over the stress via stress redistribution so that the
overall composite does not fail. Micro and nano-synthesis may be used to reinforce the weak
phases with the strong phases. Blast resistance may also be increased in laminated compo-
sites by adjusting the stiffness of the composite layers such that the stress evolution in the
composite material does not result in failure of the weak layer. This concept may be realized
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Abstract Composites make it possible to produce materials with properties that are unat-



via multi-objective topological optimization using the microstructural homogenization
method.

Topology optimization is of great interest to the aerospace and automobile industries. It
allows for the design of structures with holes or cavities that reduce weight while maintain-
ing desired stiffness. The introduction of homogenization techniques by Bendsoe and
Kikuchi [3] reintroduced topology optimization to structural design. Topology optimization
has been successfully applied to optimize structural geometry like trusses and frames [3, 4],
and to composite plates and membranes [5, 6]. The objective functions in topology optimi-
zation are typically compliance and/or weight, but other objectives such as dynamic
response and thermoelastic characteristics have also been considered [7, 8]. The idea of
enhancing the elastic structural response has been examined with different methods in the
past. The automotive industry has examined using shape optimization and topology optimi-
zation for mechanical design of automobile parts [9]. Size and shape optimization were
demonstrated incapable of solving topology problems for either discrete or continuous
structures [10]. A limitation of shape optimization is having domains with free boundaries,
whereas topology optimization sets a range of possible material alternatives and chooses the
optimal material alternative for given constraints and conditions. The topology optimization
must be formulated correctly to ensure that the problem is not ill posed [10].

Homogenization theory achieved a breakthrough for simulation of composite structures.
It enables deriving macro field equations from micro field equations. Sanchez-Palencia
examined wave propagation in heterogeneous media using homogenization theory [11].
Keller studied the flux through a porous media using techniques in homogenization [12].
Bakhvalov and Panasenko introduced some of the first numerical techniques for
solving the homogenization equations [13]. De Kruijf et al. [14] presented an opti-
mization algorithm for material design in two dimensions while considering multiple
objectives. The optimization algorithm was formulated as a minimization problem that
was subject to volume and symmetry constraints. A Pareto front of optimal solutions
was obtained by using the multi-objective weighted sum method to address both
stiffness and thermal conductivity criteria [14]. Guedes and Kikuchi introduced an
adaptive finite element technique for elasticity representation in homogenization of
composites [15].

The accurate simulation of explosive dynamic behavior is necessary when optimizing
composite laminates for blast resistance. A blast event is an event where a considerable
amount of energy is released over an extremely short time period. A pressure wave
represents the layer of compressed air that travels in front of the hot gases that are created
during the reaction. This wave contains most of the energy released during the explosion.
The time history of the blast wave is described by the positive and negative pressure
impulses and the magnitude of the value of the peak overpressure [16]. The simulation of
blast events is extremely complicated and requires a detailed knowledge of the pressure time
history, structural transient response, fluid–structure interaction and structural behavior
under high strain rates [17]. The multi-physics environment requires coupling of methods
to realistically simulate the transfer of the pressure wave to the composite plate. Therefore,
Computational Fluid dynamics (CFD) is suggested for simulating fluid–structure interaction
during blast events [18].

The remainder of the paper is structured as follows: Methods used in this paper are
explained in Section 2. A case study is demonstrated in Section 3, in which two
materials, Aluminum and Titanium, are distributed in a varying microstructure of a
two-layer composite plate. The layers are also assigned different thicknesses to obtain optimal
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blast resistance of the composite laminate. Section 4 focuses on results, followed by
conclusions in Section 5.

2 Methods

2.1 Homogenization

The homogenization method is used to calculate the average constitutive parameters of a
composite material. This is necessary for analysis of inhomogeneous material because the
elasticity tensor Eijkl varies at the microscopic scale. This method may be applied to periodic
composites in which the composite consists of a periodic unit cell that is repeated as shown
in Fig. 1a. An assumption must be made in which the microstructure is much smaller than
the part or structure that will be used in a particular application. We consider a periodic
composite body as shown in Fig. 1a. The material behavior at the macroscopic scale is
described by coordinate system X while the microscopic scale is defined by coordinate
system Y. Using the homogenization method for elasticity one can consider:

Y ¼ 0; Y1½ �; ½0; Y2�; ½0; Y3� 3� Dð Þ ð1Þ

Y ¼ 0; Y1½ �; ½0; Y2� 2� Dð Þ ð2Þ
Y1 is the horizontal length, Y2 is the vertical length, and Y3 is the depth of the unit cell.

For an inhomogeneous material the microscopic displacement u may asymptotically be
expanded with relation to the base cell size η [19].

u ¼ u0 x; yð Þ þ η u1 x; yð Þ þ η2 u2 x; yð Þ þ � � � ð3Þ

y ¼ x=η ð4Þ

Fig. 1 Periodic composite and modeling of a discretized unit cell
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Considering Eq. (3), only the first order terms of the asymptotic expansion are used to
calculate the strain fields. The strain field can be broken down into two different components
when using only first order terms from Eq. (3) as follows:

"0ij ¼ 1=2 du0i dx= j þ du0j dx=
i

� �
ð5Þ

"�ij ¼ 1=2 du1i dy= j þ du1j dy=
i

� �
ð6Þ

The overall microscopic strain field εij is therefore a combination of the of the strain field
due to the average displacement over the unit cell ε0ij and the fluctuation strain ε*ij, which is
due to the first order inhomogeneous nature of the composite unit cell [19]. The size of the
unit cell η is allowed to go to zero. Then four linearly independent strain fields are applied to
the unit cell in order to calculate the stiffness matrix for the composite. Four unit tensors are
applied in 2-D and nine unit tensors are applied in 3-D. In 2-D the four unit tensors
are ε0(11)ij0[1,0,0,0], ε0(22)ij0[0,1,0,0], ε0(12)ij0[0,0,1,0] and ε0(21)ij0[0,0,0,1]. The
homogenized stiffness tensor may be written as:

EH
ijkl ¼

1

Y

ð
Y

Eijpq "0 klð Þ
pq � "� klð Þ

pq

� �
dY ð7Þ

By applying these test strains along with the change in η to 0, the fluctuation strain is the
solution to the following variation type problem.ð

Y

Eijpq "ij nð Þ"� klð Þ
pq dY ¼

ð
Y

Eijpq "ij nð Þ"0 klð Þ
pq dY 8n 2 V ð8Þ

The four independent strain fields must be applied to Eq. (8) to calculate ε*ij. All ε
*
ij are

then substituted into Eq. (7) to find all of the stiffness coefficients in the homogenized
stiffness tensor EH

ijkl. The stiffness matrix is symmetric such that Eijkl0Ejikl0Eijlk0Eklij. This
symmetry reduces the number of required test strain fields to 3 for 2-D and 6 for 3-D [19].

2.2 Blast Load Simulation Using CFD

CFD modeling may be used to realistically model the pressure wave generated due to a point
explosion of conventional high explosive material. The model allows for the input of
parameters such as burial of explosive material (if modeling underground generated blasts),
height from surface or explosive material, radial distance from explosive charge as well as the
TNT equivalent or weight in kilograms of explosive. CFD modeling typically integrates finite
elements, finite difference and finite volume methods to model fluid dynamics. Due to the
number of different material interactions, a Lagrangian frame of reference is used for solid
modeling while an Eulerian frame of reference is used for modeling fluid dynamics [20].

2.3 Finite Element Simulation

The blast loading upon the composite plate is simulated using the finite element method. The
Finite Element Analysis (FEA) method is used to discretize the plate into finite elements that
are based upon the material properties of the given layers. The problem of interest requires a
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dynamic model to simulate the effects of a nonlinear blast wave due to high explosives upon
the two-layer plate. A transient analysis is used to calculate the stresses and strains as a
function of both position and time. The Newton–Raphson method is used to solve the
nonlinear problem of the iterative transient analysis. The direct integration method is used to
solve the equation of motion. At each step or sub-step, the equation of motion is integrated
using Newmark method [21], then the groups of static equilibrium equations are solved
simultaneously.

2.4 Multi-objective Genetic Optimization

Classical optimization approaches have always considered a single objective function while
dealing with all other objectives as constraints. The fundamental difference between single-
objective and multi-objective optimization is the ability of multi-objective optimization to
avoid the artificial fixes needed for single-objective optimization methods to address trade-
offs between different objectives. This is achieved by getting candidate designs to lie in the
Pareto front, typically known as Pareto-optimal solutions [22].

Two categories of multi-objective optimization methods are identified in the literature
[23]. The first category utilizes classical single objective optimization methods while
reformulating the problem to address multi-objectives considering preferences [24]. Meth-
ods in the first category include techniques such as the weighted sum method, the
ε-constraint method and the hierarchical optimization method [24]. The second category
of multi-objective optimization methods establishes an optimization method that is multi-
objective in nature. Rosenberg [25] suggests using genetic search to simulate the behavior of
single celled organisms with multiple objectives. The multi-objective genetic algorithm
(MOGA) allows for the formulation of multi-objective optimization problems without the
need to specify weights on the various objective function values. This is achieved by
considering the concept of non-dominant solutions (analogous to Pareto optimal solution)
suggested by Deb [26]. MOGA directly identifies non-dominated design points that lie on
the Pareto front. The advantage of the MOGA method over the conventional weighted-sum
method, is that MOGA finds multiple points along the entire Pareto front whereas the
weighted-sum method produces only a single point on the Pareto front. Moreover, MOGA
is more capable of finding points on the Pareto front when the Pareto front is non-convex.
However, the use of a genetic algorithm (GA) search method in MOGA causes the MOGA
method to be much more computationally expensive than conventional derivative based
multi-objective optimization algorithms. Srinivas and Deb [27] proposed non-dominated
sorting genetic algorithms (NSGA). NSGA basically finds the non-dominated set of points
(which constitute the first front) and gives them a large fitness value. This process continues
until the entire population is classified into several domination fronts by giving smaller
fitness values for the new fronts. Multiple techniques have been suggested to reduce
computational time by considering rules to preserve diversity and keep the elite [28, 29].
MOGA has been successfully applied to many problems including topology optimization
[30, 31].

3 Case Study

The case study considers the design of blast resistant two-layer composite plate in which two
materials, Aluminum and Titanium, are distributed in each layer. The mechanical properties
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of Aluminum include yield strength (55 MPa), ultimate tensile strength (115 MPa), density
(2,700 kg/m3), Young’s modulus of Elasticity (70 GPa) and Poisson’s ratio (0.33). For
Titanium, its properties include yield strength (170 MPa), ultimate tensile strength
(234 MPa), density (4,500 kg/m3), Young’s modulus of Elasticity (116 GPa) and Poisson’s
ratio (0.34). The composite plate is a two-layer cylindrical plate with a 250 mm radius and a
thickness that can range between 10 and 30 mm per layer. The plate is subjected to an under
soil buried explosive.

3.1 Homogenization Method Applied to the Two-layer Composite

The process of determining the properties for a given layer of the composite for a
single iteration is discussed here. This process is repeated for all iterations during the
optimization procedure. A unit cell of the composite material is used for determining
the properties of each layer. The unit cell is discretized into 3×3 sub cells as shown
in Fig. 1b. The unit cell consists of 9 total elements. Each of the elements is then
assigned either the material properties of Aluminum or Titanium. Since this is a 2-D
problem, only three independent unit strain fields need to be applied to the model in
order to extract the material properties. The three strain fields are shown in Fig. 2.
There are a total of 16 nodes in each unit cell model. After the displacements are
applied, the FEA model is solved for the unknown stresses at all nodal locations.
The homogenization method allows for the calculation of the averaged properties of
the unit cell. The four independent components of the stiffness matrix can be
calculated as:

S11 ¼ 1

E1
; S12 ¼ �n12

E1
; S22 ¼ 1

E2
and S66 ¼ 1

G12
given

"1
"2
g12

8<
:

9=
; ¼

S11 S12 0
S12 S22 0
0 0 S66

2
4

3
5 σ1

σ2

t12

8<
:

9=
;

ð9Þ

Fig. 2 Three load cases showing unit strain in (a) radial direction, (b) y direction and (c) shear
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Then the stresses are summed for each direction and divided by the number of total
nodes. This new stress value represents the average stress for the homogenized unit cell. The
homogenized properties of the unit cell are then calculated as:

n ¼ σ11σ12

σ11σ22 þ σ12 σ12 � σ21ð Þð Þ ;E1 ¼ σ11 σ11σ22 � σ12σ21ð Þ
σ11σ22 þ σ12 σ12 � σ21ð Þð Þ ;

E2 ¼ σ11σ22 � σ12σ21ð Þ
σ11

;G12 ¼ t123

ð10Þ

Where the subscript numbers on the left hand side of Eq. (10) represent the modulus direction,
the subscript numbers on the average stress values (σij) represent the load case number and the
stress direction respectively and τ123 is the average shear stress from load case 3.

3.2 CFD Model

CFD allows for modeling of the transient solid and fluid interactions. The model consists of
2 kg of TNT that is detonated at a location 150 mm below the soil surface. The explosion is
simulated and the pressure transfer to the composite plate is monitored for 1 ms. The
composite plate is centered above the explosive material at a height of 260 mm above the
soil surface as shown in Fig. 3. The model is simulated in a 2-D plane in which quadrilateral
elements are used for discretizing the simulation space. ANSYS-AUTODYN was used to
simulate the pressure wave generated by the high explosive material [32]. Five materials
were used in the simulation process: air, sand, TNT, Aluminum and Titanium. The gas
dynamics are calculated using the Euler algorithm, while the solid dynamics are simulated
with the Lagrangian algorithm [32]. The air was simulated as an ideal gas. The Jones-
Wilkins-Lee equation of state is used to simulate the explosion of the TNT [32]. The time
history of the pressure wave was recorded by placing gauges along the lower surface of the
composite plate where the blast will first impact the composite plate. The pressure of the
blast wave was then used in modeling the transient structural behavior of the plate in finite
element analysis. The gauges were placed every 25 mm along the surface of the plate.

Fig. 3 Mesh of CFD model
showing buried TNT and
composite plate
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3.3 FEA Model

The FEA model is simulated using ANSYS. The composite plate was modeled as a 2-D
axisymmetric model using transient analysis. As discussed above, the homogenization
method was used to determine the properties of the composite plate. The properties used
by the FEA model are the modulus of elasticity in the radial direction, the modulus of
elasticity in the y direction, Poisson’s ratio and the shear modulus. The density of the
layers is calculated using the rule of mixtures method. The thickness of each layer of the
composite plate is a design variable. This necessitates the use of an automatic meshing
routine in the FEA. Eight node Plane 82 elements are used for meshing the two-layer
composite plate. Plane 82 elements have two degrees of freedom per node and have the
capability to simulate plasticity, creep, stress stiffening, large displacement and large
strain. A zero y displacement boundary condition is forced upon the upper right node to
restrain the model. This is the equivalent boundary condition to constraining a 3-D
cylinder from moving in the y direction along its circumference. A 3-D expansion of the
2-D mesh is shown in Fig. 4a. At each load step in the FEA, a specific load profile output
from the CFD simulation is applied to the bottom layer of the composite plate. The load
profile shown in Fig. 4b is an example of a specific profile used at a given time for
analysis. It may also be observed that location of maximum pressure does not occur at the
center of the plate, nor is the blast wave uniform. The FEA solution is obtained using the
Newton–Raphson method. For each time step, the stress distribution in both layers of the
composite plate is saved for post processing.

3.4 MOGA

NSGA was used with the steps shown schematically in Fig. 5. A population size of 50 is
selected and generated randomly without duplicates. Binary representation is used. For
crossover and mutation, design variables are selected randomly from two parents to produce
two children. Crossover rate is selected as 0.8, while mutation rate is selected as 0.1.
Domination-based fitness assessment is used to force the algorithm to move towards the
non-dominated frontier. All non-dominated designs are assigned a layer of 0, then from what
remains, all the non-dominated ones are assigned a layer of 1, and so on until all designs

Fig. 4 a Finite element model showing the two-layer composite plate considered in the case study with ¼
removed for clarity and b pressure distribution at t00.35 ms
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have been assigned a layer. Then, these values are negated for the higher-is-better fitness
convention. For replacement elitist strategy is used where most fit members are selected and
the rest are discarded.

Niche pressure is applied to prevent the algorithm from converging to a single solution.
The solutions that are too close to the current design are removed except the ones that are
defined as the maximal or minimal in all but one objective dimension. A distance of 0.01 and
0.1 for stress-to-strength ratio and weight, respectively, are selected. Test for convergence
includes the tests for how the expanse of the front is changing, density of the non-dominated
front and goodness of the non-dominated front. The maximum number of function evalua-
tions is set to 100.

Two objective functions representing the maximum stress-to-strength ratio and the weight
of the composite denoted as f1 and f2 are defined as:

f1 ¼ max 1�m� n
max σTm

� �
σUT
m

;
max σC

m

� �
σUC
m

� �
& f2 ¼

XN
m¼1

p r2 Tm ρm ð11Þ

In this formulation, f1 is the maximum stress-to-strength ratio in all individual layers and
f2 is the weight of the composite. N is the total number of layers in the composite; max σT

m

� �
is the maximum tensile stress observed in the mth layer due to the applied stress wave; σUT

m is
the ultimate tensile strength of the mth layer; max σC

m

� �
is the maximum compressive stress

observed in the mth layer due to the applied stress wave; σUC
m is the ultimate compressive

strength of the mth layer. r is the radius of the composite plate, Tm is the thickness of the mth

Fig. 5 Flowchart showing optimization method and its integration with the blast simulation
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layer and ρm is the density of the mth layer calculated using the rule of mixtures based on the
unit cell of that layer. The optimization problem is formulated as a multi-objective nonlinear
optimization that targets to minimize the maximum stress-to-strength ratio and to minimize
weight of the composite while meeting the bounds for layer thicknesses as follows:

Minimize f1; f2 Subject to Tmin
m � Tm � Tmax

m 1 � m � N ð12Þ

For our case study, we have a two-layer (N02) axisymmetric composite plate with r0
250 mm. The thicknesses of each layer in the model may vary between Tmin

m ¼ 10 mm and
Tmax
m ¼ 30 mm. The layers are given elastic properties that vary between 116 GPa for

Titanium and 70 GPa for Aluminum. These bounds are the extreme limits of the design
space for a given layer.

There are a total of 20 design variables, 18 of which are the elastic properties and 2 of the
design variables are the thickness of each layer. In the optimization process the vector of
design variables (DV) is passed by the optimization environment to the simulation algorithm
to compute the objective function values: maximum stress-to-strength ratio overall layers
and the weight of the composite plate. The optimization finishes when the stopping criteria is
met and the final design variables are then saved.

4 Results and Discussions

The optimization process allowed identifying Pareto-optimal solutions for the material
microstructures across the two layers to minimize the stress-to-strength ratio and weight.
The MOGA method produced a Pareto front in which each Pareto point represents a
microstructure for layer 1 with thickness 1 and a microstructure for layer 2 with thickness
2. The results of the MOGA optimization are presented in Fig. 6 and in Table 1. Figure 6
shows microstructure and thickness of each layer for four example solutions along the Pareto
front. The black represents the Titanium phase and the white represents the Aluminum
phase. Each of the points shown in Fig. 6 represents an optimal solution. Table 1 presents ten
solutions some of which are labeled along the Pareto front.

As it can be observed from Fig. 6, the solutions with lower stress-to-strength ratios such
as point 1 have the highest overall composite weight. On the other hand, solutions like point
9 have a low composite weight but a relatively high stress-to-strength ratio. Any composite
structures that exhibited stress-to-strength ratios above 1.0 are excluded. Those solutions
with stress-to-strength ratios below 1.0 are all viable solutions and should have a good blast
resistance. It may also be observed from Fig. 6 that the amount of Titanium used in the
composite is greatly reduced when moving from low stress-to-strength ratios to high ones
approaching 1.0 with a relatively low weight. This is important because Titanium is a much
heavier metal and more expensive to process than Aluminum. By considering other con-
straints such as cost, a solution may be chosen from any of those solutions on the Pareto
front. It is obvious from Fig. 6 and Table 1 that changes in the material’s microstructure as
well as the two layers’ thicknesses allow for changing the stiffness distribution across the
composite plate and therefore producing stresses in the composite lower than the material
strength of each layer. Some of the non-dominated solutions produced stress-to-strength
ratios around 0.6 while reducing the overall weight to close to 60% of the maximum possible
weight using only titanium in each layer. The overall stress was reduced even further by
allowing the thickness to change between 10 and 30 mm per layer.
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Fig. 6 Pareto front for weight and stress-to-strength ratio as two objective functions with different material
microstructures and thicknesses per layer

Table 1 Summary of results presenting ten Pareto solutions

Solution # T1 (mm) T2 (mm) Stress/Strength Weight (kg) Micro 1 Micro 2 
1 26.7 28.7 .396 43.4 

2 29.9 25.9 .436 40.6 

3 26.1 28.7 .500 36.5 

4 17.7 28.4 .561 34.1 

5 13.5 29.2 .618 31.0 

6 11.2 28.7 .675 28.9 

7 11.2 28.7 .711 27.4 

8 11.2 28.7 .754 26.9 

9 17.7 21.8 .790 25.5 

10 11.2 16.8 .945 21.0 
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A unit cell of 3×3 for each layer was chosen for the simulation environment because
discretizing the solution space increases the number of required calculations exponentially.
Using MOGA, 1,000 evaluations resulted in 67 solutions. 16 of these solutions were
infeasible because they yielded a stress-to-strength ratio greater than 1.0. For the 3×3 case
1,000 evaluations is only about 0.38% of the total solution space. In order to cover 0.38% of
the 4×4 case would require 16,384,000 evaluations. Currently, the run time is 43.7 h, while
increasing the unit cell to 4×4 would require 7.16 e5 hours. The exponential growth of the
solution space and run time is the reason why the 3×3 arrangement is the smallest
microstructure that will yield useful information regarding the composite layup, while being
able to solve in a reasonable amount of time. Unless a parallel computing approach is
considered, which can significantly reduce the computational time, a 3×3 microstructure is
the most suitable formulation of the problem. Further work is underway to re-formulate the
optimization algorithm considering parallel computing capabilities.

Although gradient based methods may require less computational time, a decision was
made to use MOGA based on our preliminary investigation. By using MOGA for the multi-
objective optimization, artificial fixes were avoided. Moreover, using the binary encoding,
artificial filters were avoided, which would normally be required if gradient based optimi-
zation was used. Based on the weights chosen and the seeding point the gradient based
optimization methods might converge to a very good solution. However, given the ability of
MOGA to converge independent of the types of weights chosen and the seeding point, it
clearly surpasses gradient based methods for the problem considered in this paper. More-
over, another advantage of the MOGA method is that it finds multiple points along the entire
Pareto front whereas the weighted-sum method or other conventional methods would
produce only a single point on the Pareto front.

A major limitation of the above work is its use of implicit method to model the transfer of
the blast wave to the composite plate. Future work will include an explicit blast model that is
used to simulate the blast process every time the material properties of the layers are
changed. This will increase the accuracy of the optimization results while yielding a more
realistic blast simulation problem. Explicit blast modeling is necessary because when a blast
wave encounters a solid object the pressure is transferred to the object surface and causes the
object to deform based on the stiffness of the material. This means that the stiffness of the
plate affects the magnitude and shape of the pressure transfer. Currently, the pressure transfer
is assumed to be the same for all microstructures. As the pressure transfer changes, the stress
distribution will simultaneously change requiring a different optimal microstructure than
when assuming the same pressure wave. The blast model may also be modified to account
for different soil properties, which might alter the blast pressure. Finally, composite plate
optimization can be extended to incorporate probabilistic definition of safety using reliability
theory [30].

5 Conclusions

The fundamental problem of design optimization of a two-layer blast resistant composite
plate is examined. A composite plate subjected to a non-uniform blast load is considered.
CFD is used to obtain spatial and temporal distributions of the blast load. FEA is used to
calculate the stress evolution in the plate due to the blast load. The design optimization
process was performed where both material microstructure and thickness were concurrently
optimized. A multi-objective genetic algorithm optimization method is developed and used.
A case study of a two-layer axisymmetric Aluminum and Titanium composite plate
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subjected to blast is discussed. The results show that several microstructures and thickness
alternatives can be used. It is demonstrated that the use of the homogenization method can
provide design alternatives for blast resistant composites that are not available using classical
design methods.
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