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Abstract A modeling method aimed at eliminating the need of explicit crack
representation in bi-dimensional structures is presented for the simulation of the
initiation and subsequent propagation within composite materials. This is achieved
by combining a meshless method with a physical stress–displacement based criterion
known as Cohesive Model. This model consents to apply a penalty-based approach
to delamination modeling where a variable penalty factor along the crack segment
allows to loosen or tight the two parts according to their relative displacements.
Results are showed for classical single mode loading benchmark cases and compared
to experimental results taken from the literature.
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1 Introduction

Explicit cracks simulation is nowadays one of the most challenging tasks in compu-
tational fracture mechanics, especially for three-dimensional composite structures.
Even in two-dimensional structures, the presence of multiple cracks could be a
weighty task to perform. Moreover methods based on classical fracture mechanics
are not always able to explain the physical process of initiation. Therefore, methods
that rely just on the physics of the problem rather than only the geometry of the
fracture would be in this perspective highly desirable. The main tasks in simulations
of cracks are initiation and propagation. The first one is usually based on the strength
of materials theory and employs stress criteria normally based on point or average
stress, while propagation is modeled with fracture mechanics tools based on the
evaluation of the energy release rate G.
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Cohesive models are based on the Dudgale–Barenblatt [1] cohesive zone ap-
proach, subsequently extended by Hillerborg [2] and Needleman [3], which gives
a physical explanations of the failure process, whereas classical fracture mechanics
lacks of a physics-based description [4].

In the cohesive zone model, it is postulated the existence of a narrow band
of vanishing thickness ahead of a crack tip which represents the fracture process
zone. The bonding of the surfaces of the zone is obtained by cohesive traction,
which follows a cohesive constitutive law. Many different constitutive laws exist, for
example the exponential or the bilinear softening model. These laws are typically
regulated by both strength of material parameters (like the tensile strength) and
fracture mechanics based parameters like the critical fracture energies for the
considered fracture mode. Crack growth occurs when a critical value is reached at
which cohesive traction disappears.

Conversely to classical fracture mechanics, the cohesive zone modeling approach
does not involve crack tip stress singularities and failure is regulated by relative
displacements and stresses.

Standard finite elements have the major disadvantage that crack path is highly
dependent on the mesh structure, since discontinuities must follow inter-element
boundaries, therefore capturing of a propagating discontinuity is achieved by con-
stant re-meshing of the structure. This procedure is costly not to mention the
degradation of the accuracy of the solution.

An important progress in this sense has been recently obtained with the intro-
duction of partition of unity-based methods (PUM) [5] like extended f inite element
(XFEM) [6–9] and meshless methods like Element-Free Galerkin [10] or Reproduc-
ing Kernel Particle Method (RKPM) [11].

In the papers of [12] and [13], a new method called cohesive segments method is
introduced.

In [12] the PUM idea is applied in the context of cohesive cracks. A full non-linear
model is developed, with tractions acting on the cohesive surfaces. These tractions
are depending on the opening displacement (or discontinuous displacement) and
used to model crack propagation in three-points bending test and single edge notched
beam.

In [13] these segments are introduced under a FE framework, similarly to the
Extended Finite Element Method (XFEM). Using a particular instance of a PUM ,
a continuous crack is approximated by a set of segments, each one of them split the
domain in two parts. At each of these interfaces, a cohesive model is used in order
to simulate the debonding of the parts. It can be shown that by doing so, the total
displacement is enriched by a sum of Heaviside functions that can effectively repre-
sent the discontinuity. In this way, additional unknowns are introduced to the final
algebraic system of equations. These segments can be introduced at any time of the
calculation, whenever a stress-based failure criteria is satisfied, and the orientation
of the onset cohesive segment is given by the principal direction of the stress. In
this way, no explicit representation of the crack surface is needed allowing to model
arbitrary crack growth, which is extremely useful when the crack propagation path
is not known a priori. The drawback of this method is that additional unknowns are
introduced at each crack segment. The unknowns are localized to the nodes of the
elements cut by the discontinuity.

In [14] the same approach is used to efficiently simulate dynamic crack
propagation.
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A first application of the cohesive segments combined with meshless methods
rather than FE, can be found in [15].

When the crack path is known a priori, like in the case of single mode delami-
nation, the same approach can be used without adding additional unknowns. In this
case, the domain can be decomposed in two parts connected by a penalty parameter,
as also suggested in [16] and the cohesive segments are located at the edges of the
subdomains.

The variational problem is formulated for each sub-domain, then a coupling term
between their displacements is introduced. The coupling term derives from the
application of the cohesive model at the separation, resulting in a final nonlinear
set of equations that must be solved iteratively.

The coupling term is nothing else than a penalty factor defined on the whole
contact segment. Penalty terms are well-known in the meshfree community since,
conversely to FE, the shape functions do not posses the Kronecker condition [17].
This condition allows in FE to directly impose essential boundary conditions on
the nodes located on the constrained boundaries. For simple constraints, though,
a constant penalty factor is sufficient throughout the whole boundary. The same
approach can be used to connect or disconnect two or more objects.

2 Equations of Equilibrium

Assuming that there are no body or inertia forces, the strong form of the equilibrium
equations along with the boundary conditions can be written as

∇ · σ = 0 x ∈ � (1)

nt · σ = t̄ x ∈ �t (2)

u = ū x ∈ �u (3)

nc · σ = τ(v) x ∈ �c (4)

where � is the entire domain, σ is the Cauchy stress tensor, nt is the normal unity
vector of the boundary �t where the traction t̄ is prescribed, nc is the normal
unity vector of the boundary �c where the traction τ(v) is prescribed and �u is the
boundary where the displacement ū is imposed.

The traction τ depends on the displacement jump v on the cohesive segment �c,
which divides � in two sub-domains �1 and �2 as in Fig. 1. The displacement jump
v(x) is defined as follows

v(x) = u1(x) − u2(x) x ∈ �c (5)

where u1(x) is the displacement of sub-domain �1 and u2(x) is the displacement of
sub-domain �2.

Using displacement u as test function for Eqs. 1, 2 and displacement jump v as test
function for Eq. 4, the variational principle can be written as

∫
�1

δεTσd�1 +
∫

�2

δεTσd�2 −
∫

�t1

δuT t̄d�t1 −
∫

�t2

δuT t̄d�t2

+ α

2
δ

∫
�u1

(
u − ū

)2
d�u1 + α

2
δ

∫
�u2

(
u − ū

)2
d�u2 +

∫
�c

δvTτd�c = 0 (6)
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Fig. 1 Description of the
problem

where the penalty method is used to enforce essential boundary conditions (Eq. 3)
and α is called penalty parameter, which is usually a very large number. In all the
computations, an arbitrarily large value of the penalty factor of 1e15 has been used.
If the penalty factor is too low, then constraints are not imposed efficiently, leading
to inexact results, while a penalty factor too high can lead to undesired instabilities
during the numerical solution.

Varying this number it is possible to loosen or tighten a certain constraint. This
will be useful in the next sections with the application of the cohesive model at the
crack interface �c. In Eq. 6 �t1 and �u1 refer to the part of boundaries �u and �t that
belong to sub-domain �1, whereas �t2 and �u2 the ones that belong to �2.

3 Reproducing Kernel Particle Method

A brief review of the construction of Reproducing Kernel Particle Method (RKPM)
shape functions is reported in this section. For further details please refer to [17]
and [18].

In meshfree methods, the shape functions are derived only by relying on nodes
rather than elements, as in FE. Therefore, in theory, no mesh is needed to construct
the shape functions.

The approximation uh(x) of a generic function u(x) can be written as

uh(x) =
N∑

I=1

φI(x)UI (7)

where φI : � → R are the shape functions (Fig. 2) and UI is the i-th nodal value
located at the position xI where I = 1, . . . , N where N is the total number of nodes.

The I-th shape function is given in RKPM by the formula

φI(x) = CI(x)w

(
xI − x

ρ

)
�VI (8)
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Fig. 2 One-dimensional shape
functions in RKPM

where C(x) is a corrective term that restore the shape function capability of repro-
ducing all the terms contained in the basis function p(x). For polynomial basis, for
example

pT(x) = (
1, x, x2, . . . , xn) (9)

in 1D case or

pT(x) = (
1, x, y, x2, xy, y2) (10)

in 2D case. The corrective term C(x) is

CI(x)︸ ︷︷ ︸
1x1

= pT(0)︸ ︷︷ ︸
1xk

M(x)−1︸ ︷︷ ︸
kxk

pT
(

xI − x
ρ

)
︸ ︷︷ ︸

kx1

(11)

where k is the number of functions in the basis. Note that the corrective term is
normally evaluated in a scaled and translated version to prevent ill-conditioning of
the moment matrix M(x)

M(x) =
N∑

I=1

p
(

xI − x
ρ

)
pT

(
xI − x

ρ

)
w

(
xI − x

ρ

)
�VI (12)

The function w(x) is called kernel function having compact support, which means that
they are zero outside and on the boundary of a ball ωI centered in xI . The radius of
this support is given by a parameter called dilatation parameter or smoothing length
which can be found indicated in literature as ρ or dI or a to avoid confusion with
the mass density. According to the norm considered, the shape of the support may
vary, for example could be a circle but also a rectangle. The fact of being compact
basically guarantees that the stiffness matrix in a Galerkin formulation is sparse and
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band, which is particularly useful for the computer algorithms of storage and matrix
inversion. Examples of kernel functions are the 3rd order spline

w(ξ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2
3

− 4ξ 2 + 4ξ 3 0 ≤ ξ ≤ 1
2

4
3

− 4ξ + 4ξ 2 − 4
3
ξ 3 1

2
< ξ ≤ 1

0 ξ > 1

(13)

which is C2 or more generally the 2k-th order spline (Fig. 3)

w(ξ) =
{(

1 − ξ 2
)k 0 ≤ ξ ≤ 1

0 ξ > 1
(14)

which is Ck−1.
The order of continuity of a kernel function is important because it influences the

order of continuity of the shape functions.
Equation 8 derives from a numerical discretization of an integral, therefore the

term �VI is some measure (i.e. length, area or volume) of ωI . It has been reported in
[17] that choosing �VI �= 1 has no effects on the evaluation of the shape functions.
It could be shown that choosing �VI = 1 leads to another type of approximation
known as Moving Least Squares (MLS), which is a quite popular choice of shape
functions in other meshless methods like, for example, the EFG method. Since
RKPM is substantially a least squares method, shape functions do not satisfy the
Kronecker condition,

φI
(
xJ

) �= δI J ∀I, J = 1 . . . N (15)

This means that essential boundary conditions cannot directly being imposed on
the nodes. Thus, a penalty method is needed for enforcing boundary conditions on
displacements.

Fig. 3 Example of kernel:
2k − th order spline for
different k
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4 Cohesive Law

As mentioned in Section 1, a cohesive model is implemented as a stress–displacement
relationship τ(v), where τ is the traction at �c and v(x) is the displacement jumps
defined in Eq. 5.

The bilinear stress relative displacement curve is divided into three main parts
(Fig. 4) and the constitutive equations are the following:

• v ≤ v0: elastic part: traction across the interface increases until it reaches a
maximum, and the stress is linked to the relative displacement via the interface
stiffness K0 :

τ(v) = K0v (16)

• v0 < v ≤ vF : softening part: the traction across the interface decreases until it be-
comes equal to zero: the two layers begin to separate. The damage accumulated
at the interface is represented by a variable D, which is equal to zero when there
is no damage and reaches 1 when the material is fully damaged:

τ(v) = (1 − D(v))K0v (17)

• v > vF : decohesion part: decohesion of the two layers is complete: there is no
more bond between the two layers, the traction across the interface is null

The shaded area in Fig. 4 is the energy dissipated per unit area G for a particular
mode, when v = v f the area of the whole triangle is the critical energy dissipated per
unit area Gc. It can be shown [19] that in this case cohesive zone approaches can
be related to Griffiths theory of fracture. Moreover [20] showed that when v0 = v f

(which means abrupt load fall to zero) a perfectly brittle fracture can be simulated.
Two independent parameters are necessary to define a bilinear softening model,

i.e. the interfacial maximum strength τm and the critical energy dissipated per unit
area Gc, since the following relations hold

Gc = τmv f

2
(18)

τm = K0v0 (19)

Fig. 4 Bilinear softening
model
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where K0 is an arbitrary initial penalty stif fness (dimensionally N/m3) which is
usually set as a large number. Then, once derived v0 and v f , the variable damage
D can be calculated as

D(v) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 v ≤ v0

v f
(
v − v0

)
v
(
v f − v0

) if v0 < v ≤ vF

1 v > vF

(20)

5 Discretized Equations of Equilibrium

In general, for a two-dimensional case, (but similar argument can be conducted in
the three-dimensional case), naming t the tangential direction the cohesive segment
and n the normal direction, the stress–relative displacement relationship can be
formulated as

τ =
[
τt

τn

]
=

[
Kt

(
vt

)
0

0 Kn
(
vt

)
] [

vt

vn

]
=

[(
1 − Dt

(
vt

))
K0t 0

0
(
1 − Dn

(
vn

))
K0n

] [
vt

vn

]
(21)

If a given loading mode has reached 1, the damage variable corresponding to the
other loading mode is set to 1 as well to avoid that the material would still be able to
carry tractions.

In this paper the only cohesive segment is located at the mid-plane, so t corre-
sponds to axis x and n to axis y. For arbitrary orientations, a transformation matrix
would be necessary to express displacements from the global reference frame to the
local one.

Displacement jump in Eq. 5 can be then expressed as

v =
[
vx

vy

]
=

[
φT

1cU1 − φT
2cU2

φT
1cV1 − φT

2cV2

]
=

[
φT

1c 0 −φT
2c 0

0 φT
1c 0 −φT

2c

] ⎡
⎢⎢⎣

U1

V1

U2

V2

⎤
⎥⎥⎦ = φ̃TR (22)

where

φ1c = φ1(x) x ∈ �c (23)

where φ1(x) are the shape functions of sub-domain �1, whereas

φ2c = φ2(x) x ∈ �c (24)

are the shape functions belonging to sub-domain �2

φ̃T =
[
φT

1c 0 −φT
2c 0

0 φT
1c 0 −φT

2c

]
(25)

and RT
1 = [

U T
1 V T

1

]
is the displacement vector for nodes located in �1 whereas

RT
2 = [

U T
2 V T

2

]
is the displacement vector for nodes located in �2 and RT =



Appl Compos Mater (2011) 18:45–63 53

[
R T

1 R T
2

]
is the total displacement vector. Substituting Eqs. 7 and 22 in the varia-

tional principle 6

δRT
1 K1R1 + δRT

2 K2R2 − δRT
1 F1t − δRT

2 F2t + αδRT
1 V1R1 − αδRT

1 F1u + αδRT
2 V2R2

− αδRT
2 F2u + δRT

1

(
Kδ

11R1 − Kδ
12R2

) + δRT
2

( − Kδ
12R1 + Kδ

22R1
) = 0 (26)

where

Ki =
∫

�i

BDBTd�i i = 1, 2 (27)

where D is the stress–strain relationship matrix, B is the differential strain operator
matrix

Vi =
∫

�ui

φφTd�ui i = 1, 2 (28)

Fiu =
∫

�ui

φūd�ui i = 1, 2 (29)

Fit =
∫

�ti

φ t̄d�ti i = 1, 2 (30)

Kδ
11 =

[
Kδu

11 0
0 Kδv

11

]
(31)

Kδ
12 =

[
Kδu

12 0
0 Kδv

12

]
(32)

Kδ
22 =

[
Kδu

22 0
0 Kδv

22

]
(33)

and

Kδu
ij =

∫
�c

φic Kx
(
vx

)
φ jcd�c i, j = 1, 2 (34)

and

Kδv
ij =

∫
�c

φic Ky
(
vy

)
φ jcd�c i, j = 1, 2 (35)

Finally the following nonlinear set of equations can be obtained
[
K + αV + Kδ(R)

]
R − F − αFū = f(R) = 0 (36)

where

K =
[

K1 0
0 K2

]
(37)
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and

V =
[

V1 0
0 V2

]
(38)

F =
[

F1t

F2t

]
(39)

Fū =
[

F1u

F2u

]
(40)

Kδ =
[

Kδ
11 −Kδ

12

−Kδ T
12 Kδ

22

]
(41)

Equation 36 must be solved iteratively. A commonly used scheme is the Newton–
Rhapson method where the iteration n + 1 at a generic load step is obtained from
iteration n by the formula

R(n+1) = R(n) − (
J(n)

)−1
f
(
R(n)

)
(42)

where

J = ∂f
∂R

(43)

In order to obtain the Jacobian matrix J, a linearization of Eq. 21 is needed.

τ (n+1) = τ (n) + ∂τ

∂v

(
v(n+1) − v(n)

) = τ (n) + T
(
v(n+1) − v(n)

)
(44)

where

T = ∂τ

∂v
=

⎡
⎢⎢⎣

∂Kx

∂vx
0

0
∂Ky

∂vy

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−∂ Dx

∂vx
K0x 0

0 −∂ Dy

∂vy
K0y

⎤
⎥⎥⎦ (45)

Deriving Eq. 20

∂ D
∂v

= v f v0

v2(v f − v0)
(46)

Substituting Eq. 45 into Eq. 6, the expression of the Jacobian 43 can be obtained as

J = K + αV + KT (47)

where

KT =
[

KT11 KT12

KT
T12 KT22

]
(48)
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where

KT11 =
[

KT11x 0
0 KT11y

]
(49)

KT12 =
[

KT12x 0
0 KT12y

]
(50)

KT22 =
[

KT22x 0
0 KT22y

]
(51)

KTijl =
∫

�c

φic

(
Kl

(
vl

) − Kl0
v f v0

vl
(
v f − v0

)
)

φ jcd�c i, j = 1, 2 l = x, y (52)

As reported in [21] and [22], such numerical scheme could fail to converge due to the
softening nature of the cohesive model. Moreover, the choice of the penalty values
is important since it could lead to large unbalanced forces and shoot the iteration
beyond its radius of convergence.

One of the remedies for the overshoot can be a damping loop inside the Newton–
Rhapson iteration, i.e. reduce the step-length by a power of 2 until satisfactory
reduction of the residual is achieved. Even though this approach is quite efficient,
it might be too slow, since a key factor in obtaining an accurate solution is the choice
of sufficiently short load increments. This means that the solution of most problems
could be computationally inconvenient.

In order to accelerate the Newton process, a cubic polynomial line search (LS)
algorithm has been used [23]. Another drawback of the Newton–Rhapson algorithms
is that their (quadratic) convergence is guaranteed only if the guess solution is close
enough to the real solution. LS algorithms are instead globally convergent, since they
may converge independently from the starting point.

6 Numerical Results

Five numerical applications regarding single mode delamination are presented in
this section. The fracture modes studied are mode I with two Double Cantilevered
Beam (DCB) tests (Fig. 5) and mode II with an End Loaded Split test (ELS) (Fig. 6)

Fig. 5 Double cantileverd
beam: geometry and boundary
conditions
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Fig. 6 End loaded split:
geometry and boundary
conditions

and an End Notched Flexure (ENF) test. (Fig. 7). In Table 2, for the DCB tests,
Gc = GIc the critical energy release rate is related to mode I and τm is the maximum
interlaminar traction stress, while for the ELS and ENF tests, Gc = GIIc related
to mode II and τm is the maximum interlaminar shear stress. For mode II loading,
the interfaces are here supposed frictionless. All the specimens are subjected to
a variable vertical applied displacement v, at each load step a nonlinear problem
has been solved according to the scheme in Eq. 42. A reaction force F has been
calculated when the algorithm satisfied convergence criteria. In order to simulate
an initial delamination (indicated with a0), penalty stiffnesses were set to zero at
the pre-crack. A plane strain of tension is supposed.for all the cases. A rectangular
grid of nodes is used for all the cases. The numerical quadrature employed is the
Gaussian quadrature and three Gaussian points per triangular element were used.
The simulations were carried out using an in-house meshfree code.

6.1 Mode I Double Cantilevered Beam: First Test

The first case is a DCB test from [21] for a (0◦
24) T300/977-2 carbon fiber-reinforced

epoxy laminate. Elastic properties and geometry along with interface parameters are
resumed in Tables 1 and 2 (where w is the plate width).

A comparison with the experimental test is shown in Fig. 9, as it can be observed
the numerical model can predict the applied relative displacement at which the
delamination starts (around 5 mm) and the correspondent maximum reaction force
(62 N). Once reached the critical opening displacement, the delamination propagates
through the mid-plane (Figs. 8 and 9).

Fig. 7 End notched flexure:
geometry and boundary
conditions
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Table 1 Elastic properties of the specimens

T300/977-2 from [21] XAS-913C from [20] Ref. [24] PEEK from [21]

E11 (GPa) 150 126 130 122.7
E22 (GPa) 11 7.5 8 10.1
G12 (GPa) 6 4.981 5 5.5
ν12 0.25 0.281 0.27 0.25

Table 2 Geometry and inteface properties of the specimens

DCB DCB ELS ENF ENF
T300/977-2 XAS-913C Ref. [24] PEEK T300/977-2

L (mm) 150 100 105 102 100
b (mm) 1.98 1.5 1.525 1.56 1.98
w (mm) 20 30 24 25.4 10
a0 (mm) 55 30 60 39.3 30
Gc (J/m2) 268 263 856 1,719 1,450
τ (MPa) 45 57 48 100 40

Fig. 8 Delamination stages for DCB test T300/977-2: transverse stress σy plot

Fig. 9 Reaction force for
DCB test T300/977-2:
continuous line: numerical;
squared line: experimental
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Fig. 10 Reaction force for
DCB test XAS-913C:
continuous line: numerical;
squared line: experimental

6.2 Mode I Double Cantilevered Beam: Second Test

The second DCB case is from [20] for a XAS-913C carbon-fiber epoxy composite.
The properties and the initial conditions are reported in Tables 1 and 2. The plate has
been modeled as Fig. 5 and there is only a slight difference between the experimental
test and the numerical results regarding the reaction force (Fig. 10). In Fig. 11
are depicted the stress color plot for the longitudinal stress σx (Fig. 11a) and the
shear stress τxy (Fig. 11b). As expected, it could be noted that each delaminated arm
behaves like a cantilevered beam in bending constrained at the delamination tip. The
same distribution can be identified in the next examples.

6.3 Mode II End Loaded Split

Delamination of mode II (sliding mode) has been modeled as in Fig. 6 with a
loading displacement applied at the free end of the bottom plate. Properties and
geometry are summarized in Tables 1 and 2. Experimental results are taken from
[24]. From Fig. 12 it can be observed that the model can capture the trend with a
minor difference from the experimental test. The critical opening displacement is
around 15 mm, after that the delamination advances quite rapidly (Figs. 13 and 14 ).
The delamination is complete (split) for a displacement of 21 mm, after that the two
beams respond separately to the loads.

(a) σ x

(b) τ xy

Fig. 11 Delamination stress plot for DCB test XAS-913C
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Fig. 12 Reaction force for
ELS test: continuous line:
numerical; squared line:
experimental

6.4 Mode II End Notched Flexure: First Test

Another example of Mode II loading is an ENF test where a displacement is
applied in the middle of a simply supported beam with an initial delamination length
(three-point bending). Experimental results are taken from [21] and geometry and
properties (AS4/PEEK) are resumed in Tables 1 and 2. Once again a good agreement
can be observed between the experimental and the numerical results (Fig. 15). The
critical opening displacement is perfectly predicted with a difference in the resulting
reaction force. Delamination phases can be observed from Fig. 16.

Fig. 13 Delamination stages for ELS test: longitudinal stress σx plot
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Fig. 14 Delamination stages for ELS test: longitudinal stress τxy plot

6.5 Mode II End Notched Flexure: Second Test

Final example is a ENF test for a graphite/epoxy material T300/977-2 (same specimen
of DCB test in Subsection 6.1 but with different width) taken from [25] whose elastic
and interface properties are resumed in Tables 1 and 2.

The Fig. 17 shows a comparison with FE decohesion elements which has been the
most widely used technique for delamination modeling. As it can seen, results are
very similar. Moreover the curve is much smoother than the previous case. This is

Fig. 15 Reaction force for
ENF test: continuous line:
numerical; dashed line:
experimental



Appl Compos Mater (2011) 18:45–63 61

Fig. 16 Delamination stages for ENF test: longitudinal stress σx plot

mainly due to convergence issues as mentioned in the previous Section 5. As in FE,
these problems can be overcome when relatively "small" load increments are applied
and when the nodes distribution is globally refined. The measure of the refinement
and the choice of load increments can really depend on the problem. Moreover, an

Fig. 17 Reaction force for
ENF test: continuous thick
line: RKPM; continuous thin
line: FE decohesion
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iterative process known as modif ied arc-length can be used to accurately choose the
load increments. Such method assumes the load level (in this case the value of the
reaction force) as an additional unknown.

7 Conclusions

In this paper a penalty-based approach to delamination has been proposed. De-
lamination is modeled considering two different sub-domains connected (or discon-
nected) with cohesive forces. Using the cohesive model, a variable penalty factor
along the crack line consented to loosen or tight the two parts according to their
relative displacements.

A two-dimensional meshfree method (RKPM) has been used to discretized the
laminate. Conversely to FE approaches, meshfree techniques consent to effectively
treat the contact between the parts without interface elements or conforming meshes.
Arbitrary crack propagation path can be as well modeled with additional cohesive
segments and therefore more unknowns.

Nevertheless when the path is known, the RKPM approximation consents to
couple the parts without adding additional unknowns. Results showed very good
agreement with experimental evidences for single-mode delamination under mode
I and mode II loading.
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