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Abstract
We propose a framework for the description of the effects of vaccinations on the 
spreading of an epidemic disease. Different vaccines can be dosed, each provid-
ing different immunization times and immunization levels. Differences due to indi-
viduals’ ages are accounted for through the introduction of either a continuous age 
structure or a discrete set of age classes. Extensions to gender differences or to dis-
tinguish fragile individuals can also be considered. Within this setting, vaccination 
strategies can be simulated, tested and compared, as is explicitly described through 
numerical integrations.

Keywords  Vaccination strategies · Macroscopic modeling of disease propagation · 
PDEs in epidemiology

1  Introduction

We propose a modeling framework to simulate the global process of a vaccination 
campaign to fight the spreading of an epidemic. Vaccines, possibly with different 
characteristics, are dosed to susceptible individuals. Each vaccine is identified by the 
efficiency and the duration of the protection it provides. In our model also individu-
als that recovered from the disease are immunized for a prescribed time period, after 
which they get back to be susceptible. In the age structured version, these times and 
efficiencies are assumed to be age dependent.

A common strategy to insert vaccination and in particular the loss of immuniza-
tion in a SIR type model consists in assigning to these phenomena a rate, typically 
proportional to the number of susceptible and vaccinated individuals. On the con-
trary, here we introduce the time at which individuals are vaccinated, account for 
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the time dependent level of immunization provided by the vaccine and give a precise 
role to the duration of this immunization.

The proposed class of models relies on a deterministic and macroscopic descrip-
tion, developed on top of the SIR model, and displays an evolution which is inher-
ently “multiscale”: a first time scale is that of the pathogen diffusion, which inter-
acts at different time scales with the different vaccines and with the recovering 
from the disease. For a stochastic approach, we refer for instance also to Bertaglia 
et al. (2022), while a fuzzy approach is in Al-Qaness et al. (2020) and Regis et al. 
(2021). On the basis of the epidemic evolution described by the present model, con-
sequences at the social or economic levels can be described as in Albi et al. (2021a) 
and Fabbri et al. (2021), for instance, or (Bernardi et al. 2022; Dimarco et al. 2020) 
where a kinetic model of wealth exchange is proposed. A summary of the historical 
development of macroscopic models for virus diffusion and vaccination is in Groppi 
and Della Marca (2018).

The interaction among the different populations, e.g., susceptible, infected, vacci-
nated and recovered, combined with the different time scales leads to the formation 
of oscillations or epidemic waves (Lemon and Mahmoud 2005). When no vaccina-
tion is dosed (e.g., Fig. 1), or even more when a very heavy vaccination campaign 
is in place (e.g., Fig. 2), then these waves fade out rather quickly. On the contrary, a 
relatively mild vaccination campaign hinders the virus propagation without stopping 
it, so that these epidemic waves become rather persistent (e.g., Fig. 3).

The present model allows to test/compare different vaccination strategies. For 
instance, analyzing the number of casualties resulting from a vaccination campaign 
that leaves a fixed percentage, say S∗ , of non vaccinated individuals shows a sort of 
“herd immunity” (Randolph and Barreiro 2020) effect. Indeed, the number of casu-
alties suffers a sharp increment in correspondence to a threshold value S∗ , roughly 
close to 10% of the initial population (see Fig. 4).

The choice of the vaccination strategy gets even more relevant when different vac-
cines are available. It is realistic to imagine that different vaccines provide different lev-
els of immunity for different time periods (Kai et al. 2021; Mukhopadhyay et al. 2021). 
Then, for instance, the use of a poor vaccine has a doubly negative effect. First, it does 
not ensure a good level of immunization and, second, may prevent vaccinated individu-
als to get a better vaccine as long as its effect is in place, see Sect. 3.1.

Fig. 1   Solution to  (2.4)–(2.9)–(2.10) with no vaccinations, i.e., p ≡ 0 . Left, the graphs of t ↦ S(t) , 
t ↦ ∫ TV

0
V(t, �)d� , t ↦ I(t) , t ↦ ∫ TR

0
R(t, �)d� and of their sum, labeled by Σ . Middle, the correspond-

ing graph of t ↦ R0(t) , as defined in (2.8). Right, the graphs of the functions � ↦ �R(�) , above, and of 
� ↦ �V (�) , below, used in this and in the forthcoming integrations
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Fig. 2   Graphs of the solutions to (4.3) with parameters (4.5)–(4.6), initial datum (4.7) and with the vac-
cination strategies Feedback, left, and Half–Half, right, as detailed in Sect. 4.1

Fig. 3   Graphs of the solutions to (4.3) with parameters (4.5)–(4.6), initial datum (4.7) and with the vac-
cination strategies Class 2 First, left, and Class 1 First, right, as detailed in Sect. 4.1

Fig. 4   Casualties as a function 
of the non vaccinated percent-
age. Note the sharp increase 
starting already at a threshold of 
about 10% , somewhat justifying 
the term “herd immunity”. The 
corresponding values are in 
Table 1
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Age differences, too, require careful planning of vaccination campaigns. Consider 
for simplicity 2 classes: “younger” individuals are more infective, while “older” ones 
are more fragile. A vaccination strategy consisting in dosing exclusively the older ones 
first is not necessarily the best choice. Indeed, a campaign where the proportions of 
young and old dosed is carefully chosen according to the disease diffusion can reduce 
the number of casualties, even in the old class, see Sect. 4.1.

In the realizations of the present framework discussed below, we keep on purpose 
the number of populations to a minimum. It goes without saying that the extension to 
richer structures is easily achievable at the cost of only technical complications. The 
current literature provides various examples of multispecies/multicompartment models, 
often compared with real measurements, see for instance (Giordano et al. 2020; Paro-
lini et al. 2021; Yang and Wang 2020).

We stress that the setting here introduced is amenable to consider, for instance, also 
movements in space, gender differences or the presence of more fragile individuals. 
These extensions, clearly, formally complicate the equations. However, their numerical 
treatment fits in the brief description in Appendix B and does not require the intro-
duction of new or ad hoc algorithms. Movements in space can be comprised with a 
procedure similar to that used in Sect. 4 to introduce a continuous age structure, pos-
sibly introducing a further distinction among individuals having different destinations, 
see Colombo et al. (2020, 2022b) for further details. A different approach to diffusion 
in space is treated, for instance, in Pugliese and Milner (2018). The setting therein is 
based on stochastic ordinary differential equations, eventually leading to partial dif-
ferential equations of second order in the space derivative (Pugliese and Milner 2018, 
Formula (13)). For a discussion of gender and age differences see (Russo et al. 2021, 
Table 1).

Aiming at a quantitative fitting with specific data reasonably requires to let the vari-
ous functions and parameters defining the evolution (e.g., recovery rate, vaccine’s effi-
ciency or duration, infectivity, … ) depend on time. The introduction of time depend-
encies may account, for instance, for seasonal effects, changes in lockdown policies, 
improvements in drug efficacy, … see Buonomo et al. (2019) and Merow and Urban 
(2020).

The next section is devoted to the simplest case of a single vaccine (whose effect 
has a prescribed duration) without age structure. Then, Sect. 3 deals with the concur-
rent use of multiple vaccines. Age structures, both continuous and discrete, are the sub-
ject of Sect.  4: here, in particular, the effects of vaccines depend on age. In Sect. 5 
we address the issue of choosing proper values for the parameters and functions in the 
models we introduced, on the basis of Covid–19 related data, mostly related to the Ital-
ian situation, from the current literature.

2 � A Single Vaccine

We present here our framework in its simplest realization, namely considering a sin-
gle vaccine and we test different vaccination strategies to control the spreading of 
the disease.
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As a starting point (Groppi and Della  Marca 2018, Formula  (5)), consider the 
SIR model

where, as usual S, I, R are the number (or percentages) of Susceptible (S), Infected 
(I) and Recovered (R) individuals. The infectivity coefficient �S , the recovery rate � 
and the mortality rate � are here considered to be constant; were they time depend-
ent, only technical difficulties would arise. As is well known, in (2.1) the total num-
ber of individuals varies, actually diminishes, exclusively due to the mortality term, 
i.e., d

dt
(S + I + R) = −� I . When long time intervals are considered, it might be 

appropriate to include mortality also in the S and R equations, or also natality, typi-
cally only in the S equation. Other realizations might comprehend also time depend-
ent immigration/emigration terms, for instance.

As a first step, we modify  (2.1) to allow for recovered individuals to get re-
infected, after a time TR from recovery. To this aim, we modify the unknown R to 
R = R(t, �) , the variable � being the time since recovery, with � ∈ [0, TR]:

Here, the R compartment displays an “internal dynamics”, see Colombo et  al. 
(2022b). In other words, R(t, �) is the number of individuals at time t that recovered 
at time t − � . Elementary, though useful, is to note that the R in (2.2) and the vari-
able bearing the same name in (2.1) have different dimensions. As above, the total 
number of individuals varies, namely diminishes, exclusively due to mortality, i.e.,

The function �R = �R(�) describes how easy/difficult it is that an R individual gets 
infected after time � from recovery. A possible reasonable behavior of the map

� ↦ �R(�) is depicted in Fig.  5. For � near to 0, �R(�) equals �−
R
 , a value far 

smaller than the infectivity coefficient �S in (2.1) or (2.2). As the time � from recov-
ery grows, also �R(�) grows and gets back to the value �S at time TR , when recov-
ered individuals return to be susceptible. The extension to �R depending also on t is 
immediate, as also that of letting TR → +∞ , as explicitly considered below.

(2.1)

⎧
⎪
⎨
⎪
⎩

Ṡ = −𝜌
S
IS

İ = 𝜌
S
IS − 𝜃I − 𝜇I

Ṙ = 𝜃I

(2.2)

⎧
⎪
⎨
⎪
⎩

Ṡ = −𝜌S I S + R(t, TR)

İ = 𝜌S I S + ∫
0TR

𝜌R(𝜏)R(t, 𝜏)d𝜏 I − 𝜃 I − 𝜇 I

𝜕tR + 𝜕𝜏R = −𝜌R R I

R(t, 0) = 𝜃 I .

d

dt

(
S(t) + I(t) +

∫

TR

0

R(t, �)d�

)
= −� I(t) .

(2.3)�
R
(�) = �

−
R
+ (�

S
− �

−
R
) Φ

(
�

T
R

)

Φ(s) = (4 − 3s)s3
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In (2.2), the rate � I at which infected individuals recover, tuned through the con-
stant � , is the same as in  (2.1). Each recovered individual after time � = TR from 
recovery gets back to being susceptible.

Remark that when considering a finite number of age classes a1, a2,… , ak or a 
continuous age structure with a ∈ ℝ+ , then different ages may well have different 
times TR , i.e., TR = TR(a).

The effect of a vaccination that does not ensure permanent immunity is to some 
extent similar to the temporary immunization of recovered individuals as described 
above. A first difference is that immunization is obtained some time after being 
dosed. More relevant, vaccinations depend on a vaccination strategy, i.e., on the 
arbitrary choice of which and how many susceptibles are dosed at each time. There-
fore, we introduce a new population, namely V, where V(t, �) is the number of vac-
cinated individuals at time t that were dosed at time t − � , so that � here is the time 
since vaccination.

We are thus lead to introduce the model

where TV is the time when the immunization provided by vaccination terminates. 
Similarly to what is described above with reference to the function �R = �R(�) , now 
the function �V = �V (�) describes how easy/difficult it is for an individual dosed at 
time t − � to get infected at time t, i.e. after time � from vaccination, for � ∈ [0, TV ].

(2.4)

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

Ṡ = −𝜌S I S + V(t, TV ) + R(t, TR) − p(t, S,V , I,R)

𝜕tV + 𝜕𝜏V = −𝜌V V I 𝜏 ∈ [0, TV ]

İ =

�
𝜌S S + ∫

TV

0

𝜌V (𝜏)V(t, 𝜏)d𝜏 + ∫

TR

0

𝜌R(𝜏)R(t, 𝜏)d𝜏 − (𝜃 + 𝜇)

�
I

𝜕tR + 𝜕𝜏R = −𝜌R R I 𝜏 ∈ [0, TR]

V(t, 0) = p(t, S,V , I,R)

R(t, 0) = 𝜃 I ,

(2.5)
�
V
(�) = �

−
V
+ (�

S
− �

−
V
) Ψ

(
�

T
V

)

Ψ(s) =

(
1 −

27

4
s(1 − s)2

)4

Fig. 5   Left, a reasonable choice of the function �R : at � ≈ 0 we have �R(�) ≈ �
−
R
 , a small ( 𝜌−

R
≪ 𝜌S ) value 

quantifying the immunization resulting from recovering. As time from recovery passes, �R(�) increases 
and at time TR attains the value �S of susceptibles. Right, the actual expression used in the diagram on the 
left and in the numerical integrations in Sect. 2. The relevant properties of Φ are its continuity and mono-
tonicity, from Φ(0) = 0 to Φ(1) = 1
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Qualitatively, in the case of a vaccine consisting of a single dose, the function �V can 
be chosen, for instance, as depicted in Fig. 6. In the case of a vaccine consisting of 2 
shots, a possible behavior of � ↦ �V (�) is in Fig. 7.

Quantitatively, in both cases, the function �V depends on parameters specific to the 
vaccine under consideration.

In (2.4), a key role is played by the function p = p(t, S,V , I,R) . It describes the vac-
cination strategy, quantifying how many susceptible individuals are dosed at time t. 
Analytically, remark that the dependence of p on the variables S, V, I, R may well be 
of a functional nature, in the sense that p may depend, for instance, on time integrals of 
the functions S, V, I, R, see (2.12).

Several statistics on the solutions to (2.4) are of interest. First, the total number of 
casualties D(t0, T) between time t0 and time T (with t0 < T ) clearly equals the variation 
in the total number of individuals between times t0 and T. It can be computed as

Fig. 6   Left, a reasonable choice of the function �V : at � ≈ 0 we have �V (�) ≈ �S , since immunization 
is not immediate after being dosed. As time from vaccination passes, �V (�) decreases, reaches a lowest 
level �−

V
 and at time TV is back at the value �S of susceptibles. Right, the actual expression used in the 

diagram on the left and in the numerical integrations in Section 2. The relevant properties of Ψ are its 
continuity, the fact that Ψ(0) = Ψ(1) = 1 and the kind of plateau near its minimum

Fig. 7   Qualitative behavior of a possible map � ↦ �V (�) in the case of a vaccination consisting of 2 
doses, whose effect ceases at time TV . The second shot takes place at time T∗ after the first one. After 
time TV from the first dose, the protection provided by the vaccine expires, since �V (TV ) attains the value 
�S . It is not required that �V vanishes on an interval: the efficiency of the vaccine translates into �V being 
”very small” for a “very long” time
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An estimate of the cost of the vaccination campaign is given by the total number of 
vaccines dosed between time t0 and time T, that is

A common index used to measure the virus propagation is the basic reproduction 
number (Murray 2002, Sect. 10.2), which is here computed as

since we have the equivalences

Remark that the above expression of R0(t) does not require the knowledge of the 
number of infected I(t).

2.1 � Comparing Vaccination Strategies

Our aim in the integrations below is to stress qualitative features of the model (2.4). 
Quantitative data are presented to allow the reader to reproduce the results. Where 
helpful, we provide references coherent with the quantitative choices adopted, bear-
ing in mind that several measurements are currently being improved and updated in 
the literature. Nevertheless, it may help the reader to consider time as measured in 
days, while S(t), I(t), ∫ V(t, �)d� and ∫ R(t, �)d� are percentages, since the total ini-
tial population is throughout fixed to 100.

The numerical algorithm adopted is described in Appendix B.
The Reference Situation We take as reference situation the spreading of virus 

with no vaccination, described by (2.4) with p ≡ 0 and with the following choices, 
which do not pretend to be quantitatively fully justified by the available data:

(2.6)

(t0, T) =
⎛

⎜

⎜

⎝

S(t0) +

TV

∫
0

V(t0, �)d� + I(t0) +

TR

∫
0

R(t0, �)d�
⎞

⎟

⎟

⎠

−
⎛

⎜

⎜

⎝

S(T) +

TV

∫
0

V(T , �)d� + I(T) +

TR

∫
0

R(T , �)d�
⎞

⎟

⎟

⎠

=

T

∫
t0

�I(t)dt.

(2.7)V(t0, T) = ∫

T

t0

p(t, S(t),V(t), I(t),R(t))dt .

(2.8)R0(t) =
�S S + ∫ TV

0
�V (�)V(t, �)d� + ∫ TR

0
�R(�)R(t, �)d�

� + �

R0(t) > 1 ⟺ İ(t) > 0 and R0(t) < 1 ⟺ İ(t) < 0 .
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where Ψ is as in (2.5) and Φ is as in (2.3). Since �∕� = 20 , see Russo et al. (2021), 
the above choice says that for an infected individual it is 20 times easier to recover 
than to die, corresponding to a mortality slightly lower than 5% . The different partial 
immunizations provided by the vaccine or by the recovery are described through the 
maps �V and �R , displayed in Fig. 1, right. In the literature, available data keep being 
updated: with the present choice (2.9), the vaccine is more efficient than the recover-
ing, both because it leaves a lower probability to get infected and because it is effec-
tive for a longer time.

The initial datum is

meaning that at time t = 0 , the susceptibles are 95% of the total population, 5% is 
infected, none is vaccinated and none is among those who recovered.

In this reference situation, the casualties after time 730 (i.e., 2 years) amount 
to 15.1% of the initial population. The numerical integration shows the insurgence 
of “epidemic waves” (Lemon and Mahmoud 2005), see Fig. 1, left.

In the examples below, we always let the vaccination campaign begin after time 
t = 30 , to allow for the onset of the virus spreading. This is described through the 
term �[30,+∞[(t) in the vaccination strategy, see for instance (2.11). Note also that 
the time TV in  (2.9) adopted below allows for multiple, up to 4, vaccinations of 
each single individual. Therefore, the number of doses may well exceed the total 
initial population, set to 100.

Leaving a Non Vaccinated Percentage Practical considerations based on the 
different attitudes (Wang et  al. 2020) towards vaccines may induce or oblige to 
avoid dosing a given portion of the population. Here, we describe this situation 
through the vaccination strategy

meaning that when susceptibles are below the threshold value S∗ , the vaccination 
campaign stops. Note that, in the framework resulting from (2.4) to (2.11), we do 
not impose that the non vaccinated individuals are always the same.

As is to be expected, the higher the threshold S∗ , the higher the resulting number of 
casualties. However, we remark that when the threshold percentage of non vaccinated 
gets near to 10% , the corresponding number of casualties sharply increases, see Fig. 4.

(2.9)
�
S
= 1.0 × 10−3 � = 4.0 × 10−2 � = 2.0 × 10−3

�
−
V
= 1.0 × 10−5 �

V
(�) = �

−
V
+ (�

S
− �

−
V
) Ψ(�∕T

V
) T

V
= 180

�
−
R
= 2.0 × 10−5 �

R
(�) = �

−
R
+ (�

S
− �

−
R
) Φ(�∕T

R
) T

R
= 180

(2.10)
S(0) = 95 , V(0, �) = 0 for � ∈ [0, TV ] , I(0) = 5 ,

R(0, �) = 0 for � ∈ [0, TR]

(2.11)

p(t, S,V , I,R) = 𝜒[30,+∞[(t) 𝜒]S∗,+∞[(S) where

𝜒[30,+∞[(t) =

{
0 t < 30

1 t ≥ 30

𝜒]S∗,+∞[(S) =

{
0 S ≤ S∗
1 S > S∗
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While it is somewhat arbitrary to choose a specific percentage where this sharp 
increase begins, this behavior partly justifies the term “herd immunity” (Randolph and 
Barreiro 2020), commonly used.

The actual computed values are in Table 1, where the case S∗ = 100 corresponds to 
the reference situation above.

Automatic Feedback Based on R0(t) : Rather than a systematic full speed vaccina-
tion campaign, as considered in the preceding paragraph, one may consider a feedback 
strategy relying on the index R0 defined in (2.8). With the same notation as in (2.11), 
we set

meaning that at time t, with t > 30 , the campaign proceeds dosing p∗ individuals per 
day, as soon as there are susceptibles (i.e., S(t) > 0 ) and R0(t) exceeds the threshold 
r∗.

This feedback strategy allows for a qualitative result, which is independent of the 
specific data and parameters chosen. Indeed, assume the strategy p in (2.12) is assigned 
so that R0 is stabilized to r∗ after time t∗ , i.e., R0(t) = r∗ for t ∈ [t∗, T] for a large T. We 
can clearly assume that t∗ > TV and t∗ > TR . Then, by (2.8), the solution to model (2.4) 
for t ∈ [t∗, T] satisfies

see Lemma A.2. As expected, in the case r∗ = 1 , stabilizing R0(t) for t ∈ [t∗, T] , also 
I is stabilized at the value I∗ = I(t∗) , and R(t, �) = � I∗ e

−�RI∗ � is independent of t. 
Note that casualties, defined in (2.6), grow linearly with time, proving that T is nec-
essarily bounded, its largest possible value corresponding to when all individuals 
die.

For arbitrary values of r∗ , the former relation in  (2.13) immediately gives for 
r∗ ≠ 1,

Thus, for the disease to disappear, it is necessary to stabilize R0(t) at a value r∗ 
strictly lower than 1. However, this condition is clearly not sufficient: one should 

(2.12)p(t, S,V , I,R) = p∗ �[30,+∞[(t) �]0,+∞[(S) �]r∗,+∞[(R0)

(2.13)

⎧

⎪

⎨

⎪

⎩

I(t) = I(t∗) exp
(

(r∗ − 1)(� + �)(t − t∗)
)

R(t, �) = � I(t − �) exp
(

−∫

t

t−�
�R I(s)ds

)

(2.14)D(t∗, T) =
1

1 − r∗

�

� + �

(
1 − e−(1−r∗)(�+�)(T−t∗)

)
I(t∗) .

Table 1   Casualties and vaccinations in the solution to (2.4)–(2.9)–(2.10) corresponding to different val-
ues of S∗ in (2.11). See also Fig. 4

S∗ 0 5 10 15 20 25 30 35 40 45 50 100

Deaths 3.59 3.99 4.60 5.71 8.34 12.5 13.8 14.3 14.5 14.6 14.8 15.1
Doses 326 298 267 227 154 61.3 30.5 17.7 13.8 11.3 8.78 0.00
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also require that D(t∗, T) in (2.14) does not exceed the number of living individuals 
at time t∗.

The integrations in Fig.  8 confirm that stabilizing at R0(t) = 1 does not stop the 
spreading of the disease, as also shown in Table 2. When R0(t) = 1 , a sort of “dynamic 
equilibrium” is onset, so that, for large t, the maps t → I(t) and t → ∫ R(t, �)d� are 
approximately constant, while t → S(t) and t → ∫ V(t, �)d� have oscillations that 
approximately balance each other, so that their sum keep diminishing at a rate approxi-
mately � I(t∗) , see Fig. 9.

Somewhat surprisingly, two situations arise where a higher vaccination speed allows 
for a faster reduction of the infected and infectious population, so that – on the time 
interval considered – the resulting number of casualties is lower than that obtained after 
a higher but slower vaccination campaign, see the bold data in Table 2.

More precisely, a higher vaccination speed allows for a faster reduction of the I pop-
ulation and to quickly dose all the S individuals or lower R0 below the desired thresh-
old, see Fig. 10.

On the other hand, the lower value of R0(t) obtained with the slower campaign 
ensures that in subsequent times this strategy results in being more effective in lower-
ing casualties.

Infinite Time Immunization Model (2.4) can describe also the situation where the 
immunization provided by the vaccine and/or acquired after recovering lasts for ever. In 
the case TV → +∞ , system (2.4) becomes

(2.15)

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

Ṡ = −𝜌S I S + R(t, TR) − p(t, S,V , I,R)

𝜕tV + 𝜕𝜏V = −𝜌V V I 𝜏 ∈ [0,+∞[

İ =

�
𝜌S S + ∫

+∞

0

𝜌V (𝜏)V(t, 𝜏)d𝜏 + ∫

TR

0

𝜌R(𝜏)R(t, 𝜏)d𝜏 − (𝜃 + 𝜇)

�
I

𝜕tR + 𝜕𝜏R = −𝜌R R I 𝜏 ∈ [0, TR]

V(t, 0) = p(t, S,V , I,R)

R(t, 0) = 𝜃 I

Fig. 8   Solutions to (2.4)–(2.9)–(2.10) with strategy (2.12) with r∗ = 1.00 and, left, p∗ = 0.1 while, right, 
p∗ = 4.0 . Note that in both cases I is stabilized at a strictly positive value, left I∗ ≈ 7 and, right, I∗ ≈ 1.5 , 
causing casualties to keep increasing, see Table 2. (The left and right scales in the lower diagrams of ∫ V  
differ.)
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Fig. 9   Solutions to (2.4)–(2.9)–(2.10) and the resulting values of R0(t) under strategy (2.12), r∗ = 1.00 
with, above, p∗ = 0.1 and, below, p∗ = 4.0 . The lower vaccination rate above causes a stabilization of I at 
a higher value and, hence, a higher mortality

Table 2   Casualties  (2.6), left, and total number of vaccinations  (2.7), right, corresponding to the strat-
egy (2.12) in (2.4)–(2.9)–(2.10). The bold data correspond to an unusual situation where less doses allow 
for less casualties, see also Fig. 10

Deaths Threshold r∗ Doses Threshold r∗

D(0, 730) 0.25 0.50 1.00 V(0, 730) 0.25 0.50 1,00

Speed p∗ 0.10 12.1 12.1 13.9 Speed p∗ 0.10 70.0 69.0 27.8
0.50 4.65 4.89 10.2 0.50 291 287 109
1.00 3.63 3.98 8.61 1.00 325 315 145
1.50 3.18 3.53 7.40 1.50 336 328 173
2.00 2.94 3.22 6.44 2.00 341 334 195
2.50 2.79 2.99 5.66 2.50 345 338 214
3.00 2.68 2.80 5.07 3.00 348 345 229
3.50 2.60 2.64 4.45 3.50 350 349 248
4.00 2.53 2.55 4.07 4.00 351 351 261
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where it is clear that individuals that entered the V population will remain therein. 
An entirely similar system can be used to describe the case TR → +∞.

In the integrations below, we keep using the choice (2.9), the data (2.10) and the 
strategy (2.11) with S∗ = 10 . The resulting integrations, displayed in Fig. 11, show 
an evident stabilization effect induced by the infinite duration of the immunization.

Indeed, epidemic waves are rather quickly smeared out, in particular in the case 
TR → +∞ . As soon as individuals enter the R population, they will (almost) never leave 
it, while all susceptible individuals are vaccinated as soon as the effect of the previous 
vaccination disappears, see Fig. 12 on the right.

3 � Concurrent Vaccines

We now consider the case of a vaccination campaign based on the concurrent use of 
two different vaccines, so that vaccinated individuals enter the population V1 or V2 
depending on whether they were dosed with vaccine 1 or with vaccine 2. Thus, V1(t, �) , 

Fig. 10   Solutions to (2.4)–(2.9)–(2.10) with strategy (2.12) and the resulting values of R0(t) correspond-
ing to the bold data in Table  2: left, p∗ = 0.50 and r∗ = 0.25 ; right, p∗ = 3.50 and r∗ = 1.00 ; above, 
the solutions and, below, the value of R0(t) along the solutions. The higher vaccination rate in the 2 
diagrams on the right allows to get a lower number of casualties with a lower number of doses. In subse-
quent times, the lower value of R0(t) ensures that the choice on the left will be more effective in reducing 
the mortality
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respectively V2(t, �) , measures the amount of individuals at time t that were dosed at 
time t − � with vaccine 1, respectively with vaccine 2. We also need to introduce the 
controls specifying the speed at which the 2 vaccines are dosed. The equation for the S 
population then reads:

where we used obvious modification of the notation in  (2.4). The above equation 
also prescribes that at time T1 , individuals in the V1 population get back to be suscep-
tible, and similarly for T2.

Extending (2.4), for the V1 , V2 and R populations we obtain

(3.1)
Ṡ = − 𝜌S I S + V1(t, T1) + V2(t, T2) + R(t, TR)

− p1(t, S,V1,V2, I,R) − p2(t, S,V1,V2, I,R)

Fig. 12   Distribution function t ↦ ∫ t

0
p(�)d� of the vaccination strategies p = p(t) in the integrations cor-

responding to parameters (2.9), data (2.10) and strategy (2.11) with S∗ = 10 . Left, the case (2.15) where 
TV → +∞ with TR = 180 . Right, the case TR → +∞ with TV = 180 . Note that, on the right, the vaccina-
tion campaign is activated as soon as S individuals are available, i.e., when vaccinated get back to be 
susceptible

Fig. 11   In these integration we used parameters  (2.9), the data  (2.10) and the strategy  (2.11) with 
S∗ = 10 . Left, the case (2.15) where TV → +∞ with TR = 180 . Right, the case TR → +∞ with TV = 180 . 
Note that epidemic waves essentially disappeared, quite quickly in the case TR → +∞ on the right
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where, similarly to the previous section, the three time scales [0, T1] , [0, T2] and 
[0, TR] are entirely independent.

Finally, the I population varies partly due to the propagation of the infection and 
partly due to infected individuals recovering or dying:

The natural extension of  (3.1)–(3.2)–(3.3) when k different vaccines are available 
reads

Also in this general case, the index R0(t) can be defined as

and identifies the times where İ is positive or negative, without explicitly requiring 
knowledge of I(t).

3.1 � Comparing the Effects of Different Vaccines

In the integrations of this paragraph we keep using the choices (2.4)–(2.9)–(2.10), 
so that the reference situation with no vaccination campaign is the one discussed 
in Sect. 2.1 and illustrated in Fig. 1. We introduce 2 vaccines, say 1 and 2, character-
ized by the diagrams in Fig. 13, see also (3.6).

(3.2)

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

�tV1 + ��V1 = −�1(�)V1(t, �) I � ∈ [0, T1]

�tV2 + ��V2 = −�2(�)V2(t, �) I � ∈ [0, T2]

�tR + ��R = −�R(�)R(t, �) I � ∈ [0, TR]

V1(t, 0) = p1(t, S,V1,V2, I,R)

V2(t, 0) = p2(t, S,V1,V2, I,R)

R(t, 0) = � I

(3.3)
İ = 𝜌S S I + ∫

T1

0

𝜌1(𝜏)V1(t, 𝜏)d𝜏 I + ∫

T2

0

𝜌2(𝜏)V2(t, 𝜏)d𝜏 I

+
∫

TR

0

𝜌R(𝜏)R(t, 𝜏)d𝜏 I − 𝜃 I − 𝜇 I .

(3.4)

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

Ṡ = −𝜌S I S +

k�

i=1

Vi(t, Ti) + R(t, TR) −

k�

i=1

pi(t, S,V , I,R)

𝜕tVi + 𝜕𝜏Vi = −𝜌i(𝜏)Vi(t, 𝜏) I 𝜏 ∈ [0, Ti] i = 1,… , k

İ = 𝜌S I S +

�
k�

i=1
∫

Ti

0

𝜌i(𝜏)Vi(t, 𝜏)d𝜏 + ∫

TR

0

𝜌R(𝜏)R(t, 𝜏)d𝜏

�

I − 𝜃 I − 𝜇 I

𝜕tR + 𝜕𝜏R = −𝜌R(𝜏)R(t, 𝜏) I 𝜏 ∈ [0, TR]

Vi(t, 0) = pi(t, S,V , I,R)

R(t, 0) = 𝜃 I .

(3.5)R0(t) =
�S S +

∑k

i=1
∫ Ti
0
�i(�)Vi(t, �)d� + ∫ TR

0
�R(�)R(t, �)d�

� + �
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We consider the strategies 

	(11)	 Vaccine 1 is used throughout, from time t = 30 on, while Vaccine 2 is not used.
	(12)	 Vaccine 1 is used for t ∈ [30, 380] , while Vaccine 2 is used for t ∈ [380, 730].
	(21)	 Vaccine 2 is used for t ∈ [30, 380] , while Vaccine 1 is used for t ∈ [380, 730].
	(22)	 Vaccine 2 is used throughout, from time t = 30 on, while Vaccine 1 is not used.
	(1/2)	 Both vaccines are used throughout, with the same number of doses.

In the present setting we are assuming that vaccinated individuals that get back to 
be susceptibles are vaccinated as soon as possible. Therefore, it is intuitive that Vac-
cine 2 results in being the best choice, as shown in Table 3.

Indeed, in the present framework, once an individual is vaccinated with a Vac-
cine 1, he/she can not be vaccinated using the more efficient Vaccine 2 as long as the 
first immunization is, though only poorly, effective. This also explains the different 
outcomes of the strategies (12) and (21). Note also that strategy (22) allows to dose 
80% of the initial population 5 times, see Table 3.

(3.6)

�1(�) = 6.0 × 10−6 for � ∈ [3, 297]

T1 = 300

�2(�) = 5.0 × 10−7 for � ∈ [30, 90]

T2 = 120

Fig. 13   Characterizations of the 
vaccines used in the integra-
tions of (3.4) with k = 2 and 
the choices (2.3)–(2.4)–(2.9)–
(2.10). Vaccine 1 provides a 
weak protection almost imme-
diately, while vaccine 2 is more 
protective but after a while and 
for a shorter time

Table 3   Statistics on the solutions to (3.4) with k = 2 and the choices (2.9)–(2.10)–(3.6) corresponding 
to the strategies outlined in Sect. 3.1. The leftmost column refers to the reference solution where no vac-
cination takes place, see Sect. 2.1

Strategy ref. (11) (12) (21) (22) (1/2)

Deaths 15.1 11.4 7.20 4.26 3.92 5.78
1 Doses 0.00 187 125 131 0.00 159
2 Doses 0.00 0.00 151 215 480 159
Doses Tot. 0.00 187 275 346 480 318
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4 � Continuous and Discrete Age Structures

Age differences can play a significant role in the reaction of individuals to the 
infection. We thus extend our framework to account also for age differences. 
First, we insert a continuous age structure, later in Sect. 4.1 we consider discrete 
age classes. In the first case a ∈ ℝ+ is a continuous variable and the convective 
terms �aS, �aV , �aI, �aR in (4.1) describe the aging of the individuals in the popu-
lation S, V, I, R. In the latter case, a is a discrete variable ranging in the finite set 
of the age classes considered and no aging term is present, see (4.3). The former 
approach seems more accurate, but on short time intervals the second is a usual 
and acceptable simplification.

For simplicity, we detail the age structured version of  (2.4) corresponding to 
only one vaccine. The extension of the k vaccines case  (3.4) being only techni-
cally more intricate. We thus obtain:

Note that here all effects of vaccines are age dependent. The immunization time pro-
vided by the vaccine is TV = TV (a) and, similarly, also the immunization ensured 
by recovering from the disease is age dependent: TR = TR(a) . Remark that (4.1) is 
able to take into consideration the different effectiveness of the vaccine at different 
ages, thanks to the dependence of �V also on a: �V = �V (a, �) . Similarly, in (4.1) also 
the recovery rate � depends on the age, i.e., � = �(a) , as well as the mortality rate, 
� = �(a).

As usual in age structured models, further boundary conditions need to be sup-
plemented, taking care of the newborns, such as

where b(t) is the time dependent natality. Other natality terms can be considered, 
depending, for instance, on the total amount of susceptibles.

However, typically, the use of a pandemic model may be of interest on time 
intervals far smaller than the average life span of individuals. Therefore, it is con-
venient to consider a fixed number, say m, of age classes. As a consequence, we 
have m different populations of susceptibles, of vaccinated, infected and recov-
ered, obtaining the mixed multiscale system

(4.1)

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

�tS + �aS = −�S I S + V
�
t, a, TV (a)

�
+ R

�
t, a, TR(a)

�
− p(t, a, S,V , I,R)

�tV + �aV + ��V = −�V V I � ∈ [0, TV (a)]

�tI + �aI = �S S I + ∫

TV

0

�V (a, �)V(t, a, �)d� I + ∫

TR

0

�R(a, �)R(t, a, �)d� I

−� I − � I

�tR + �aR + ��R = −�R R I � ∈ [0, TR(a)]

V(t, a, 0) = p(t, a, S,V , I,R)

R(t, a, 0) = � I .

(4.2)S(t, 0) = b(t) , V(t, 0, �) = 0 , I(t, 0) = 0 , R(t, 0, �) = 0 ,
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Above, the terms �a,�
S

 , �a,�
V

 and �a,�
R

 quantify the spreading of the virus between the 
age class a and the age class � in the populations S, V and R.

In (4.3), differently from what happens in (4.1), the total number of individuals in 
the age class a may vary only due to the mortality in that class, i.e.,

so that infection propagates among individuals of different classes, but no individual 
changes its age class.

The introduction of an index similar to R0(t) is formally possible, but the result-
ing expression necessarily explicitly depends on Ia(t).

4.1 � Comparing Age Dependent Vaccination Strategies

We limit the numerical integrations of  (4.3) to the case of only 2 classes, say the 
young one (indexed with 1) and the old one (2). For a different approach to the mod-
eling of 2 age classes, refer for instance to Verrelli and Della Rossa (2021).

The Reference Situation Consider first the case where no vaccination campaign 
takes place. On the basis of a qualitative approach as in Sect. 2.1, we choose the fol-
lowing set of parameters:

and we keep referring to the choices of Φ and Ψ in  (2.3) and  (2.5), so that for 
a, � = 1, 2

(4.3)

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

Ṡa = −

�
m�

𝛼=1

𝜌
a,𝛼

S
I𝛼

�

Sa + Va(t, T
a
V
) + Ra(t, T

a
R
) − pa(t, S,V , I,R)

𝜕tVa + 𝜕𝜏Va = −

�
m�

𝛼=1

𝜌
a,𝛼

V
I𝛼

�

Va 𝜏 ∈ [0, Ta
V
]

İa =

�
m�

𝛼=1

𝜌
a,𝛼

S
I𝛼

�

Sa +

�
m�

𝛼=1

I𝛼 ∫

Ta
V

0

𝜌
a,𝛼

V
(𝜏)Va(t, 𝜏)d𝜏

�

+

�
m�

𝛼=1

I𝛼 ∫

Ta
R

0

𝜌
a,𝛼

R
(𝜏)Ra(t, 𝜏)d𝜏

�

− 𝜃a Ia − 𝜇a Ia

𝜕tRa + 𝜕𝜏Ra = −

�
m�

𝛼=1

𝜌
a,𝛼

R
I𝛼

�

Ra 𝜏 ∈ [0, Ta
R
]

Va(t, 0) = pa(t, S,V , I,R)

Ra(t, 0) = 𝜃a Ia

a = 1,… ,m .

(4.4)d

dt

(
Sa(t) + ∫

Ta
V

0

Va(t, �)d� + Ia(t) + ∫

Ta
R

0

Ra(t, �)d�

)
= −�a Ia(t) ,

(4.5)
�
11

S
= 3.0 × 10−3 �

12

S
= 1.0 × 10−3 �

21

S
= 2.0 × 10−3 �

22

S
= 1.0 × 10−3

�1 = 6.0 × 10−2 �2 = 4.0 × 10−2 �1 = 5.0 × 10−4 �2 = 2.0 × 10−3

T
1

R
= 180 T

2

R
= 140 �

−
R
= 2.0 × 10−5

(4.6)
�
a,�

V
(�) = �

−
V
+ (�

a,�

S
− �

−
V
) Ψ(�∕T

a,�

V
) and �

a,�

R
(�) = �

−
R
+ (�

a,�

S
− �

−
R
) Φ(�∕T

a,�

R
) .
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The above choices reflect the fact that class 2 individuals suffer a higher mortality 
( �2 = 4�1 ) and have a slower recovery ( �2 = 0.67 �1 ). The two age classes differ 
also in the time scales, the younger ones having longer periods of (partial) immuni-
zation both after recovery and after vaccination. On the other hand, among class 1 
individuals the virus spreads faster ( �11

S
∕�22

S
= 3).

Throughout, we carry the integrations up to a final time 730 (roughly corre-
sponding to 2 years) and with the initial datum (for a = 1, 2)

The resulting evolution is displayed in Fig. 14.
In this reference situation, the casualties after time 730 (i.e., 2 years) amount 

to 1.67 in class  1, 11.5 in class  2, totaling to  13.2 (the total initial population 
being 100). Note the formation of “epidemic waves” (Lemon and Mahmoud 
2005), Fig. 14.

In this framework, a variety of age dependent vaccination strategies can be adopted. 
Concerning the vaccine, following (2.9), we keep the following choices fixed:

where Ψ is as in (2.5). Throughout, we let the vaccination campaign begin after time 
t = 30 . We consider below 4 instances: 

Feedback:	� pa(t) is proportional to the number of infected individuals in class a, 
i.e., pa(t) = Ia(t)∕

(
I1(t) + I2(t)

)
 as long as Sa(t) > 0 , for a = 1, 2.

Half–Half:	� pa(t) = 0.5 as long as there are susceptibles in class a, i.e., Sa(t) > 0 , 
for a = 1, 2.

Class 2 First:	� for t ∈ [30, 380] , p1(t) = 0 and p2(t) = 1 as long as S2(t) > 0 ; for 
t ∈ [380, 730] , p1(t) = 1 and p2(t) = 0 as long as S1(t) > 0.

(4.7)
S1(0) = 42 , S2(0) = 53 , Va(0, �) = 0 , I1(0) = 1 , I2(0) = 4 , Ra(0, �) = 0 .

(4.8)

�
a,�

V
(�) = �

−
V
+ (�

a,�

S
− �

−
V
) Ψ(�∕Ta

V
) for a, � = 1, 2 and

T1
V

= 200

T2
V

= 160

�
−
V

= 1.0 × 10−5

Fig. 14   Solution to (4.3) with parameters (4.5)–(4.6) and initial datum (4.7) in the case no vaccination 
is dosed. Left, population 1; middle, population 2 and, right, their sum. In all diagrams, Σ stands for the 
sum of all individuals of the considered age class(es)
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Class 1 First:	� for t ∈ [30, 380] , p1(t) = 1 and p2(t) = 0 as long as S1(t) > 0 ; for 
t ∈ [380, 730] , p1(t) = 0 and p2(t) = 1 as long as S2(t) > 0.

In all strategies, the total number of vaccines dosed per day is at most 1% of the 
total initial population, as soon as the number of susceptibles is sufficiently high. 
In these examples, we also let vaccinated be dosed again as soon as they get back 
to be susceptible. The present framework clearly allows also to leave an amount 
of non vaccinated individuals, as in Sect. 2.1.

It is evident that Class 1 First is likely to be the least effective strategy, as it 
actually results from Table 4. Less intuitive is the fact that Class 2 First is only 
slightly better, in particular comparing the total number of casualties.

Surprisingly, Class 2 First results in a number of casualties in class  1 even 
lower than that resulting from strategy Class 1 First.

Moreover, in both Class 1 First and Class 2 First strategies, the rise of rather 
persisting epidemic waves is evident. In particular, in the latter case the final 
increase in the number of infected of both classes induces to expect a worsening 
of the situation in the long run.

Among the strategies considered, the one resulting most effective in contain-
ing casualties is the Feedback one. However, it is not easy to anticipate that, 
mainly due to the particular initial data chosen, it is only slightly better than the 
Half–Half one. Indeed, a feedback strategy is generally prone to provide better 
results than an open loop one.

It stems out of these examples that, in order to reduce the number of casual-
ties, it is of key importance to bound the number of susceptibles, as a comparison 
between the graphs in Figs. 2 and 3 shows.

It is also worth noting that a “weak” vaccination campaign can lead to some-
what persistent epidemic waves. Indeed, compare the qualitative behavior of the 
maps t ↦ Ia(t) in the reference case (Fig. 14), in the successful cases Feedback or 
Half–Half to those corresponding to the strategies Class 1 First or Class 2 First 
(Fig. 2). The epidemic waves in the latter case appear to be quite persistent, while 
they fade out sooner in the former 2 cases. Indeed, the lack of any vaccination 
results in a high mortality that hinders the repeated formation of waves.

On the opposite, an efficient vaccination campaign quickly flattens the Sa curve 
near to 0. A weak vaccination campaign still reduces the number of casualties but 

Table 4   Statistics on the solutions to (4.3) with parameters (4.5)–(4.6), initial datum (4.7) and with the 
vaccination strategies detailed in Sect. 4.1

Strategy Reference Feedback Half–Half Class 2 First Class 1 First

1 deaths 1.67 0.620 0.630 1.24 1.35
2 deaths 11.5 3.52 3.66 7.47 8.51
Deaths tot. 13.2 4.14 4.29 8.71 9.86
1 doses 0.00 106 106 41.8 28.5
2 doses 0.00 206 203 87.0 84.4
Doses tot. 0.00 313 309 129 113
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may be not sufficiently strong to eradicate the disease, which thus keeps propagating 
in waves.

5 � Parameters’ Choices in the Case of Covid–19

Here we present and justify possible a priori choices for the parameters and func-
tions entering our framework on the basis of available measurements. A different 
approach might consist in fitting, a posteriori, the solutions to the above models to 
the measured evolution.

As is well known, the actual values of the parameters or functions �S, �V , �R, �,� 
appearing in the various models depend on possible normalizations of the total num-
ber of individuals. In the previous sections, for instance, we set the total initial popu-
lation to 100. The time scales, defined for instance by TV and TR in the case of (2.4), 
can be directly deduced from the literature.

For simplicity, we refer to (2.4), the further parameters entering the other models 
can be evaluated similarly.

Parameter �S : In any attempt to obtain real values from a predictive model, this 
parameter has to be taken as time dependent. Indeed, not only it heavily depends on 
the introduction of lockdown restrictions or on the season, the mere social aware-
ness of the disease may significantly affect its value. As an example, we refer to 
(Law et al. 2020, Table 3), where time dependent values for �S (there denoted z �t ) 
are deduced from real data.

Parameter TV and Function �V = �V (�) : Here, by vaccination we intend the full 
treatment consisting of 2 injections, dosed sufficiently near so that there is no loss in 
the protection they provide. Therefore, we rely on a function �V of the type in Fig. 6, 
with TV being the duration of the immunization provided by the 2 doses. Due to 
the relatively short history Covid–19 vaccinations, this datum can only be inferred, 
see for instance (Baden et al. 2021; Polack et al. 2020). On the basis of Zenilman 
et al. (2021) and Whitley et al. (2021), it seems safe to assume TV = 180 days , i.e., 6 
months, for the BNT162B2 mRNA vaccine as well as for the mRNA-1273 vaccine. 
A choice of �−

V
= 0.05 �S is realistic in the case of the BNT162b2 mRNA vaccine, 

see (Polack et al. 2020), while �−
V
= 0.06 �S seems justified by Baden et al. (2021) in 

the case of the mRNA-1273 vaccine.
Parameter TR and Function �R = �R(�) : The current literature provides differ-

ent results about the duration of the immunization enjoyed by those who recov-
ered from Covid–19. For instance, in Ripperger et al. (2020), the authors suggest 
for TR a value between 150 and 210 days. Assuming for the function �R = �R(�) a 
shape like that in (2.3), we are left to estimate �−

R
 , which measures the best level 

of protection provided by the recovery. In the data collected in Shrestha et  al. 
(2021), none of the 1359 non vaccinated that recovered got infected. In Lumley 
et  al. (2021), out of 11364 individuals that recovered, only 2 resulted infected 
according to a PCR test. Clearly, it is natural to expect that both TR and �−

R
 are 

significantly age dependent.
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Parameters � and � : Both these parameters should better be considered time 
dependent whenever simulations are meant to provide results on a scale of several 
months. Indeed, care protocols have been continuously updated since Covid–19 out-
break and new drugs have been introduced. As a reference, we recall that in it is sug-
gested in Russo et al. (2021) that �∕� ≈ 18.2 , obtained from statistics in the Milan 
(Italy) area between February 19th, 2020 and January 21st, 2021.

Function p = p(t) : This function quantifies how many vaccination are dosed 
per unit time (e.g.  day). Clearly, it is time dependent and its value has been cho-
sen according to different policies in different nations. Often, health care workers 
were given the highest priority with old or fragile individuals coming next. As refer-
ence values, we record that in Italy on August 4th 2021, 171565 individuals (i.e., 
about 0.29% of the Italian population) received their first dose, while they were 5544 
( 0.0093% ) on November 1st, 2021, data taken from COVID-19 (2021).

6 � Conclusion

This paper introduces a framework for the multiscale modeling of a vaccination 
campaign in presence of a pandemic. Different concurrent vaccines can be consid-
ered, each of them is characterized by its own efficiency and provides an immuniza-
tion whose level depends on the time since dosing. Different age classes can be con-
sidered to account for the dependence of mortality, infectivity, vaccine efficiency... 
on age. Within this framework, different vaccination strategies can be simulated and 
compared, in terms of casualties, number of infected individuals or number of vac-
cines dosed, for instance.

To our knowledge, a general theorem ensuring the well posedness of these 
models is still unavailable. We expect that this result is at reach along the lines in 
Colombo and Garavello (2021) and Colombo et al. (2022a). Also the search for an 
“optimal” vaccination strategy is still an open problem, however recent results are 
pointing in this direction; see for instance to Di Giamberardino et al. (2021), Keimer 
and Pflug (2020) and McQuade et al. (2021).

Aiming at quantitatively reliable forecasts by means of the present framework 
requires accurate knowledge of various data. In particular, the efficiency of vaccines, 
here quantified through the function �V = �V (�) (or �V = �V (�, a) ), appears as quite 
difficult. In this connection, it looks promising to deal with the uncertainties intrin-
sic to these functions through the recent techniques in Albi et al. (2021a, b, c).

The present framework is quite flexible and several extensions are easily at reach. 
For instance, letting �S and/or �R depend explicitly also on time t may account for 
the insurgence of new virus mutations or strict lockdown policies. Spatial move-
ments can be incorporated using exactly the same techniques as in (Colombo et al. 
2022b,  Sect.  6) or (Colombo et  al. 2020, Formula  (1). Gender differences only 
amount to introduce further distinctions among the unknown variables.
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Appendix A: Proof of (2.13) and (2.14)

Lemma A.1  The solution to 
{

�
t
u + ��u = u�(t)

u(t, 0) = ��(t)
 is u(t, �) = � �(t − �) e∫

t

t−�
�(s)ds.

The proof is a straightforward computation, hence it is omitted.

Lemma A.2  Assume that, for a suitable p, problem  (2.4) admits a classical solu-
tion on ℝ+ with R0(t) = r∗ for all t ∈ [t∗,+∞[ , for a suitable t∗ > 0 and with R0 as 
defined in (2.8). Then, (2.13) and (2.14) hold.

Proof  The above assumptions ensure that S, V, I, R also solve for t ≥ t∗ the mixed 
ODE–PDE problem

We then obtain a closed equation for I, namely İ = (r∗ − 1) (𝜃 + 𝜇) I , whose solution 
is the first line in (2.13). Then, the initial–boundary value problem

fits into Lemma A.1 with u(t, �) = R(t, �) , �(t) = −�R I(t) , � = −�∕�R , proving the 
second line in (2.13).

Verifying (2.14) is now straightforward. 	�  ◻

Appendix B: A Note on the Numerical Algorithm Adopted

The systems considered consist of mixed Ordinary–Partial Differential Equations. 
All differential equations are first order, non linear and leave [0,+∞[ invariant. 
The particular structure of the convective parts in the PDEs, where both inde-
pendent variables are times, suggests to use a simple upwind scheme (LeVeque 
2002, Sect. 4.2), using the same mesh Δt for all independent variables (t and � ), 
although they vary in different time interval. The right hand sides of all equations 
are computed through a first order forward Euler method, taking care that equal-
ity (2.6) [or its analog (4.4)] keeps holding at each time step.

To prevent the S variable getting negative when it is near to 0, we employed a 
simple predictor-corrector method. Whenever S(t + Δt) gets negative, the value of 
p(t) is recomputed, consistently with the equation, so that S(t + Δt) = 0.

(6.1)

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

Ṡ = −𝜌S I S + V(t, TV ) + R(t, TR) − p(t, S,V , I,R)

𝜕tV + 𝜕𝜏V = −𝜌V V I 𝜏 ∈ [0, TV ]

İ = (r∗ − 1) (𝜃 + 𝜇) I

𝜕tR + 𝜕𝜏R = −𝜌R R I 𝜏 ∈ [0, TR]

V(t, 0) = p(t, S,V , I,R)

R(t, 0) = 𝜃 I

{
�tR + ��R = −�R R I

R(t, 0) = � I
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