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Abstract
We propose a novel model to explain the mechanisms underlying dominance hierar-
chical structures. Guided by a predetermined social convention, agents with limited 
cognitive abilities optimize their strategies in a Hawk-Dove game. We find that sev-
eral commonly observed hierarchical structures in nature such as linear hierarchy 
and despotism, emerge as the total fitness-maximizing social structures given differ-
ent levels of cognitive abilities.

Keywords Dominance hierarchy · Hawk-Dove game · Social convention · Cognitive 
ability

1 Introduction

Dominance hierarchy is a social hierarchical structure in which a ranking system 
among the agents in a population can be induced based on their interactions. Intro-
duced by Schjelderup-Ebbe (1935) in describing the social organization of chick-
ens, dominance hierarchies have been found to be very common as a function of 
regulating animal societies, especially in situations where there are potential costs 
and risks of conflict during interactions. More specifically, in a society with domi-
nance hierarchy, pairwise interactions are regulated by a ranking system, where the 
higher-ranked agent in a pair acts dominantly, and the lower-ranked agent acts sub-
missively. Linear hierarchy, known as pecking order, is a common social structure in 
various species including sheep, birds and crayfish (Vannini and Sardini 1971; Addi-
son and Simmel 1980; Savin-Williams 1980; Hausfater et al. 1982; Nelissen 1985; 
Barkan et al. 1986; Heinze 1990; Goessmann et al. 2000; Wang et al. 2011). In this 
hierarchy, every agent is dominated by the higher-ranked members and in turn domi-
nates the lower-ranked agents. Other nonlinear hierarchical structures have also been 
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observed in nature. A typical nonlinear hierarchy is despotism, which can be found 
in hamsters, gorillas, and African wild dogs (Alcock 2013). It is a social order in 
which one agent dominates all others, with no dominance relations among subordi-
nates. In addition, more complex nonlinear hierarchical social structures have been 
observed in dolphins, chimpanzees, baboons, and macaques (Kummer 1984; Hole-
kamp and Smale 1993; Surbeck et al. 2011). It is worth noting that if a hierarchi-
cal structure is not linear, then it must have at least one of the following proper-
ties (de Vries 1995): (1) there are two agents with equal hierarchical status, that is, 
they behave in an equal manner upon interaction; (2) there are two agents with an 
unknown or undefined relationship; and (3) there is a non-transitive relationship in 
a triad (A dominates B, B dominates C, and C dominates A). The commonality of 
the linear hierarchical structure in nature suggests that transitivity may be a desired 
property of dominance hierarchies (Appleby 1983).

Many studies have been conducted to explain how social hierarchies can be 
achieved and sustained. Two major approaches have been proposed in the literature. 
The first approach proposes that the social hierarchical structure is an external attrib-
ute and an expression of intrinsic physical or physiological differences among the 
agents, which can be directly (e.g., greater fighting abilities and larger bodies) or 
indirectly (e.g., better reproductive abilities and higher social status) related to the 
dominance behavior. This is also known as the prior attribute hypothesis (Drews 
1993; Chase et al. 2002). However, evidence has shown that it is difficult to predict 
the outcomes of dominance encounters for animals in small groups using these dif-
ferences (Chase and Seitz 2011). The second approach suggests that social hierar-
chies result from the dynamics of social interactions. The most representative case is 
the winner-and-loser effect, where individuals who win (lose) a contest have higher 
(lower) probability winning the next contest (Goessmann et al. 2000; Dugatkin and 
Earley 2004; Kura et al. 2016). Although it is the most representative explanation 
for hierarchy formation, the theory of winner-and-loser effect has been criticized for 
its arbitrary set-up values and lack of independence with regard to personality traits 
(Favati et al. 2017).

The two existing approaches are not mutually exclusive (Chase and Seitz 2011), 
yet they have rarely been studied jointly (Favati et al. 2017). The aim of this research 
is to develop a model to explain some typical social hierarchical structures consid-
ering the pre-existed differences in the individual characteristics of the agents and 
the social interactions among them. Our model is built on the classical Hawk-Dove 
(HD) game. A population of agents is randomly matched to play the HD game, and 
each agent carries a unique identity. Thus, agents are able to condition their strate-
gies on their opponents’ identities. We then assume that the identities of the agents 
can be ranked linearly to capture the external differences in attributes, such as their 
biological characteristics. We also introduce a social convention to the game that 
provides “suggestions” to the agents on their actions in the HD game according to 
their relative ranks. The purpose of this social convention can be seen as nature act-
ing like a principal, who aims to maximize the fitness of a population of agents by 
indirectly influencing their behavior (Binmore 1994).

Another important feature of the model is that we assume that the agents can only 
memorize some agents’ identities, but not the rest. The restriction imposed on the 
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agents’ memories can be viewed as a case of bounded rationality framed as a costly 
computation (Halpern and Pass 2015). It captures the fact that it usually requires a 
certain level of cognitive ability for the agents to understand the characteristics of 
their opponents, to realize the useful information revealed by those characteristics, 
and to act accordingly. This limited ability to acquire others’ identities, also referred 
as memory size, helps the agents in choosing their strategies, which include whose 
identities they choose to memorize and their corresponding actions in the HD game. 
The agents can condition their actions in the HD game on their opponents’ identities 
only when the identities of these opponents are memorized.

We analyze the hierarchical social structures that emerge as equilibria in the 
model and consider those that follow the suggestion of the social convention and 
maximize the total fitness of the population. We find that different hierarchical 
social structures, including linear hierarchy and despotism, maximize total fitness in 
populations with different levels of cognitive abilities. Specifically, when the mem-
ory size of the agents is sufficiently large, the linear hierarchy is optimal. When the 
memory size is singular, despotism is optimal for small populations. We also con-
jecture that when cognitive ability is at a medium level, a three-layer dominance 
hierarchy structure, that divides the population into three classes, may be optimal. 
We confirm this conjecture through simulation. Hence, our model provides a mecha-
nism that links cognitive ability with social hierarchy.

A closely related paper by Doi and Nakamaru (2018) studies the coevolution of 
transitive inference and memory capacity in the Hawk’Dove game. They find that 
when the cost of fighting is low, transitive inference with limited memory capac-
ity has an evolutionary advantage because the agents can avoid costly fights via 
prompt formation of the dominance hierarchy which does not necessarily reflect the 
actual rank of the agents’ resource-holding potential1 While both we and Doi and 
Nakamaru (2018) consider the dominance hierarchy and limited memory capacity, 
their approach is different from ours in several ways. First, in the model of Doi and 
Nakamaru (2018), agents engage in repeated interactions with one another, and their 
memories allow them to count a certain number of past wins and losses of the con-
tests between two agents, which helps them determine the ranking of the two agents 
in terms of resource-holding potential. Instead, we consider that agents memorize 
the identities of some other agents. Second, Doi and Nakamaru (2018) consider 
agents with different resource-holding potential, whereas the agents in our model 
are identical except for their identities. Hence, the agents in our model do not need 
to access who are stronger (weaker) than them. Third, Doi and Nakamaru (2018) 
examine the evolutionary stability of different combinations of inference procedures 
and memory capacity. In contrast, we investigate what equilibrium social structure 
can arise given different memory capacities and find those that maximize population 
fitness.

The remainder of this paper is organized as follows. In Sect.  2, the proposed 
model is presented. Section 3 analyzes the equilibria of the game from our model 

1 See also Nakamaru and Sasaki (2003) for a study on the evolution of transitive inference.
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under various levels of limited cognitive abilities. Section  4 discusses a possible 
relaxation of restrictions imposed on the model. Section 5 consists of the conclusion.

2  The Model

2.1  The Hawk‑Dove Game

Consider a population of N agents who are randomly matched in pairs to play the 
Hawk-Dove (HD) game. The HD game has been widely used to model pairwise 
interactions where individuals contest a beneficial resource with a possibility of an 
escalated fight at a large cost, which constructs a simple situation where players have 
a choice to either being harsh (play Hawk) or soft (play Dove) on their opponents. 
The earliest illustration of the HD game is presented by Smith and Price (1973) in 
their analysis of animal behavioral strategies in contest situations. In this paper, we 
adopt the game form provided by Smith and Parker (1976) as shown in Fig. 1.

In this game, V is the value of the contested resource and C is the cost of an 
escalated fight. It is assumed that the value of the resource is less than the cost of 
a fight, that is, C > V > 0 . Players split the beneficial resource equally if they both 
play Dove. They equally split the difference between the resource and fighting cost 
if they both play Hawk. The player who plays Hawk exclusively wins the resource if 
the other player plays Dove.

The HD game carries three Nash equilibria (NEs), with two in pure strategy, 
(Hawk, Dove) and (Dove, Hawk), and one in mixed strategy, where each player plays 
Hawk with a probability of V/C. The expected fitness from playing the mixed NE 
strategy is (1 − V∕C)(V∕2).

2.2  Identity and Social Convention

We assume that each agent is assigned with an identity. Identity plays the role of 
a name tag and it is unique for each agent. With this information, it is possible for 
the agents to condition their strategies on their opponents’ identities. The difference 
in identities between two agents can be interpreted on the basis of differences in 
some of their biological characteristics, such as body size and reproductive ability, 
whereas in a social interpretation, it can be a label (e.g., representing different social 
classes in human societies) attached to the agents.

A linear social rank over the agents’ identities is assumed. With this assumption, 
identities can be written as numbers such that their values reflect the relative ranks. 

Fig. 1  The Hawk-Dove Game
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Without loss of generality, we say agents with smaller-valued identities are ranked 
higher.

There is also a social convention that gives favor to those who rank higher. This 
is done by imposing a suggestive rule on the agents, regulating their actions in the 
HD game in accordance with the predetermined social rank. Specifically, it suggests 
that agents play Hawk against opponents with lower ranks, and play Dove against 
opponents with higher ranks. Since everyone is assumed to have a unique identity, if 
the social convention is followed, in any equilibrium, one player plays Hawk and the 
other plays Dove in each pairwise interaction.

Importantly, a linear social rank is assumed for the purpose of designing the 
social convention. The numerical values of the numbers are meaningless to the 
agents, and they do not need to know the social rank. For example, if an agent’s 
assigned number is 5 and it knows the identity of the agent whose assigned number 
is 1, then given the suggestion of the social convention, the number 5 agent should 
play Dove to the number 1 agent.

A pertinent question is, who design the social convention? We assume nature acts 
as the principal, trying to maximize the fitness of the population by indirectly influ-
encing agents’ behavior (Binmore 1994). The social convention based on the linear 
social rank can guide agents to avoid playing (Hawk, Hawk), which is the only strat-
egy profile that generates fitness loss (C) on the scale of the full population in the 
HD game (Fig. 1).

2.3  Memory

In a complete information environment, each agent’s identity is common knowledge 
to all agents; therefore the agents can condition their strategies on their opponents’ 
identities for every possible opponent. However, given their limited cognitive abili-
ties, it seems unrealistic to assume that all agents can access all others’ identities 
any time at no cost, especially in a large population. We use the concept of memory 
to model the limitations of the cognitive ability of the agents. The limitation is the 
maximum number of agents that an agent can have memory of, which we refer to as 
the individual memory size (m). In other words, the agents can memorize the identi-
ties of at most m other agents, but not those of the rest. Once encountered, agents can 
recognize the identities of those who they remember. Therefore, on the one hand, the 
agents can prepare a corresponding strategy for each of the agents that they have a 
memory of, conditioned on the basis of their identities. On the other hand, they can 
have only one universal strategy of responding to the rest of the agents, whom they 
do not have a memory of, because they have no way to distinguish these opponents.

With limited memory, the predetermined social rank and the social convention 
will be effective for the agents only in  situations when they are facing opponents 
with identities that they memorize. This is because social convention provides agents 
with suggestions on their actions according to their relative ranks to their opponents. 
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If an agent does not know the identity of its opponent, it cannot act accordingly as 
suggested by the social convention.2

To summarize, in our model, a population of agents is randomly matched in 
pairs to play the HD game, as shown in Fig. 1. Each agent in the population carries 
a unique number as its identity. The numbers provide a natural linear social rank 
among the agents. There is a social convention suggesting that agents play Hawk 
against opponents with lower ranks, and play Dove against opponents with higher 
ranks. Each agent can memorize the identities of a limited number of agents. We 
assume that all the agents in the population have the same memory capacity. Note 
that an agent is not required to use all of its memory. In addition, we do not explic-
itly model the cost of memorizing an agent’s identity. Nevertheless, if we encounter 
two equilibria that induce the same level of total fitness of the population and one 
equilibrium requires fewer memory slots than the other, we consider that the former 
is favored by natural selection.

2.4  Equilibrium

2.4.1  Memory Table, Strategy Table and Social Structure Graph

To discuss the potential equilibria of the model, we first need to clarify how we 
describe the agents’ strategies. At the beginning of the game, the agents must decide: 
(1) who they memorize, and (2) what their corresponding strategies are against each 
possible opponent. They can have a separate strategy for each opponent that they 
memorize (because once encountered, they are able to tell which opponent they are 
playing against if they have the opponent in their memory), but only one universal 
strategy for all other opponents that they do not have a memory of. As a result, the 

Fig. 2  Example of the memory and strategy tables of a strategy profile

2 It is still possible for the agents to infer the relative ranks between themselves and their opponents 
without having the identities of their opponents in memory. For example, the top ranked agent can infer 
that all its opponents have lower ranks; the bottom ranked agent can infer that all its opponents have 
higher ranks; the second top ranked agent who has the top ranked agent in its memory can infer that all 
other opponents have lower ranks. Nevertheless, inferring about the ranks of those agents that an agent 
has no memory of arguably requires strong cognitive ability, which cannot simply be modeled as mem-
ory. Hence, we do not consider such a possibility in this paper.
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strategy profiles of the game should contain every agents’ choices on memories and 
the corresponding strategies.

We use two tables, a memory table and a strategy table to represent a particular 
strategy profile. Figure 2 shows an example of the memory and strategy tables of a 
particular strategy profile in a population with five agents. In the example, Player 1 
( P

1
 ) memorizes P

2
 and P

3
 and, always plays Hawk(H). P

2
 and P

3
 memorize P

1
 and 

P
5
 , and play Dove(D) to P

1
 and the mixed strategy in the mixed NE of the original 

HD game (plays Hawk with a probability of V/C), which we refer to as M, to others. 
P
4
 memorizes P

1
 and P

5
 , and plays D to P

1
 , H to P

5
 , and M to others. P

5
 memorizes 

P
1
 and P

4
 , and plays D to P

1
 and P

4
 , and M to others.

The memory and strategy tables combined can be used to describe any strategy 
profile in the game. The two tables need to be consistent in describing the same 
strategy profile of the game, meaning that agents have to be able to perform the 
strategy they choose in the strategy table, given their memories as shown in the 
memory table. Specifically, every agent should have the same strategy in the strat-
egy table for all opponents that they do not have a memory of. The strategy table 
lists every agent’s strategies in the HD game, which can be H, D or any mix of H 
and D. However, if a strategy table describes a strategy profile that is an equilibrium, 
then its only possible entries are H, D and M, and any pair that is on the symmetric 
positions relative to the diagonal (e.g., (1,2) and (2,1), or (3,5) and (5,3)) must be 
(H, D), (D, H) or (M, M), reflecting only three NEs in the original HD game.

In addition, if the agents’ strategies do not violate the social convention (that is, 
the upper-right entries in the strategy table must be H if their corresponding entries 
in the memory table are 1, and the lower left entries in the strategy table must be D 
if their corresponding entries in the memory table are 1), then the strategy profile is 
an equilibrium that follows social convention.

Since in any equilibrium, the only strategy pairs between any two agents are 
(H,  D), (D,  H) or (M,  M), there are only two possible relations between any two 
agents as the result of an equilibrium: one (who plays H) dominates the other (who 
plays D) or an equal status (play M against each other). Therefore, a network graph 
can be used to show the underlying social structure based on the equilibrium of the 

Fig. 3  The social structure 
graph of the society in Fig. 2
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game. Figure 3 shows the social structure graph based on the example in Fig. 2. In 
the graph, players are represented by circles with names, and a solid arrow between 
two circles indicates the dominant-submissive relation, where its direction shows the 
direction of domination. Two players are connected by a dotted line if they have an 
equal status in which they play M when facing each other. Note that the strategy 
profile shown in Fig. 2 is an equilibrium. However, it does not follow social conven-
tion because P

2
 and P

3
 both have memory of P

5
 but do not play Hawk against it. The 

social convention requires that an agent will always play Hawk against any agent 
that they recognize who is lower in the social order.

2.5  Equilibrium Selection Based on Total Fitness

Each equilibrium constructs a hierarchical social structure in the sense that it assigns 
each agent a hierarchical position resulting in some agents enjoying a higher fitness 
than the others. The assignment is purely based on the agents’ identities, which have 
nothing to do with superior rationality, information, or contribution.

However, the benefit of forming a hierarchical social structure may be more sig-
nificant at the population level than at the individual level. Indeed, at the individual 
level, some agents (those with dominant roles in the hierarchies) may benefit and 
the rest (those with submissive roles) may suffer from a hierarchical social structure 
compared to an anarchical state where the only equilibrium is everyone always play-
ing M. However, at the population level, a hierarchical social structure may increase 
the total fitness of the entire population (the sum of individual fitnesses), which 
helps the population stand out in the competition with other populations, if there are 
multiple populations. Hence, a population with a hierarchical social structure may 
be favored by natural selection.

We seek a social structure that maximizes the total fitness of the population. 
Recall that (Hawk, Hawk) is the only strategy profile that generates fitness loss, and 
under our potential equilibrium social structures, this only happens when two play-
ers have equal status and they play (M, M) (then (Hawk, Hawk) occurs at a probabil-
ity of V2∕C2 ). Therefore, an optimal social structure must have the fewest pairs of 
agents with the same social status.

A secondary evaluation of the total fitness of the population is performed to 
examine the total memory usage among all agents. Memorizing an agent’s identity 
is potentially costly, although the cost may be minimal compared with the fitness 
loss from the Hawk − Hawk clash in the game. Hence, we only use such an evalua-
tion as a tie-breaker for social structures that provide the same level of total fitness.

3  Analysis

In this section, we study the model with a focus on the hierarchical social struc-
ture that maximizes total fitness under various levels of limited cognitive abilities. 
As described above, the limitation on cognitive abilities is modelled as a memory 



1 3

Limited Cognitive Abilities and Dominance Hierarchies  Page 9 of 19 17

constraint (m), that is, the maximum number of other agents that an agent can 
remember the identities of.

3.1  Fully Restricted Memory: m < 1

First, we consider the case in which memory size is smaller than one. This occurs 
when agents’ cognitive ability is sufficiently low. Since the memory size is not suf-
ficient for the agents to memorize the identity of any single agent, the only pos-
sible memory table for this population is as shown in Fig. 4(A) (we use a popula-
tion of five agents for illustration). Then, the only equilibrium strategy table that can 
be supported in this case is where everyone plays the mixed strategy in the mixed 
NE in the original HD game (M) to all others, as shown in Fig. 4B. Thus, the cor-
responding social structure gives an anarchical (or some refer to it as egalitarian) 
social structure, as shown in Fig. 5.

When evaluating the total fitness, because every pair in the population plays 
(M,  M), the probability of having a Hawk − Hawk clash, the major source of fit-
ness loss in the game, is V2∕C2 . Therefore, the expected fitness loss for each pair 
is (V2∕C2)(C) = V2∕C and all agents have an identical average fitness value of 
(1 − V∕C)(V∕2) . Note that in this case, the social convention is not followed as the 
agents cannot access others’ identities.

Fig. 4  Fully restricted memory

Fig. 5  Social structure, m < 1
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3.2  Unlimited Memory: m ≥ N − 1

The agents are able to memorize all other agents’ identities if their memory size 
equals the population size minus 1 ( N − 1 ). In this case, with everyone’s identity 
in memory, each agent can condition its strategy for every possible opponent, 
making (Hawk, Dove) and (Dove, Hawk), in addition to (M, M), possible equi-
libria in meetings between any two agents. Thus, in the population, there are 
2

N(N−1)

2  different ways to form a social structure in which each pair of agents is 
playing (H, D) or (D, H). Under such a social structure, every pair of agents is 
arranged with a dominant-submissive relation. Hence, there is no fitness loss in 
the population from the Hawk − Hawk clash. We refer to these fitness-loss-free 
social structures as ordered social structures.

With the presence of linear rank in their identities and the fact that agents 
memorize the identities of all other agents, a linear social hierarchical struc-
ture (Fig. 7) is the only ordered social structure that follows social convention. 
Fig. 6A and B show the corresponding memory table and strategy stable. Again, 
we use a population of five agents for illustration purposes.

Fig. 6  Unlimited Memory ( m ≥ N − 1 ), linear hierarchy

Fig. 7  Linear Hierarchy
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3.3  Sufficient Memory: ⌈N∕2 − 1⌉ ≤ m < N − 1

We consider agents as having sufficient memory if they are able to memorize at 
least half minus one ( ⌈N∕2 − 1⌉ ), but not all the identities of the other agents.3 We 
demonstrate that sufficient memory is sufficient for a population to form an ordered 
social structure. In particular, we show that a linear hierarchy can be formed.

Proposition 1 A linear hierarchy social structure can be an equilibrium if the mem-
ory size (m) satisfies m ≥ ⌈N∕2 − 1⌉.

Proof Under a linear hierarchical social structure, each agent plays either Hawk (H) 
or Dove (D) to its opponents. To successfully implement these strategies, the agents 
can choose to memorize the fewer between all agents that they need to play H to and 
all agents that they need to play D to. Then, they play H (or D) to the agents in their 
memory and D (or H) to those who are not in their memory. The required memory 
level for the agents depends on their positions in the linear social rank. When N is 
odd, the agent who needs the largest memory size is the one who is positioned in 
the middle, and it needs to memorize (N − 1)∕2 other agents to play H (or D) to, 
and D (or H) to the rest. If N is even, the two agents in the middle need to memorize 
N∕2 − 1 other agents. Hence, if everyone has a memory size no less than ⌈N∕2 − 1⌉ , 
then the linear hierarchical social structure can be supported as an equilibrium.   ◻

Note that if we treat the use of memory as a minor source of fitness loss, the opti-
mal memory size that gives rise to the linear structure is ⌈N∕2 − 1⌉ . Moreover, only 
the agent(s) situated in the middle of the linear social rank require(s) the use of its 
entire memory, while others can use less. Figure 8A illustrates the optimal memory 
table for a population of five agents. We call this form of memory usage as a “tri-
angular memory structure” because the usage of memory gradually increases as we 
move from either the top or the bottom toward the middle of the rank of agents, 
and the agents who need the largest memory size are those who are situated in the 
middle. The total memory usage is ⌈N(N − 2)∕4⌉ for a triangular memory structure 
in a population of N agents. When compared with Fig.  6A, one can observe that 

Fig. 8  Sufficient Memory, ⌈N∕2 − 1⌉ ≤ m < N − 1

3 ⌈x⌉ is the ceiling function, which gives the least integer greater than or equal to x.
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the memory cost is greatly reduced in Fig. 8A, and it is sufficient to ensure that the 
strategy table in Fig. 8B (identical to Fig. 6B) constitutes an equilibrium that follows 
social convention.

3.4  Insufficient Memory: 1 ≤ m < ⌈N∕2 − 1⌉

When the memory size is smaller than ⌈N∕2 − 1⌉ , it is impossible for the popula-
tion to form a linear hierarchical structure that follows social convention. Any 
equilibrium formed with agents’ memory size smaller than ⌈N∕2 − 1⌉ will involve 
some pairs of agents playing M to each other, causing a fitness loss from the 
Hawk − Hawk clash. Therefore, the optimal structures are those that induce the few-
est pairs of agents playing (M, M) as their equilibrium strategies.

We first examine the case in which the agents can memorize at the most one other 
agent’s identity, which we refer as the singular memory. We use a computational 
method4 to find all equilibrium social structures by examining all possible strategy 
tables that can be supported by at least one memory table (i.e., the agents must be 
able to perform the strategy they choose in the strategy table given the memory 

Fig. 9  Singular memory, despotic structure m = 1

Fig. 10  Despotic social struc-
ture, m = 1

4 See the appendix for a description of the computation method. The code can be found at https:// github. 
com/ harri sonhhy/ optim al_ social_ struc ture.

https://github.com/harrisonhhy/optimal_social_structure
https://github.com/harrisonhhy/optimal_social_structure
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table). The results show that the despotic social system, where one agent domi-
nates all others ( Hawk − Dove relation), is an equilibrium social structure that fol-
lows social convention and maximizes the total fitness in a population of five agents 
(Figs.  9 and  10) and in a population of six agents as well.5 Note that in a population 
with five agents, there exists another equilibrium social structure, which we refer as 
the “proxy despotism," where the top-ranked (in the linear social rank) agent only 
dominates (plays H to) the second top-ranked agent and plays M with the rest. The 
second top-ranked agent dominates (plays H to) all agents besides the top-ranked 
agent but plays D to the top.6 It is equally as good as the despotic structure in terms 
of total fitness. As shown in Fig. 11, proxy despotism has the same probability of 
having Hawk − Hawk clash as the despotic social structure (4 out of 10 pairs do not 
have clash). However, their difference is that the proxy despotism requires full use 
of all agents’ singular memory size, while under the despotic structure, the use of 
memory for the top-ranked agent can be waived. Consequently, the despotic social 

Fig. 11  Singular memory, proxy despotism m = 1

Fig. 12  Proxy despotism m = 1

5 Symmetrically, a social system in which one agent is dominated by all others is also an equilibrium 
social structure that follows social convention and maximizes the total fitness.
6 Symmetrically, a social system in which the bottom ranked agent is dominated by the second bottom 
ranked and the second top ranked agent is dominated by all agents beside the bottomed ranked agent is 
also an equilibrium social structure that follows social convention and maximizes the total fitness.
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structure has a fitness advantage over the proxy despotic structure. This may explain 
their relative frequencies (Sasaki et al. 2016) (Fig. 12).

The intuition behind the optimality of the despotic social structure is that when 
the top-ranked agent is memorized by all others, each usage of memory creates a 
non-clash ( Hawk − Dove ) pairwise interaction between the top-ranked agent and the 
agent who uses the memory (in the example of a population with five agents, there 
are four memories used and four corresponding non-clash relations).

More generally, we conjecture that with insufficient memory 
( 1 ≤ m < ⌈N∕2 − 1⌉ ), the optimal way for agents to use their memories in terms 
of social efficiency is described as follows.7 There are m out of N agents, marked 
as group A, and other N − m agents, marked as group B. Agents in group A form 
a clash-free linear hierarchy among themselves, and the most fitness-efficient way 
to do so is to use the triangular memory structure according to Proposition 1. 
Under the triangular memory structure, agents in group A will be separated into 
two halves, where the higher-ranked half (lower-ranked half) agents only memorize 
agents who have higher (lower) ranks than them, and then they play D (H) to the 
agents in their memory and H (D) to those who are not in their memory (including 
those agents in group B). The N − m agents in group B will memorize (and only 
memorize) all agents in group A, play D to the higher-ranked half in group A, play 
H to the lower-ranked half in group A, and play M to other agents in group B, whom 
they do not memorize, forming an anarchical/egalitarian sub-social structure within 
group B. With this form of memory structure and the corresponding strategies, all 
m(N − m) pairs between group A and group B agents and m(m − 1)∕2 pairs among 
group A agents have Hawk − Dove as their strategies in equilibrium. Hence, there 
are (m(N − m) + m(m − 1)∕2) out of N(N − 1)∕2 clash-free pairs, and every one 
pairwise clash-free relation is maintained by at most one memory. Specifically, the 
H − D relationship between a group A agent and a group B agent is maintained by 
the group B agent’s memory of the group A agent. The H − D relation between a 
pair of agents within the higher-ranked (lower-ranked) half in group A is maintained 
by the lower-ranked (higher-ranked) agent’s memory of the higher-ranked (lower-
ranked) agent. The H − D relation between one agent from the higher-ranked half 
and one agent from the lower-ranked half in group A requires no memory to sustain. 
We call this social structure the “three-layer dominance hierarchy” because society 
is separated into three classes. When m is even, the upper class contains the top m/2 
ranked agents with a linear hierarchy, the middle class contains the middle N − m 
ranked agents with an egalitarian social structure, and the lower class contains the 
bottom m/2 ranked agents with a linear hierarchy. When m is odd, the upper class 
contains the top ⌈m∕2⌉ (or ⌈m∕2⌉ − 1 ) ranked agents, and the lower class contains the 
bottom ⌈m∕2⌉ − 1 (or ⌈m∕2⌉ ) ranked agents. The total amount of memory required 
for the three-layer dominance hierarchy is m(N − m) + ⌈m(m − 2)∕4⌉ . Note that the 
despotic social system is consistent with the description of the three-layer domi-
nance hierarchy for the special case of m = 1 . Figure 13 provides a general illustra-
tion of the “three-layer dominance hierarchy"

7 We thank an anonymous reviewer for the suggestion.
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We confirm our conjecture in a population of seven agents with m = 2 , using our 
computation method. The social structure at equilibrium that induces the least fit-
ness loss is that the top-ranked agent dominates all others, the bottom-ranked agent 
is dominated by all others, and the remaining five agents form an egalitarian social 

Fig. 13  Three-layer dominance hierarchy: a general illustration

Fig. 14  Insufficient memory, N = 7,m = 2

Fig. 15  Three-layer dominance hierarchy; m = 2
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structure among themselves. This is supported by a memory structure where the five 
middle-ranked agents memorize the top-ranked and the bottom-ranked agents, and 
the top- and bottom-ranked agents do not memorize any agent (Figs.  14 and  15).

4  Extension

Thus far, we have analyzed the optimal social hierarchical structures under various 
levels of cognitive ability limitation, where there exists a predetermined linear social 
rank and an associated social convention with regard to the identities of the agents. 
One might wonder what can change in those equilibria if the rank or the social con-
vention does not exist—in which case the agents’ identities are identical ex ante, 
although they are still unique tags that others can recognize and condition their strat-
egies on.

Treating identities as arbitrary name tags instead of numbers with rank enables 
agents to form social hierarchical structures that contain cyclic dominance rela-
tions (loop) where A dominates B, B dominates C, and C dominates A. This type 
of intransitive dominance relation is ruled out if everyone follows social conven-
tion, which is based on transitive linear rank. A cyclic loop can sometimes help a 
population achieve a higher total fitness level with fewer memory usages, especially 
when the population size is small. Figure 16 shows an example of a population of 

Fig. 16  Singular memory, loop, m = 1

Fig. 17  Loop structure
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five agents forming a social structure containing a loop (among P
3
 , P

4
 , and P

5
 ). Its 

individual memory usage is at the same level as that of the despotic social structure 
(Fig. 9), but it achieves a clash-free status as the linear hierarchy does. See Fig. 17. 
Apparently, this structure with a loop outraces all structures introduced in the previ-
ous section.

Various studies (Banks 1956; Chase 1982; Wang et  al. 2011) have pointed out 
that non-transitive dominance relations are very rare in nature compared to transitive 
linear dominance structures. This suggests that there are deeper reasons for species 
not to form non-transitive dominance relations. Besides directly ruling out a struc-
ture with loops by assuming that agents just follow the predetermined social conven-
tion (as in equilibrium, they do not have reasons not to follow), we do not yet have 
a feature in our model to explain why non-transitive structures are not favored by 
agents despite their potential to achieve higher total fitness.

5  Conclusion

We propose a model in which a population of agents is matched to play a Hawk-
Dove game. Agents are equipped with unique identities, and there exists a linear 
social rank over their identities, which is accompanied by a predetermined social 
convention. Our model suggests that at different levels of cognitive ability limita-
tions, different hierarchical social structures can be supported as equilibria that fol-
low social convention, and they are optimal in terms of the total fitness of the popu-
lation. Our findings can be supported by the fact that these hierarchies are the most 
common ones observed in nature. Our model suggests a way to understand how dif-
ferent species utilize their cognitive abilities in social interactions by examining the 
existing hierarchical social structures in their populations.

Appendix: Computational method to find the optimal social 
structure

 1. Set N = given population, m = given memory ability.
 2. Create the memory profile matrix base and the strategy profile matrix base, they 

are N-by-N null matrices.
 3. Digitize the strategies (we use: hawk = 3, dove = 1, mix = 2), to be used in the 

strategy profile matrix.
 4. Generate an arbitrary memory profile matrix under the given memory ability.
 5. Generate an arbitrary strategy profile matrix at equilibrium (the off-diagonal 

pairs must sum to 4, meaning players must play H − D , D − H , or M −M at 
equilibrium).

 6. Check whether the strategy profile can be supported by the memory profile. The 
strategy profile can be supported by the memory profile if the agents play the 
same strategy against all non-memorized opponents: 
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(a) Locate all 0-value entries in the first row in the memory profile matrix. This 
reflects all non-memorized opponents for the first agent.

(b) Find all corresponding entries in the strategy profile matrix to the entries 
found in (a).

(c) If all entries found in (b) have the same value, then this agent’s strategy 
profile can be supported by its memory profile.

(d) Repeat (a) to (c) for every agents. The strategy profile matrix is supported 
by the memory profile matrix if all agents’ strategy profiles can be sup-
ported by their memory profiles.

 7. If the strategy profile can be supported by the memory profile, then it is an 
equilibrium. Count the number of strategy M by counting entries with value=2 
in the strategy profile matrix. Divide by 2 will give us the number of pairs that 
play M −M.

 8. Repeat 5-7 for all possible strategy profile matrices at equilibrium.
 9. Repeat 4-8 for all possible memory profile matrices under the given memory 

ability.
 10. The social structure that induces the least number of M −M pairs is the optimal 

social structure. If there are multiple, compare their memory profile matrices. 
The one with more zeroes (fewer ones) is the superior one in terms of fitness, 
because of lower memory usage.

Acknowledgements We sincerely thank the editor F.J.A. Jacobs and two anonymous reviewers for their 
suggestions that help to greatly improve the paper. We also thank Jonathan Newton for his comments.

References

Addison WE, Simmel EC (1980) The relationship between dominance and leadership in a flock of ewes. 
Bullet Psychon Soc. https:// doi. org/ 10. 3758/ BF033 34540

Alcock J (2013) Animal behavior: an evolutionary approach
Appleby MC (1983) The probability of linearity in hierarchies. Anim Behav. https:// doi. org/ 10. 1016/ 

S0003- 3472(83) 80084-0
Banks EM (1956) Social organization in red jungle fowl hens (Gallus Gallus Subsp). Ecology. https:// doi. 

org/ 10. 2307/ 19331 36
Barkan CP, Craig JL, Strahl SD, Stewart AM, Brown JL (1986) Social dominance in communal Mexican 

jays Aphelocoma ultramarina. Anim Behav. https:// doi. org/ 10. 1016/ 0003- 3472(86) 90021-7
Binmore KG (1994) Game theory and the social contract: playing fair. English
Chase ID (1982) Dynamics of hierarchy formation: the sequential development of dominance relation-

ships. Behaviour. https:// doi. org/ 10. 1163/ 15685 3982X 00364
Chase ID, Seitz K (2011) Self-structuring properties of dominance hierarchies. A new perspective. Adv 

Genet. https:// doi. org/ 10. 1016/ B978-0- 12- 380858- 5. 00001-0
Chase ID, Tovey C, Spangler-Martin D, Manfredonia M (2002) Individual differences versus social 

dynamics in the formation of animal dominance hierarchies. Proc Natl Acad Sci USA. https:// doi. 
org/ 10. 1073/ pnas. 08210 4199

de Vries H (1995) An improved test of linearity in dominance hierarchies containing unknown or tied 
relationships. Anim Behav. https:// doi. org/ 10. 1016/ 0003- 3472(95) 80053-0

Doi K, Nakamaru M (2018) The coevolution of transitive inference and memory capacity in the hawk-
dove game. J Theor Bio 91–107

https://doi.org/10.3758/BF03334540
https://doi.org/10.1016/S0003-3472(83)80084-0
https://doi.org/10.1016/S0003-3472(83)80084-0
https://doi.org/10.2307/1933136
https://doi.org/10.2307/1933136
https://doi.org/10.1016/0003-3472(86)90021-7
https://doi.org/10.1163/156853982X00364
https://doi.org/10.1016/B978-0-12-380858-5.00001-0
https://doi.org/10.1073/pnas.082104199
https://doi.org/10.1073/pnas.082104199
https://doi.org/10.1016/0003-3472(95)80053-0


1 3

Limited Cognitive Abilities and Dominance Hierarchies  Page 19 of 19 17

Drews C (1993) The concept and definition of dominance in animal behaviour. Behaviour. https:// doi. org/ 
10. 1163/ 15685 3993X 00290

Dugatkin LA, Earley RL (2004) Individual recognition, dominance hierarchies and winner and loser 
effects. Proc Royal Soci B: Biol Sci. https:// doi. org/ 10. 1098/ rspb. 2004. 2777

Favati A, øvlie HL, Leimar O, (2017) Individual aggression, but not winner-loser effects, predicts social 
rank in male domestic fowl. Behav Ecol. https:// doi. org/ 10. 1093/ beheco/ arx053

Goessmann C, Hemelrijk C, Huber R (2000) The formation and maintenance of crayfish hierarchies: 
behavioral and self-structuring properties. Behav Ecol Sociobiol. https:// doi. org/ 10. 1007/ s0026 
50000 222

Halpern JY, Pass R (2015) Algorithmic rationality: game theory with costly computation. J Econ Theory. 
https:// doi. org/ 10. 1016/j. jet. 2014. 04. 007

Hausfater G, Altmann J, Altmann S (1982) Long-term consistency of dominance relations among female 
baboons (Papio cynocephalus). Science. https:// doi. org/ 10. 1126/ scien ce. 217. 4561. 752

Heinze J (1990) Dominance behavior among ant females. Naturwissenschaften. https:// doi. org/ 10. 1007/ 
BF011 31799

Holekamp KE, Smale L (1993) Ontogeny of dominance in free-living spotted hyaenas: juvenile rank rela-
tions with other immature individuals. Anim Behav. https:// doi. org/ 10. 1006/ anbe. 1993. 1214

Kummer H (1984) From laboratory to desert and back: a social system of hamadryas baboons. Anim 
Behav. https:// doi. org/ 10. 1016/ S0003- 3472(84) 80208-0

Kura K, Broom M, Kandler A (2016) A game-theoretical winner and loser model of dominance hierarchy 
formation. Bullet Mathem Biol. https:// doi. org/ 10. 1007/ s11538- 016- 0186-9

Nakamaru M, Sasaki A (2003) Can transitive inference evolve in animals playing the hawk-dove game? J 
Theor Biol 461–470

Nelissen MH (1985) Structure of the dominance hierarchy and dominance determining “Group Factors” 
in melanochromis auratus (Pisces. Behaviour. https:// doi. org/ 10. 1163/ 15685 3985X 00280

Sasaki T, Penick CA, Shaffer Z, Haight KL, Pratt SC, Liebig J (2016) A simple behavioral model predicts 
the emergence of complex animal hierarchies. Am Natural. https:// doi. org/ 10. 1086/ 686259

Savin-Williams RC (1980) Dominance hierarchies in groups of middle to late adolescent males. J Youth 
Adolescence. https:// doi. org/ 10. 1007/ BF020 88381

Schjelderup-Ebbe T (1935) Social behavior of birds. In: A Handbook of Social Psychology
Smith JM, Parker GA (1976) The logic of asymmetric contests. Anim Behav. https:// doi. org/ 10. 1016/ 

S0003- 3472(76) 80110-8
Smith JM, Price GR (1973) The logic of animal conflict. Nature. https:// doi. org/ 10. 1038/ 24601 5a0
Surbeck M, Mundry R, Hohmann G (2011) Mothers matter! maternal support, dominance status and 

mating success in male bonobos (Pan paniscus). Proc Royal Soc B: Biol Sci. https:// doi. org/ 10. 
1098/ rspb. 2010. 1572

Vannini M, Sardini A (1971) Aggressivity and dominance in river crab potamon fluviatile (herbst). Moni-
tore Zoologico Italiano - Italian Journal of Zoology. https:// doi. org/ 10. 1080/ 00269 786. 1971. 10736 
174

Wang F, Zhu J, Zhu H, Zhang Q, Lin Z, Hu H (2011) Bidirectional control of social hierarchy by synaptic 
efficacy in medial prefrontal cortex. Science. https:// doi. org/ 10. 1126/ scien ce. 12099 51

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

https://doi.org/10.1163/156853993X00290
https://doi.org/10.1163/156853993X00290
https://doi.org/10.1098/rspb.2004.2777
https://doi.org/10.1093/beheco/arx053
https://doi.org/10.1007/s002650000222
https://doi.org/10.1007/s002650000222
https://doi.org/10.1016/j.jet.2014.04.007
https://doi.org/10.1126/science.217.4561.752
https://doi.org/10.1007/BF01131799
https://doi.org/10.1007/BF01131799
https://doi.org/10.1006/anbe.1993.1214
https://doi.org/10.1016/S0003-3472(84)80208-0
https://doi.org/10.1007/s11538-016-0186-9
https://doi.org/10.1163/156853985X00280
https://doi.org/10.1086/686259
https://doi.org/10.1007/BF02088381
https://doi.org/10.1016/S0003-3472(76)80110-8
https://doi.org/10.1016/S0003-3472(76)80110-8
https://doi.org/10.1038/246015a0
https://doi.org/10.1098/rspb.2010.1572
https://doi.org/10.1098/rspb.2010.1572
https://doi.org/10.1080/00269786.1971.10736174
https://doi.org/10.1080/00269786.1971.10736174
https://doi.org/10.1126/science.1209951

	Limited Cognitive Abilities and Dominance Hierarchies
	Abstract
	1 Introduction
	2 The Model
	2.1 The Hawk-Dove Game
	2.2 Identity and Social Convention
	2.3 Memory
	2.4 Equilibrium
	2.4.1 Memory Table, Strategy Table and Social Structure Graph

	2.5 Equilibrium Selection Based on Total Fitness

	3 Analysis
	3.1 Fully Restricted Memory: 
	3.2 Unlimited Memory: 
	3.3 Sufficient Memory: 
	3.4 Insufficient Memory: 

	4 Extension
	5 Conclusion
	Acknowledgements 
	References




