
Vol.:(0123456789)

Acta Biotheoretica (2022) 70:11
https://doi.org/10.1007/s10441-022-09435-5

1 3

REGULAR ARTICLE

Qualitative and Dynamical Analysis of a Bionomic Fishery 
Model with Prey Refuge

S. N. Raw1  · B. P. Sarangi1

Received: 26 December 2020 / Accepted: 25 January 2022 / Published online: 4 February 2022 
© Springer Nature B.V. 2022

Abstract
Predation and escaping from predation through hiding are two fundamental phe-
nomena in ecology. The most common approach to reducing the chance of preda-
tion is to use a refuge. Here, we consider a three species fishery model system with 
prey refuge induced by a Holling type-II functional response. These three species 
of fish populations are named prey, middle predator, and top predator. Harvesting is 
employed in most fishery models to achieve both ecological and commercial ben-
efits. Research proves that non-linear harvesting (Michaelis–Menten type) returns 
more realistic outcomes. So, we have combined the Michaelis–Menten type of har-
vesting efforts for all populations. Uniform boundedness conditions for the solutions 
of the model are discussed. The existence conditions for possible equilibrium points 
with stability are presented. We explain the dynamical behavior at each equilibrium 
point through bifurcation analysis. The persistent criteria of the system are exam-
ined. Bionomic equilibrium and optimal harvesting control using Pontryagin’s maxi-
mum principle are calculated. For validation of the model in the real world, we have 
implemented this in the freshwater ecosystem of Lake Victoria. Extraction of native 
fish species and ecological balances are the foremost solicitude of Lake Victoria. We 
may resolve this concern partially by implementing prey refuge, since it may sustain 
the ecology of Lake Victoria, and therefore also its economical importance. Lake 
Victoria is acclaimed worldwide for the trade of fishing. Also, it provides the largest 
employment in east-central Africa and is beneficial to fishing equipment manufac-
turers. So, the bionomic equilibrium and harvesting control have significant appli-
cations in the fisheries. All the analytical studies are verified by numerical simula-
tions. We have plotted phase portraits, bifurcation diagrams, Lyapunov exponents to 
explore the dynamics of the proposed model.
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1 Introduction

Dynamics of an ecological system has been one of the most pre-eminent topics in 
ecology because of its essentiality and ubiquitousness. Predator-prey interactions 
were first introduced by Lotka and Volterra (Lotka 1924; Volterra 1926) which is 
often termed as the classical predator-prey model. After that many researchers devel-
oped many theories varying different factors which affect the dynamics of the model 
system such as delayed time, harvesting, competition, stochastic perturbation, group 
defense, diseases, functional response, refuge and many more (Kar 2006; Upad-
hyay et al. 2013; Maiti et al. 2019; Mishra et al. 2019; Liu et al. 2020). Functional 
responses are the indispensable components of predator-prey interactions which 
signifies the feeding relations among two species at a given unit of time. We have 
studied in general three types of functional responses in literature known as prey 
dependent, predator dependent, and lastly ratio-dependent type functional responses. 
Holling (1965) introduced type I, type II, and type III functional responses for spe-
cies interaction.

We know that due to some external effects like overutilization, over predation 
and environmental factors such as pollution and famine starvation, numerous prey 
species have been driven toward extinction. The prey species may avoid such cir-
cumstances and predation either by guarding and defending themselves or by hiding 
as a refuge keeping a safe distance from predators. Many analytical and practical 
experiments have been performed to notice the effects of prey refuges in a predator-
prey model and the result confirmed that prey refuges have a stabilizing power on 
prey-predator interactions. It is also observed that the extinction of the prey popula-
tion can be prevented by adding the refuges (González-Olivare and Ramos-Jiliberto 
2003; Kar 2006). There are enormous researches available based on the refuges. Sih 
(1987) reviewed the stability condition of a generalized Lotka–Volterra type prey-
predator model with prey refuge and examined the effect of refuge with feeding and 
reproduction rate of prey. Kar (2005) and Huang et al. (2006) studied the importance 
of prey refuge on the stability of a predator-prey model. Ma et  al. (2009) exam-
ined the consequences of induced prey refuge on a predator-prey model for multiple 
functional responses analytically.

Harvesting is a powerful tool to control the extinction of species and minimizing 
the exploitation of renewable resources, and it also has an additional influence on 
the population dynamics. So by adding the harvesting factor in the ecological model, 
the system gives a more realistic result. Clark (1979, 2005) interpreted the effects of 
harvesting on fisheries control. General harvesting functions studied excessively in 
the literature are: (i) constant rate of harvesting i.e., h(x) = h , where x represents the 
density of population (fish stock) and h(x) is the harvesting rate, (ii) linear harvesting 
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i.e., h(x) = qEx , where q and E measure the catchability coefficient and harvesting 
efforts, respectively, with mortality rate qE, and (iii) non-linear harvesting, defined 
as h(x) = qEx∕(m1E + m2x) with positive values m1 and m2 (Clark 1979). However, 
the non-linear harvesting, named as the Michaelis–Menten type, is more realistic 
among these in all senses. For linear harvesting, h(x) → ∞ with x → ∞ for fixed E, 
and h(x) → ∞ with E → ∞ for fixed x, but the non-linear harvesting gives more real-
istic results and removes this unbounded characteristic of harvesting. For Michae-
lis–Menten type harvesting, we notice h(x) → qE∕m2 as x → ∞ and h(x) → qx∕m1 
as E → ∞ (Das et al. 2009; Gupta et al. 2012). Hoekstra and van den Bergh (2005) 
reviewed a predator-prey model with the concept of conservation of the predator 
and harvesting. They inferred that the optimal harvesting solutions of the model are 
controlled by ecological along with economic parameters. A predator-prey model 
incorporated with constant rates of harvesting and prey refuge was examined by Ji 
and Wu (2010). Krishna et al. (1998) and Gupta and Chandra (2013) studied a two 
species predator-prey model with the Michalis–Menten harvesting function, and 
the main objective of their study was to maximize economic benefits maintaining 
the ecological balance, and to prevent the predator from annihilation. Purohit and 
Chaudhuri (2004) introduced a two species bio-economic fishery model using non-
linear harvesting in both species. Hu and Cao (2017) considered a predator-prey 
model where only the predator undergoes Michaelis–Menten harvesting. Raw et al. 
(2020) studied a plankton-fish model imposing non-linear harvesting, particularly 
on the fish species. Haque and Sarwardi (2018) studied a two species harvesting 
model implementing prey refuge as a Holling type-II functional response, and both 
the species were harvested according to a linear harvesting function. A Holling type-
II functional response is generated with the assumption that the predator feeding rate 
is limited by its capacity to process food. Abdulghafour and Naji (2018) observed 
the impact of refuge in a prey-predator model and addressed the effect of some cru-
cial parameters on the dynamics of the system.

We observe that refuge and harvesting have transcendent effects on the dynamics 
of prey-predator systems. In this study we consider an ecosystem of Lake Victoria 
to explain the application of the model. This lake is the world’s second-largest fresh-
water lake covering a massive inland of 68, 800km2 , is situated in east-central Africa 
and borders the countries of Uganda, Kenya, and Tanzania (Geheb et  al. 2003; 
NPFMP 2015b). The lake bears Africa’s largest inland fishery which includes fish 
like Nile perch (Lates niloticus), Nile tilapia (Oreochromis niloticus), cichlids, the 
silver cyprinid (Rastrineobola argentea), airbreathing catfish, bagrid catfish, etc. In 
this particular study, we consider a three fish species predator-prey model with the 
food chain, including the Nile perch as predator one (top predator), while cichlids 
and the silver cyprinid as the predator two (middle predator) and prey, respectively. 
Here the prey population (the silver cyprinid) in nature exists by using a refuge in 
the presence of predators. All three species undergo non-linear harvesting efforts. 
The effectiveness of a Holling type-II response modelling prey refuge combined 
with a non-linear harvesting in a three-species model is the unique concept of this 
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paper. We have considered the lake ecosystem as a real-world example and prepared 
a comparative study based on our results with the real data. This work may inscribe 
a realistic approach to understand the lake ecosystem. We hope this analysis can 
develop a balanced ecosystem regarding the sustainability of resources with com-
mercial fishery purposes. Though there are numerous works on this related concept 
(see Clark 1979; González-Olivare and Ramos-Jiliberto 2003; Gupta et  al. 2012; 
Ghosh et al. 2017; Hu and Cao 2017; Abdulghafour and Naji 2018), there is no evi-
dence of the existence of this particular type of model in the literature until now, to 
our knowledge.

In this paper we study the dynamical behaviour of a Holling type-II predator-prey 
fishery model with a Michalis–Menten type of harvesting function incorporating a 
constant rate of refuge. This paper continues with the following four sections. In 
Sect. 2, the idea and development of the ecological model are introduced, and we 
examine the dynamics and properties like stability, boundedness, persistence, local 
bifurcation, and Hopf-bifurcation. Section 3 shows the numerical simulation of the 
model system. We validate the model with real-world situations in Sect. 4. Finally, 
we give a brief conclusion about our findings in Sect. 5.

2  Mathematical Model

We formulate a three species ecological system that contains a prey (X), a middle 
predator (Y), and a top predator population (Z) at time T with prey refuge incorporat-
ing a Holling type-II functional response and Michaelis–Menten type of harvesting 
function. Here, we consider a situation where the prey population X is predated by 
predator Y, and the population Y serves as a favourite food for predator Z. In the 
absence of predator species, the prey population increases logistically. Meanwhile, 
the predator populations die out exponentially due to the absence of their only food 
(i.e., prey species). We assume that a fixed fraction of prey enters a preserved area to 
avoid the predators’ attack, although the non-refuged prey can be attacked by the 
predator. Here, we take the non-refuged prey to be attacked by the middle predator 
following a Holling type-II functional response. The well known Holling type-II 
response is functionally described as, f (X, Y) =

a1X

b1 + X
 , where a1 and b1 are posi-

tive parameters representing the attack rate and half-saturation constant, respectively 
(Skalski and Gilliam 2001; Ghosh et  al. 2017). Assuming the importance of prey 
refuge, we have imposed the refuge parameter m into the attack rate a1 , producing 
a1(1 − m), m ∈ [0, 1) , and (1 − m)X prey abundance is left for predation. The func-
tional response imposing refuge turns into f (X, Y) =

a1(1 − m)X

b1 + (1 − m)X
 . The model 

implements Holling type-II functional response to explain prey-predator feeding 
relations. Lastly, the model system employs a non-linear harvesting function for all 
three species populations. According to the above hypothesis, the model can be rep-
resented mathematically as follows:
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with the initial conditions X(0) > 0 , Y(0) > 0 and Z(0) > 0 . Table 1 describes the 
biological meaning of the model parameters, and all are positive.

In order to reduce the number of parameters used in the model (2.1) and to deter-
mine the principal set of parameters, we take the following transformations:

The dimensionless system can be written as

(2.1)

dX

dT
= rX

(
1 −

X

K

)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
Logistic Growth

−
a1(1 − m)XY

b1 + (1 − m)X
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

Consumption

−
c1EX

l1E + l2X
⏟⏞⏞⏟⏞⏞⏟
Harvesting

,

dY

dT
= −dY
⏟⏟⏟
Death

+ e1
a1(1 − m)XY

b1 + (1 − m)X
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
Conversional Growth

−
a2YZ

b2 + Y
⏟⏟⏟

Consumption

−
c2EY

l3E + l4Y
⏟⏞⏞⏟⏞⏞⏟
Harvesting

,

dZ

dT
= −cZ
⏟⏟⏟
Death

+ e2
a2YZ

b2 + Y
⏟⏞⏟⏞⏟

Conversional Growth

−
c3EZ

l5E + l6Z
⏟⏞⏞⏟⏞⏞⏟
Harvesting

,

(2.2)

t = rT , X = Kx, y =
a1Y

rK
, z =

a2Z

rK
, w1 =

b1

K
, w2 =

Ec1

rl2K
, w3 =

l1E

l2K
, w4 =

d

r
,

w5 =

e1a1

r
, w6 =

r

a1
, w7 =

a1b2

rK
, w8 =

a1c2E

r2l4K
, w9 =

a1l3E

rl4K
, w10 =

c

r
, w11 =

e2a2

r
,

w12 =

a2c3E

r2l6K
, w13 =

a2l5E

rl6K
.

Table 1  The biological meaning of model parameters

Parameters Biological meaning

r Intrinsic growth rate of the prey
K Carrying capacity
a1 Maximum attack rate of the middle predator
a2 Maximum attack rate of the top predator
b1 Half-saturation constant of the prey
b2 Half-saturation constant of the middle predator
d Death rate of the middle predator
c Death rate of the top predator
c
i
;i = 1, 2, 3 Catchability coefficients

E Harvesting effort
l
i
;i = 1, 2, 3, 4, 5, 6 Positive constants

e1 The efficiency of the middle predator to convert the consumed prey into a new 
predator

e2 The efficiency of the top predator to convert the consumed middle predator into a 
new predator

m ∈ [0, 1) Rate of prey refuge, remaining (1 − m)X non-refuged prey available for predation
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2.1  Boundedness

Boundedness of any model system assures that the system is biologically feasi-
ble and that it is realistic in representing the species population with no negative 
values. A mathematical problem is feasible if it has a solution, the solution is 
unique and it depends continuously on data and parameters.

Theorem 1 All solutions of the system (2.3) are uniformly bounded.

Proof From system (2.3), we take dx
dt

≤ x(1 − x) with x(0) > 0.

Thus, solution x(t) ≤ x(0)

e−t[1 − x(0)] + x(0)
 and limt→∞ x(t) ≤ 1.

Now, define the function

Some algebraic calculation yields dw
dt

≤ 2 − Lw , where L = min{1,w4,w10} and 
w(0) > 0.

Using Grönwall’s lemma (Birkhoff and Rota 1982) for differential inequalities, it 
is observed that

Hence, it is proved that all solutions of the system (2.3) are uniformly bounded.   ◻

(2.3)

dx

dt
= x

[
(1 − x) −

(1 − m)y

w1 + (1 − m)x
−

w2

w3 + x

]
= xf1(x, y, z),

dy

dt
= y

[
−w4 +

w5(1 − m)x

w1 + (1 − m)x
−

z

w6(w7 + y)
−

w8

w9 + y

]
= yf2(x, y, z),

dz

dt
= z

[
−w10 +

w11y

w7 + y
−

w12

w13 + z

]
= zf3(x, y, z).

w(t) = x(t) +
1

w5

y(t) +
1

w5w6w11

z(t),

⇒
dw

dt
=

dx

dt
+

1

w5

dy

dt
+

1

w5w6w11

dz

dt

≤ x −
w2x

w3 + x
−

w4y

w5

−
w8y

w5(w9 + y)
−

w10z

w5w6w11

−
w12z

w5w6w11(w13 + z)
.

0 < w(t) ≤ w(0)e−Lt −
2

L
(e−Lt − 1),

⇒ lim
t→∞

w(t) ≤ 2

L
.
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2.2  Equilibrium Points

In this section, we explore all the biological feasible equilibrium points with their 
existence conditions. To calculate the equilibrium points for the model (2.3), we 
take the zero growth isoclines as

We see that only four biologically feasible equilibrium points exist for the given 
model (2.3). 

 (I) The trivial equilibrium point E0 = (0, 0, 0) always exists.
 (II) The predator free equilibrium point E1 = (x̄, 0, 0) , where 

exists on the positive quadrant of the x− axis if the conditions (i) w3 < 1 , 
and (ii) (w3 − 1)2 > 4(w2 − w3) hold.

 (III) The equilibrium point E2 = (x̃, ỹ, 0) exists, where 

and x̃ represents the positive unique root of the polynomial equation: 

 where 

E2 = (x̃, ỹ, 0) exists uniquely in the xy plane provided that the given 
condition 

(2.4)xf1(x, y, z) = 0, yf2(x, y, z) = 0 and zf3(x, y, z) = 0.

x̄ = −
(w3 − 1)

2
+

√
(w3 − 1)2 − 4(w2 − w3)

2
,

(2.5)ỹ =

[
(1 − x̃)(w3 + x̃) − w2

][
w1 + (1 − m)x̃

]
(w3 + x̃)(1 − m)

,

(2.6)U1x
4 + U2x

3 + U3x
2 + U4x + U5 = 0,

U1 = (w5 − w4)(1 − m)2,

U2 = (1 − m)
[
(w4 − w5)(1 − m)(1 − w3) − w1(2w4 − w5)

]
,

U3 = (1 − m)
[{

(w9 + w3 − w2)(1 − m) + (1 − w3)w1

}
(w4 − w5)

+ (1 − w3)w1w4 + w8(1 − m) −
w2
1
w4

(1 − m)

]
,

U4 = (1 − m)
[{

w3w9(1 − m) + (w3 − w2)w1

}
(w4 − w5) − (w9 + w3 − w2)w1w4

+ w8

{
w1 + (1 − m)w3

}
+

(1 − w3)w
2
1
w4

(1 − m)

]
,

U5 = w1

[
(1 − m)w3(w4w9 + w8) + w1w4(w3 − w2)

]
.

(2.7)(1 − x̃)(w3 + x̃) > w2,
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with one set of following conditions 

are satisfied.
 (IV) Finally, for the interior equilibrium point E3 = (x∗, y∗, z∗) , we have 

Solving the system (2.8), we get 

where R∗
1
= w1 + (1 − m)x∗ and R∗

2
= w3 + x∗ . We can get an exact para-

metric solution for x∗ , y∗ and z∗ by putting values of y∗ and z∗ in system 
(2.8) and solving toward E3 . It is quite difficult to calculate these equilib-
rium coordinate values analytically due to its algebraic complexity. How-
ever, we can find E3 = (x∗, y∗, z∗) numerically later in the numerical simu-
lation Sect. 3.

2.3  Stability and Bifurcation Analysis

In this section, we study the local stability with the help of the variational matrix 
for the existing equilibrium points and the local bifurcation near each equilib-
rium point using Sotomayor’s theorem (Sotomayor 1973). It can be noted that 
the existence of a non-hyperbolic equilibrium point is only a necessary condition 
to show the occurrence of a bifurcation. The variational matrix calculated at the 
point Ei = (x, y, z) is

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

U1 < 0, U2 < 0, U4 > 0, and U5 > 0,

Ui < 0; i = 1, 2, 3, 4 and U5 > 0,

U1 < 0 and Ui > 0; i = 2, 3, 4, 5,

U1 > 0, U2 > 0, U4 < 0 and U5 < 0,

Ui > 0; i = 1, 2, 3, 4 and U5 < 0,

U1 > 0 and Ui < 0; i = 2, 3, 4, 5,

(2.8)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

1 − x∗ −
(1 − m)y∗

w1 + (1 − m)x∗
−

w2

w3 + x∗
= 0,

−w4 +
w5(1 − m)x∗

w1 + (1 − m)x∗
−

z∗

w6(w7 + y∗)
−

w8

w9 + y∗
= 0,

−w10 +
w11y

∗

w7 + y∗
−

w12

w13 + z∗
= 0.

(2.9)y∗ =
R∗
1

[
R∗
2
(1 − x∗) − w2

]
R∗
2
(1 − m)

,

(2.10)
z∗ =

w7R
∗
2
(1 − m)(w10w13 + w12) + R∗

1

[
w12 − w13(w11 − w10)

][
R∗
2
(1 − x∗) − w2

]

−w10w7R
∗
2
(1 − m) + R∗

1

[
w11 − w10

][
R∗
2
(1 − x∗) − w2

] ,
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where

2.3.1  System Behaviour at E0 = (0, 0, 0)

The variational matrix at the trivial equilibrium point E0 = (0, 0, 0) is

The eigenvalues of the matrix J0 are �01 = 1 −
w2

w3

 , 𝜆02 = −w4 −
w8

w9

< 0 , and 

𝜆03 = −w10 −
w12

w13

< 0 . From the nature of these eigenvalues we conclude that E0 is 

locally asymptotically stable for w3 < w2 . If the parameter w2 passes through its 
threshold value w∗

2
= w3 , then the Jacobian matrix (2.12) becomes

which indicates that E0 becomes a non-hyperbolic equilibrium point with �01 = 0 , 
and the system (2.3) encounters a bifurcation. We examine the nature of the local 
bifurcation using Sotomayor’s theorem. Let V0 =

[
v01 v02 v03

]T
 and W0 =

[
w01 w02 w03

]T
 

(2.11)J(Ei) =

⎡
⎢⎢⎣

j11 j12 j13
j21 j22 j23
j31 j32 j33

⎤
⎥⎥⎦
,

j11 = x

[
−1 +

(1 − m)2y

(w1 + (1 − m)x)2
+

w2

(w3 + x)2

]
+

[
1 − x −

(1 − m)y

w1 + (1 − m)x
−

w2

w3 + x

]
,

j12 = −
x(1 − m)

w1 + (1 − m)x
, j13 = 0, j21 =

w1w5(1 − m)y

(w1 + (1 − m)x)2
,

j22 = y

[
w6z

(w6(w7 + y))2
+

w8

(w9 + y)2

]
+

[
−w4 +

w5(1 − m)x

w1 + x(1 − m)
−

z

w6(w7 + y)

−
w8

(w9 + y)

]
,

j23 = −
y

w6(w7 + y)
, j31 = 0, j32 = z

[
w7w11

(w7 + y)2

]
, j33 =

w12z

(w13 + z)2

+

[
−w10 +

w11y

w7 + y
−

w12

w13 + z

]
.

(2.12)J0 =

⎡
⎢⎢⎢⎢⎢⎣

1 −
w2

w3

0 0

0 − w4 −
w8

w9

0

0 0 − w10 −
w12

w13

⎤
⎥⎥⎥⎥⎥⎦

.

(2.13)J∗
0
=

⎡
⎢⎢⎢⎢⎣

0 0 0

0 − w4 −
w8

w9

0

0 0 − w10 −
w12

w13

⎤
⎥⎥⎥⎥⎦
,
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denote the eigenvectors of the matrix J∗
0
 and J∗

0

T , respectively. Then corresponding 
to the eigenvalue �01 = 0 , we obtain V0 =

[
v01 0 0

]T and W0 =
[
w01 0 0

]T , where 
v01 ≠ 0 and w01 ≠ 0 . Rewriting the system (2.3) in the form N� = F(N) , where 
N =

[
x y z

]T and F(N) =
[
xf1(x, y, z) yf2(x, y, z) zf3(x, y, z)

]T , we get 
�F

�w2

= Fw2
=
[
−

x

w3 + x
0 0

]T
 ; this implies Fw2

(E0, w
∗
2
) =

[
0 0 0

]T
 . Hence WT

0
Fw2

(E0, w
∗
2
) = 0 

indicates the non-appearance of the saddle node bifurcation at this point. Now the 
derivative of Fw2

 with respect to N at (E0, w
∗
2
) is

and D2F , where D = d∕dN is calculated as

If w3 ≠ 1 , then a transcritical bifurcation occurs near equilibrium E0 . If the given 
condition doesn’t satisfy, then we continue calculating the third derivative. Here

which implies

suggesting the occurrence of a pitchfork bifurcation for the system (2.3) at the trivial 
equilibrium E0 . We summarise the obtained results in the following theorem:

Theorem 2 The system behavior around E0 = (0, 0, 0) is as follows 

 (i) E0 is locally asymptotically stable for w3 < w2 , non-hyperbolic for w3 = w2 , 
and a saddle node for w3 > w2.

(2.14)

DFw2
(E0, w

∗
2
) =

⎡
⎢⎢⎢⎣

−
1

w3

0 0

0 0 0

0 0 0

⎤
⎥⎥⎥⎦
⇒ WT

0

�
DFw2

(E0, w
∗
2
)V0

�
= −

w01v01

w3

≠ 0,

(2.15)D2F(E0, w
∗
2
)(V0, V0) =

⎡
⎢⎢⎢⎣

−2v2
01
+

2

w3

v2
01

0

0

⎤
⎥⎥⎥⎦
,

(2.16)⇒ WT
0

[
D2F(E0, w

∗
2
)(V0, V0)

]
= 2w01v

2
01

(
−1 +

1

w3

)
≠ 0.

(2.17)D3F(E0,w
∗
2
)(V0,V0,V0) =

⎡⎢⎢⎢⎣

−
6

w2
3

v3
01

0

0

⎤⎥⎥⎥⎦
,

(2.18)WT
0

[
D3F(E0,w

∗
2
)(V0,V0,V0)

]
= −

6

w2
3

v3
01
w01 ≠ 0,
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 (ii) If the parameter w2 passes through its threshold value w∗
2
= w3 , then the system 

(2.3) at E0 goes through a transcritical bifurcation for w3 ≠ 1 . For w3 = 1 it 
has a pitchfork bifurcation.

2.3.2  System Behavior at E1 = (x̄ , 0, 0)

The variational matrix at the equilibrium point E1 = (x̄, 0, 0) is computed as

The eigenvalues of the matrix J1 are given by 𝜆11 = x̄

(
−1 +

w2

(w3 + x̄)2

)
 , 

𝜆12 = −w4 +
w5(1 − m)x̄

w1 + (1 − m)x̄
−

w8

w9

 , and 𝜆13 = −w10 −
w12

w13

< 0 . E1 is locally asymptotically stable 
if the conditions

hold. If the parameter w4 passes through the value w∗
4
≡ w5(1 − m)x̄

w1 + (1 − m)x̄
−

w8

w9

 , then 

the equilibrium point E1 = (x̄, 0, 0) is converted to a non-hyperbolic point with 
�12 = 0 . Hence the Jacobian matrix (2.19) becomes

Let V1 =
[
v11 v12 v13

]T and W1 =
[
w111 w112 w113

]T denote the eigenvector of the 
matrix J∗

1
 and J∗

1

T , respectively. We get V1 =
[
�1v12 v12 0

]T and W1 =
[
0 w112 0

]T 
corresponding to the eigenvalue �12 = 0 , where 𝜉1 =

(1 − m)(w3 + x̄)2[
w1 + (1 − m)x̄

][
w2 − (w3 + x̄)2

] ≠ 0 , 

v12 ≠ 0 , and w112 ≠ 0 . We get �F
�w4

= Fw4
=
[
0 −y 0

]T and Fw4
(E1, w

∗
4
) =

[
0 0 0

]T , 

which implies that

(2.19)

J1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

x̄

�
−1 +

w2

(w3 + x̄)2

�
−

(1 − m)x̄

w1 + (1 − m)x̄
0

0 − w4 +
w5(1 − m)x̄

w1 + (1 − m)x̄
−

w8

w9

0

0 0 − w10 −
w12

w13

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(2.20)

⎧⎪⎨⎪⎩

w2

(w3 + x̄)2
< 1,

w5(1 − m)x̄

w1 + (1 − m)x̄
< w4 +

w8

w9

,

(2.21)J∗
1
=

⎡⎢⎢⎢⎢⎣

x̄

�
−1 +

w2

(w3 + x̄)2

�
−(1 − m)x̄

w1 + (1 − m)x̄
0

0 0 0

0 0 − w10 −
w12

w13

⎤⎥⎥⎥⎥⎦
.

(2.22)WT
1
Fw4

(E1, w
∗
4
) = 0.
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Hence, the saddle node bifurcation cannot appear at the equilibrium point E1 . Now 
evaluating the derivative of Fw4

 with respect to N at (E1, w
∗
4
) , we get

Further calculating D2F , where D = d∕dN , we get

Hence

as 
2w1w5(1 − m)

(w1 + (1 − m)x̄)2
𝜉1 +

2w8

w2
9

≠ 0 , which signifies that the system (2.3) evidences a 

transcritical bifurcation at E1 . We further evaluate the third derivative of F with 
respect to N, which gives

Thus

According to condition (2.27), the system (2.3) faces a pitchfork bifurcation at the 
equilibrium point E1 . The summary of above analysis is given in the next theorem.

Theorem 3 (i)  If conditions (2.20) hold, then equilibrium E1 is locally asymptoti-
cally stable.

(2.23)DFw4
(E1, w

∗
4
) =

⎡
⎢⎢⎣

0 0 0

0 − 1 0

0 0 0

⎤
⎥⎥⎦
,

(2.24)⇒ WT
1

[
DFw4

(E1, w
∗
4
)V1

]
= −w112v12 ≠ 0.

D2F(E1, w
∗
4
)(V1, V1) =

⎡
⎢⎢⎢⎢⎢⎣

−2𝜉2
1
v2
12
+

2w2w3

(w3 + x̄)3
𝜉2
1
v2
12
−

2w2(1 − m)

(w1 + (1 − m)x̄)2
𝜉1v

2
12

2w1w5(1 − m)

(w1 + (1 − m)x̄)2
𝜉1v

2
12
+

2w8

w2
9

v2
12

0

⎤
⎥⎥⎥⎥⎥⎦

.

(2.25)

WT
1

[
D2F(E1, w

∗
4
)(V1, V1)

]
=

[
2w1w5(1 − m)

(w1 + (1 − m)x̄)2
𝜉1 +

2w8

w2
9

]
w112v

2
12

≠ 0,

(2.26)

D3F(E1, w
∗
4
)(V1, V1, V1) =

⎡
⎢⎢⎢⎢⎢⎣

−
6w2w3

(w3 + x̄)4
𝜉3
1
v3
12
+

6w1(1 − m)2

(w1 + (1 − m)x̄)3
𝜉2
1
v3
12

−
6w1w5(1 − m)2

(w1 + (1 − m)x̄)3
𝜉2
1
v3
12
−

6w8

w3
9

v3
12

0

⎤
⎥⎥⎥⎥⎥⎦

.

(2.27)

WT
1

[
D3F(E1, w

∗
4
)(V1, V1, V1)

]
= −6

[
w1w5(1 − m)2

(w1 + (1 − m)x̄)3
𝜉2
1
+

w8

w3
9

]
w112v

3
12
,

≠ 0.
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(ii)      The system (2.3) has a transcritical bifurcation around the equilibrium point 

E1 for 
2w1w5(1 − m)

(w1 + (1 − m)x̄)2
𝜉1 +

2w8

w2
9

≠ 0 , when the parameter w4 crosses the 

bifurcation value w∗
4
≡ w5(1 − m)x̄

w1 + (1 − m)x̄
−

w8

w9

 . Otherwise a pitchfork bifurca-

tion appears for the system.

2.3.3  System Behavior at E2 = (x̃ , ỹ, 0)

The variational matrix at the equilibrium point E2 = (x̃, ỹ, 0) is evaluated as:

where

One eigenvalue value of the matrix J2 is −w10 −
w12

w13

+
w11ỹ

w7 + ỹ
 , and the other two 

eigenvalues are the roots of the sub matrix

The eigenvalues of the matrix J∗
2
 have negative real parts since tr(J∗

2
) < 0 and 

det(J∗
2
) > 0 . Some calculation gives

Thus the equilibrium point E2 is locally asymptotically stable if the inequalities

(2.28)J2 = (bij)3×3,

b11 = x̃

(
−1 +

(1 − m)2ỹ

(w1 + (1 − m)x̃)2
+

w2

(w3 + x̃)2

)
, b12 = −

(1 − m)x̃

w1 + (1 − m)x̃
< 0,

b13 = 0, b21 =
w1w5(1 − m)ỹ

(w1 + (1 − m)x̃)2
, b22 =

w8ỹ

(w9 + ỹ)2
, b23 = −

ỹ

w6(w7 + ỹ)
,

b31 = 0, b32 = 0, b33 = −w10 −
w12

w13

+
w11ỹ

w7 + ỹ
.

(2.29)

J∗
2
=

⎡
⎢⎢⎢⎣

x̃

�
−1 +

(1 − m)2ỹ

(w1 + (1 − m)x̃)2
+

w2

(w3 + x̃)2

�
−(1 − m)x̃

w1 + (1 − m)x̃
w1w5(1 − m)ỹ

(w1 + (1 − m)x̃)2

w8ỹ

(w9 + ỹ)2

⎤
⎥⎥⎥⎦
.

tr(J∗
2
) = −x̃ +

(1 − m)2x̃ỹ

(w1 + (1 − m)x̃)2
+

w2x̃

(w3 + x̃)2
+

w8ỹ

(w9 + ỹ)2
,

det(J∗
2
) =

{
−x̃ +

(1 − m)2x̃ỹ

(w1 + (1 − m)x̃)2
+

w2x̃

(w3 + x̃)2

}
w8ỹ

(w9 + ỹ)2
+

w1w5(1 − m)2x̃ỹ

(w1 + (1 − m)x̃)3
.

(2.30)w10 +
w12

w13

>
w11ỹ

w7 + ỹ
,
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are satisfied. If the parameter w10 passes through w∗
10

≡ w11ỹ

w7 + ỹ
−

w12

w13

 , then the equi-

librium point E2 becomes a non-hyperbolic point as �23 = 0 . The Jacobian matrix 
(2.28) transforms into J∗

2
= (bij)3×3 with (b33) = 0 and other (bij) the same as given in 

equation (2.28). Let V2 =
[
v21 v22 v23

]T and W2 =
[
w211 w212 w213

]T denote the 
eigenvectors of the matrix J∗

2
 and J∗

2

T , respectively, corresponding to the eigenvalue 
�23 = 0 . Then we get V2 =

[
�2v23 �3v23 v23

]T and W2 =
[
0 0 w213

]T , where 

�2 = −
b12b23

b12b21 − b11b22
 , �3 =

b11b23

b12b21 − b11b22
 , v23 ≠ 0 , and w213 ≠ 0 . The partial 

derivative of F with respect to w10 is �F
�w10

= Fw10
=
[
0 0 −z

]T , this implies

(2.31)
(1 − m)2x̃ỹ

(w1 + (1 − m)x̃)2
+

w2x̃

(w3 + x̃)2
+

w8ỹ

(w9 + ỹ)2
< x̃,

(2.32)

{
(1 − m)2x̃ỹ

(w1 + (1 − m)x̃)2
+

w2x̃

(w3 + x̃)2

}
w8ỹ

(w9 + ỹ)2
<

w1w5(1 − m)2x̃ỹ

(w1 + (1 − m)x̃)3
+

w8x̃ỹ

(w9 + ỹ)2
,

(2.33)Fw10
(E2, w

∗
10
) =

[
0 0 0

]T
, and

Conditions (2.33) and (2.34) state that the saddle node bifurcation is never possi-
ble at this equilibrium. So moving further we determine the derivative of Fw10

 with 
respect to N at (E2, w

∗
10
).

Now D2F , where D = d∕dN is given by

which implies

(2.34)WT
2
Fw10

(E2, w
∗
10
) = 0.

(2.35)DFw10
(E2, w

∗
10
) =

⎡⎢⎢⎣

0 0 0

0 0 0

0 0 − 1

⎤⎥⎥⎦
⇒ WT

2

�
DFw10

(E2, w
∗
10
)V2

�
= −w213v23.

D
2
F(E2, w

∗
10
)(V2, V2)

=

⎡⎢⎢⎢⎢⎢⎢⎣

�
−2 +

2w1(1 − m)2ỹ

(w1 + (1 − m)x̃)3
+

2w2w3

(w3 + x̃)3

�
𝜉2
2
v
2

23
−

2w1(1 − m)

(w1 + (1 − m)x̃)2
𝜉2𝜉3v

2

23

−
2w1w5(1 − m)2ỹ

(w1 + (1 − m)x̃)3
𝜉2
2
v
2

23
+

2w1w5(1 − m)

(w1 + (1 − m)x̃)2
𝜉2𝜉3v

2

23
−

2w6w7

w6(w7 + ỹ)2
𝜉3v

2

23
+

2w8w9

(w9 + ỹ)3
𝜉2
3
v
2

23

2w7w11

(w7 + ỹ)2
𝜉3v

2

23
+

2w12

w
2

13

v
2

23

⎤⎥⎥⎥⎥⎥⎥⎦

,

(2.36)WT
2

[
D2F(E2, w

∗
10
)(V2, V2)

]
= 2

[
w7w11

(w7 + ỹ)2
𝜉3 +

w12

w2
13

]
v2
23
w213.



1 3

Qualitative and Dynamical Analysis of a Bionomic Fishery Model… Page 15 of 38 11

If 
w7w11

(w7 + ỹ)2
𝜉3 +

w12

w2
13

≠ 0 , then the system (2.3) accomplishes a transcritical bifurca-

tion at E2 . Nevertheless, if the condition does not hold then we continue evaluating 
the third derivative of F with respect to N, which gives

Hence WT
2

[
D3F(E2, w

∗
10
)(V2, V2, V2)

]
= −6

[
w7w11

(w7 + ỹ)3
𝜉2
3
+

w12

w3
13

]
v3
23
w213 . The sys-

tem (2.3) experiences a pitchfork bifurcation if 
w7w11

(w7 + ỹ)3
𝜉2
3
+

w12

w3
13

≠ 0 . The system 

behavior around E2 is concisely given in Theorem 4.

Theorem 4 

 (i) The equilibrium E2 is locally asymptotically stable with assumptions (2.32).
 (ii) If w10 passes through the bifurcation value w∗

10
≡ w11ỹ

w7 + ỹ
−

w12

w13

 , then the sys-

tem (2.3) around equilibrium point E2 = (x̃, ỹ, 0) has a transcritical bifurca-
tion, provided that 

w7w11

(w7 + ỹ)2
𝜉3 +

w12

w2
13

≠ 0.

 (iii) The system experiences a pitchfork bifurcation for 
w7w11

(w7 + ỹ)3
𝜉2
3
+

w12

w3
13

≠ 0 . The 

system has no saddle node bifurcation.

2.3.4  System Behavior at E3 = (x∗, y∗, z∗)

The variational matrix at E3 = (x∗, y∗, z∗) is conferred as:

where

D
3
F(E2, w

∗
10
)(V2, V2, V2)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−

�
6w1(1 − m)3ỹ

(w1 + (1 − m)x̃)4
+

6w2w3

(w3 + x̃)4

�
𝜉3
2
v
3

23
+

2w1(1 − m)2

(w1 + (1 − m)x̃)3
𝜉2
2
𝜉3v

3

23

6w1w5(1 − m)3ỹ

(w1 + (1 − m)x̃)4
𝜉3
2
v
3

23
−

6w1w5(1 − m)2

(w1 + (1 − m)x̃)3
𝜉2
2
𝜉3v

3

23
−

6w8w9

(w9 + ỹ)5
𝜉3
3
v
3

23
+

6w2

6
w7

(w6(w7 + ỹ))3
𝜉2
3
v
3

23

−
6w7w11

(w7 + ỹ)3
𝜉2
3
v
3

23
−

6w12

w
3

13

v
3

23

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(2.37)J3 = (cij)3×3,
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The characteristic equation for the matrix (2.37) is

where

If A1 > 0 , B1 > 0 , C1 > 0 and A1B1 > C1 , then the equation (2.38) has three roots, 
where the real parts of these roots are negative, as reported by Routh-Hurwitz crite-
rion (Perko 2001). Thus the equilibrium point E3 = (x∗, y∗, z∗) is locally asymptoti-
cally stable if the following conditions hold:

where R∗
1
= w1 + (1 − m)x∗ , R∗

2
= w3 + x∗ , R∗

3
= w7 + y∗ , R∗

4
= w9 + y∗ , and 

R∗
5
= w13 + z∗.
Next we use a Lyapunov function to prove the global stability of E3 . Global 

stability means that any trajectories of the dynamical system ultimately tend to 
the attractor of the system for any initial conditions.

Theorem 5 The unique non-trivial positive equilibrium point E3 = (x∗, y∗, z∗) is glob-
ally asymptotically stable in 𝜒 = {(x, y, z) ∈ R

3
+
∶ 0 ≤ x ≤ 1; 0 ≤ y ≤ 𝜂; 0 ≤ z ≤ 𝜐 for (𝜂, 𝜐) > 0} 

with respect to all the solutions with positive initial conditions, provided the follow-
ing inequalities hold

c11 = x∗
[
−1 +

(1 − m)2y∗

(w1 + (1 − m)x∗)2
+

w2

(w3 + x∗)2

]
, c12 = −

x∗(1 − m)

w1 + (1 − m)x∗
,

c13 = 0, c21 =
w1w5(1 − m)y∗

(w1 + (1 − m)x∗)2
, c22 = y∗

[
w6z

∗

(w6(w7 + y∗))2
+

w8

(w9 + y∗)2

]
,

c23 = −
y∗

w6(w7 + y∗)
, c31 = 0, c32 = z∗

[
w7w11

(w7 + y∗)2

]
, c33 =

w12z
∗

(w13 + z∗)2
.

(2.38)�3
∗
+ A1�

2
∗
+ B1�∗ + C1 = 0,

A1 = −(c11 + c22 + c33),

B1 = c11(c22 + c33) + c22c33 − c12c21 − c23c32,

C1 = c11(c23c32 − c22c33) + c12c21c33.

(2.39)
y∗z∗

w6R
∗
3

2
+

w8y
∗

R∗
4

2
+

w12z
∗

R∗
5

2
+

(1 − m)2x∗y∗

R∗
1

2
+

w2x
∗

R∗
2

2
< x∗,

(2.40)w7w11R
∗
4

2
R∗
5

2 < w12R
∗
3

(
z∗R∗

4

2 + w6w8R
∗
3

2
)
,

(2.41)w1w2R
∗
1
+ (1 − m)2w3R

∗
2
y∗ < w1w3R

∗
1
R∗
2
,

(2.42)w5(1 − m)(w9 + 𝜂)R∗
4
< w1w4(w9 + 𝜂)R∗

4
+ w1w8w9,

(2.43)w11𝜂(w13 + 𝜐) < w7(w10(w13 + 𝜐)R∗
5
+ w12w13).
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Proof Consider the Lyapunov function

where � and � are positive constants whose values will be evaluated later. Here 
the function V is positive definite as V(x∗, y∗, z∗) = 0 and V(x, y, z) > 0 for all 
(x, y, z) ≠ (x∗, y∗, z∗) . The time derivative of V is derived as follows:

where

with R1 = w1 + (1 − m)x , R2 = w3 + x , R3 = w7 + y , R4 = w9 + y , R5 = w13 + z , 
while the values of R∗

1
 , R∗

2
 , R∗

3
 , R∗

4
 , and R∗

5
 are the same as given directly after equa-

tion (2.40). dV
dt

 is negative definite if the following conditions hold:

If conditions (2.41), (2.42) and (2.43) hold, then the inequalities given in equation 

(2.46) are automatically true. Now putting � =
R∗
1

w1w5y
∗
 and � =

�

w6w7w11z
∗
(w7 + �)y∗ , 

we get the conditions (2.47) and (2.49) are satisfied, while the condition (2.48) is 

(2.44)V =
[
x − x∗ − x∗ln

(
x

x∗

)]
+

�

2
[y − y∗]2 +

�

2
[z − z∗]2,

(2.45)

dV

dt
= −

1

2
v11(x − x∗)2 + v12(x − x∗)(y − y∗) −

1

2
v22(y − y∗)2

−
1

2
v11(x − x∗)2 + v13(x − x∗)(z − z∗) −

1

2
v33(z − z∗)2

−
1

2
v22(y − y∗)2 + v23(y − y∗)(z − z∗) −

1

2
v33(z − z∗)2,

v11 = 1 −
(1 − m)2y∗

R1R
∗
1

−
w2

R2R
∗
2

,

v12 =
w1w5(1 − m)y∗�

R1R
∗
1

−
(1 − m)w1 + (1 − m)2x∗

R1R
∗
1

, v13 = 0,

v22 = �

(
w4 −

w1w5(1 − m)x + w5(1 − m)2xx∗

R1R
∗
1

+
w7z

∗

w6R3R
∗
3

+
w8w9

R4R
∗
4

)
,

v23 =
w7w11z

∗�

R3R
∗
3

−�
w7y

∗ + yy∗

w6R3R
∗
3

, v33 = �

(
w10 +

w12w13

R5R
∗
5

−
w7w11y + w11yy

∗

R3R
∗
3

)
,

(2.46)(i) v11 > 0, v22 > 0, v33 > 0,

(2.47)(ii) v2
12

< v11v22,

(2.48)(iii) v2
13

< v11v33,

(2.49)(iv) v2
23

< v11v22.
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obvious (as v13 = 0 ); this shows that dV
dt

 is negative definite. Hence E3 is globally 
asymptotically stable, following Lyapunov’s first theorem. This completes the proof.  
 ◻

A Hopf bifurcation arises when a periodic solution or limit cycle appears or 
fades as a related parameter varies around an equilibrium point. Here we take 
w12 as a bifurcation parameter. In the next theorem, we state that the system 
(2.3) encounters a Hopf bifurcation around E3 when w12 passes through a critical 
parameter value w∗

12
.

Theorem  6 A Hopf bifurcation appears near the positive equilibrium point 
E3 = (x∗, y∗, z∗) for the predator-prey model (2.3) whenever parameter w12 attains 
the critical value w∗

12
 , provided the following conditions

hold. Here A1 , B1 and C1 are coefficients of the characteristic polynomial (2.38) with 
� = A1B1 − C1.

Proof Here we choose bifurcation parameter as w12 . Let there exists a criti-
cal value w12 = w∗

12
 , then A1(w

∗
12
) > 0 , B1(w

∗
12
) > 0 , C1(w

∗
12
) > 0 , and 

�(w∗
12
) = A1(w

∗
12
)B1(w

∗
12
) − C1(w

∗
12
) = 0 . System (2.3) at the equilibrium point 

E3 has one negative root and two purely imaginary roots if �(w∗
12
) = 0 i.e., 

A1(w
∗
12
)B1(w

∗
12
) − C1(w

∗
12
) = 0 . For the Hopf-bifurcation at w12 = w∗

12
 , the charac-

teristic equation must be of the form

Eq. (2.50) has three roots �1(w12) = i
√
B1(w12) , �2(w12) = −i

√
B1(w12) , and 

�3(w12) = −A1(w12) . Now the main motive is to show the transversality condition 
d�(w12)

dw12

||||w12=w
∗
12

≠ 0.

Let �j(w12) = �(w12) ± i�(w12) , j = 1, 2 . Further substituting values of �j(w12) in 
the equation (2.50) and differentiating with respect to w12 , we get

where

(i) A1(w
∗
12
) > 0, B1(w

∗
12
) > 0, C1(w

∗
12
) > 0,

(ii) A1(w
∗
12
)B1(w

∗
12
) − C1(w

∗
12
) = 0,

(iii)
d𝜙(w12)

dw12

||||w12=w
∗
12

≠ 0

(2.50)�3(w12) + A1(w12)�
2(w12) + B1(w12)�(w12) + C1(w12) = 0.

(2.51)
{

�1(w12)�
�(w12) − �2(w12)�

�(w12) + p(w12) = 0,

�2(w12)�
�(w12) + �1(w12)�

�(w12) + q(w12) = 0,
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Now solving equation (2.51), we get

where �1(w
∗
12
)p(w∗

12
) + �2(w

∗
12
)q(w∗

12
) ≠ 0 and �3(w∗

12
) = −A1(w

∗
12
) . Hence the 

transversality condition
d�(w12)

dw12

||||w12=w
∗
12

≠ 0 holds, which implies that a Hopf-bifurcation occurs at 

w12 = w∗
12

 .   ◻

2.4  Persistence

The permanence or persistence of a system means that all the species of the given 
model system should exist and none of them will go to extinction. Using the average 
Lyapunov function (Gard and Hallam 1979), uniform persistence conditions of the 
system (2.3) are evaluated and given in the following theorem:

Theorem 7 If the following conditions

are satisfied, system (2.3) is persistent.

Proof Consider the following function

where � , � , and � are positive constant.
𝜑(x, y, z) > 0 for all (x, y, z) ∈ int(ℝ3

+
) and �(x, y, z) → 0 when x or y or z → 0 . 

Differentiating (2.56) w. r. t. time (t), we get

�1(w12) = 3�2(w12) + 2A1(w12)�(w12) + A2(w12) − 3�2(w12),

�2(w12) = 6�(w12)�(w12) + 2A1(w12)�(w12),

p(w12) = �2(w12)A
�
1
(w12) + A�

2
(w12)�(w12) + A�

3
(w12) − A�

1
(w12)�

2(w12),

q(w12) = 2�(w12)�(w12)A
�
1
(w12) + A�

2
(w12)�(w12).

(2.52)Re

[
d�j

dw12

]

w12=w
∗
12

= −
�1p + �2q

�2
1
+ �2

2

≠ 0,

(2.53)w2 < w3,

(2.54)
w5(1 − m)x̄

w1 + (1 − m)x̄
> w4 +

w8

w9

,

(2.55)
w11ỹ

w7 + ỹ
> w10 +

w12

w13

,

(2.56)�(x, y, z) = x�y�z� ,
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For the system (2.3) to be persistent, the values of 
�′

�
 must be positive at all possible 

equilibrium points of the system for some positive values of � , � , and � . Now

𝜑�

𝜑
(E0) > 0 , if the condition (2.53) holds for � and � with a sufficiently large � . If the 

condition (2.54) is satisfied then 
𝜑�

𝜑
(E1) > 0 with sufficiently large values of � with 

respect to � , and 
𝜑�

𝜑
(E2) > 0 under the condition (2.55). This completes the proof.  

 ◻

2.5  Bionomic Equilibrium

In the previous section we have archived the biological equilibrium points for the 
model system (2.3). Here the economic equilibrium is evaluated for the model 
system (2.1) and it is calculated when the net revenue earned by trading the har-
vested biomass (TR) is equal to the inclusive cost of effort employed for harvest-
ing (TC) (Krishna et al. 1998; Kar et al. 2006). Here the total cost is proportional 
to the harvesting effort, i.e., TC=CE, where C is the fishing cost. Also, the total 
revenue earned from harvesting biomass is proportional to harvesting yield, writ-
ten as TR=

p1c1X

l1E + l2X
+

p2c2Y

l3E + l4Y
+

p3c3Z

l5E + l6Z
 , where c1X

l1E + l2X
+

c2Y

l3E + l4Y
+

c3Z

l5E + l6Z
 

is the harvesting yield function (Clark 2005) and pi, i = 1, 2, 3 are prices per unit 
biomass for X, Y  and Z fish populations, respectively, with fishing cost C.

The economic revenue (rent) at any time is assumed as

(2.57)

��

�
=

�

x

dx

dt
+

�

y

dy

dt
+

�

z

dz

dt

= �

[
(1 − x) −

(1 − m)y

w1 + (1 − m)x
−

w2

w3 + x

]

+ �

[
−w4 +

w5(1 − m)x

w1 + (1 − m)x
−

z

w6(w7 + y)
−

w8

w9 + y

]

+ �

[
−w10 +

w11y

w7 + y
−

w12

w13 + z

]
.

(2.58)

𝜑�

𝜑
(E0) = 𝛼

[
1 −

w2

w3

]
+ 𝛽

[
−w4 −

w8

w9

]
+ 𝛾

[
−w10 −

w12

w13

]
,

𝜑�

𝜑
(E1) = 𝛽

[
−w4 +

w5(1 − m)x̄

w1 + (1 − m)x̄
−

w8

w9

]
+ 𝛾

[
−w10 −

w12

w13

]
,

𝜑�

𝜑
(E2) = 𝛾

[
−w10 +

w11ỹ

w7 + ỹ
−

w12

w13

]
.
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Now

Here the harvesting effort (E) is positive if

Again

For this case, E is positive if

Similarly

For the above equation, E is positive if

Hence the bionomic equilibrium solution exists at a point on the following curve

(2.59)

�(X, Y , Z,E) = TR − TC =

[
p1c1X

l1E + l2X
+

p2c2Y

l3E + l4Y
+

p3c3Z

l5E + l6Z
− C

]
E.

dX

dt
= 0 ⇒ X = 0 or r

(
1 −

X

K

)
−

a1(1 − m)Y

b1 + (1 − m)X
=

c1E

l1E + l2X

⇒ E =
l2X

{
(a1Y(1 − m)∕(b1 + (1 − m)X)) − r(1 − X∕K)

}

l1
{
r(1 − X∕K) − (a1Y(1 − m)∕(b1 + (1 − m)X))

}
− c1

.

(2.60)
a1Y(1 − m)

b1 + (1 − m)X
< r

(
1 −

X

K

)
<

a1Y(1 − m)

b1 + (1 − m)X
+

c1

l1
.

dY

dt
= 0 ⇒ Y = 0 or − d +

e1a1(1 − m)X

b1 + (1 − m)X
−

a2Z

b2 + Y
=

c2E

l3E + l4Y

⇒ E =
l4Y

{
d + (a2Z∕(b2 + Y)) − (e1a1(1 − m)X∕(b1 + (1 − m)X))

}

l3
{
(e1a1(1 − m)X∕(b1 + (1 − m)X)) − d − (a2Z∕(b2 + Y))

}
− c2

.

(2.61)d +
a2Z

b2 + Y
<

e1a1(1 − m)X

b1 + (1 − m)X
< d +

a2Z

b2 + Y
+

c2

l3
.

dZ

dt
= 0 ⇒ Z = 0 or − c +

e2a2Y

b2 + Y
=

c3E

l5E + l6Z

⇒ E =
l6Z

{
c − (e2a2Y∕(b2 + Y))

}

l5
{
(e2a2Y∕(b2 + Y)) − c

}
− c3

.

(2.62)c <
e2a2Y

b2 + Y
< c +

c3

l5
.
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The bionomic equilibrium (X∞, Y∞, Z∞, E∞) of the fishery model is determined by 
the Eq. (2.63) with the constraint

where X∞ , Y∞ , Z∞ and E∞ are the positive solution of Eqs. (2.63) and (2.64).

2.6  Optimal Harvesting Policy

Here we discuss about the optimal control of fish harvesting with the motivation to gain 
maximum profit in fisheries. Let the continuous stream function be

where � is annual rate of discount and �(X, Y , Z,E) is given in (2.59). The main 
objective of this analysis is to find max � subject to model system (2.1) using Pon-
tryagin’s maximum principle (Pontryagin et al. 1962). Here the control variable E(t) 
is subject to 0 < E(t) < Emax , where Emax is the upper limit of harvesting effort E.

The Hamiltonian function is

Here �i , i = 1, 2, 3 represent the adjoint variables, and the adjoint equations are

(2.63)

l2X
{
(a1Y(1 − m)∕(b1 + (1 − m)X)) − r(1 − X∕K)

}

l1
{
r(1 − X∕K) − (a1Y(1 − m)∕(b1 + (1 − m)X))

}
− c1

=
l4Y

{
d + (a2Z∕(b2 + Y)) − (e1a1(1 − m)X∕(b1 + (1 − m)X))

}

l3
{
(e1a1(1 − m)X∕(b1 + (1 − m)X)) − d − (a2Z∕(b2 + Y))

}
− c2

=
l6Z

{
c − (e2a2Y∕(b2 + Y))

}

l5
{
(e2a2Y∕(b2 + Y)) − c

}
− c3

.

(2.64)

�(X, Y , Z,E) = TR − TC = 0 ⇒
p1c1X

l1E + l2X
+

p2c2Y

l3E + l4Y
+

p3c3Z

l5E + l6Z
= C,

(2.65)� = ∫
∞

0

�(X, Y , Z,E, t)e−�tdt,

(2.66)

H =

[
p1c1X

l1E + l2X
+

p2c2Y

l3E + l4Y
+

p3c3Z

l5E + l6Z
− C

]
Ee−�t

+ �1

[
rX

(
1 −

X

K

)
−

a1(1 − m)XY

b1 + (1 − m)X
−

c1EX

l1E + l2X

]

�2

[
−dY +

e1a1(1 − m)XY

b1 + (1 − m)X
−

a2YZ

b2 + Y
−

c2EY

l3E + l4Y

]

+ �3

[
−cZ +

e2a2YZ

b2 + Y
−

c3EZ

l5E + l6Z

]
.
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Now the main motive is to derive an optimal equilibrium solution for the problem. 
Using bionomic equilibrium solution curve (2.63) in adjoint equations (2.67)–(2.69), 
we get

Further rearranging the above system, we get

(2.67)

d�1

dt
= −

�H

�X
= −

[ p1c1l1E

(l1E + l2X)
2
Ee−�t + �1

{
r −

2Xr

K
−

a1b1(1 − m)Y

(b1 + (1 − m)X)2

−
c1l1E

2

(l1E + l2X)
2

}
+ �2

{
e1a1b1(1 − m)Y

(b1 + (1 − m)X)2

}]
,

(2.68)

d�2

dt
= −

�H

�Y
= −

[ p2c2l3E

(l3E + l4Y)
2
Ee−�t + �1

{
−

a1b1(1 − m)X

(b1 + (1 − m)X)2

}
+ �2

{

− d +
e1a1(1 − m)X

b1 + (1 − m)X

−
a2b2Z

(b2 + Y)2
−

c2l3E

(l3E + l4Y)
2

}
+ �3

{
e2a2b2Z

(b2 + Y)2

}]
,

(2.69)

d�3

dt
= −

�H

�Z
= −

[
p3c3l5E

2

(l5E + l6Z)
2
Ee−�t + �2

{
−

a2Y

b2 + Y

}

+�3

{
−c +

e2a2Y

b2 + Y
−

c3l5E
2

(l5E + l6Z)
2

}]
.

(2.70)

d�1

dt
= �1

[
Xr

K
−

a1(1 − m)2XY

(b1 + (1 − m)X)2
−

c1l2EX

(l1E + l2X)
2

]
− �2

e1a1b1(1 − m)Y

(b1 + (1 − m)X)2

−
p1c1l1E

2

(l1E + l2X)
2
e−�t,

(2.71)

d�2

dt
= �1

a1b1(1 − m)X

(b1 + (1 − m)X)2
− �2

[
a2YZ

(b2 + Y)2
+

c2l4EY

(l3E + l4Y)
2

]
− �3

e2a2b2Z

(b2 + Y)2

−
p2c2l3E

2

(l3E + l4Y)
2
e−�t,

(2.72)

d�3

dt
= �2

a2Y

b2 + Y
− �3

c3l6EZ

(l5E + l6Z)
2

−
p3c3l5E

2

(l5E + l6Z)
2
e−�t.
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where H1 =
Xr

K
−

a1(1 − m)2XY

(b1 + (1 − m)X)2
−

c1l2EX

(l1E + l2X)
2
 , H2 =

e1a1b1(1 − m)Y

(b1 + (1 − m)X)2
 , H =

p1c1l1E
2

(l1E + l2X)
2
,

I1 =
a1b1(1 − m)X

(b1 + (1 − m)X)2
 , I2 =

a2YZ

(b2 + Y)2
+

c2l4EY

(l3E + l4Y)
2
 , I3 =

e2a2b2Z

(b2 + Y)2
 , I = p2c2l3E

2

(l3E + l4Y)
2
 , F2 =

a2Y

b2 + Y
,

F3 =
c3l6EZ

(l5E + l6Z)
2
 and F =

p3c3l5E
2

(l5E + l6Z)
2
.

Elimination of �2 and �3 from system of equations (2.73) yield

where Sa = (I2 + F3)H� + (F3I − I3F)H2 − (I2F3 + I3F2)H − H�2 − H2I� . The aux-
iliary equation for Eq. (2.74) is

If I2 + F3 > H1 , H2I1 + I2F3 + I3F2 > I2H1 + F3H1 , F3H3I1 > I2F3H1 + I3F2H1 and 
(I2 + F3 − H1)(H2I1 + I2F3 + I3F2 − I2H1 − F3H1) > F3H3I1 − I2F3H1 − I3F2H1  , 
then the roots of Eq. (2.75) are real and negative or complex conjugate with negative 
real parts. Hence the general solution of Eq. (2.74) is in the form

Here P = �3 + (I2 + F3 − H1)�
2 + (H2I1 + I2F3 + I3F2 − I2H1 − F3H1)� + (F3H3I1 − I2F3H1 − I3F2H1) . We 

see that �1(t) → 0 as t → ∞ . Similarly, we may show �2(t) → 0 and �3(t) → 0 as 
t → ∞ . The shadow prices of populations are

(2.73)

⎧
⎪⎪⎨⎪⎪⎩

�
H1 −

d

dt

�
�1 − H2�2 = He−�t,

I1�1 −
�
I2 +

d

dt

�
�2 − I3�3 = Ie−�t,

F2�2 −
�
F3 +

d

dt

�
�3 = Fe−�t,

(2.74)

d3�1

dt3
+ (I2 + F3 − H1)

d2�1

dt2
+ (H2I1 + I2F3 + I3F2 − I2H1 − F3H1)

d�1

dt

+ (F3H3I1 − I2F3H1 − I3F2H1)�1 = Sae
−�t,

(2.75)
n3 + (I2 + F3 − H1)n

2 + (H2I1 + I2F3 + I3F2 − I2H1 − F3H1)n

+ (F3H3I1 − I2F3H1 − I3F2H1) = 0.

(2.76)�1(t) = A11e
n1t + B11e

n2t + C11e
n3t +

Sa

P
e−�t.

(2.77)�1(t)e
�t = A11e

(n1+�)t + B11e
(n2+�)t + C11e

(n3+�)t +
Sa

P
,

(2.78)�2(t)e
�t = A22e

(n1+�)t + B22e
(n2+�)t + C22e

(n3+�)t +
Sb

P
,

(2.79)�3(t)e
�t = A33e

(n1+�)t + B33e
(n2+�)t + C33e

(n3+�)t +
Sc

P
,
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where S
b
= (IF3 − I� − I3F)H1 + IF3� − I�2 − I3F� − I1F3H + HI1� and S

c
= (I2F − F� + F2I)

H1 + I2F� − F�2 + F2I� − H2I1F − HI1F2 . The transversality condition at t → ∞ 
requires that the shadow prices �i(t)e�t of the populations remain bounded. To sat-
isfy this, we take Aii = Bii = Cii = 0 , i = 1, 2, 3 . Thus, we have

Similarly, �2(t)e�t =
Sb

P
 and �3(t)e�t =

Sc

P
 are constant, hence bounded. We know 

that the Hamiltonian function (see Eq. (2.66)) must be maximized for E ∈
[
0 Emax

]
 . 

Therefore assuming the optimal equilibrium doesn’t exist at E = 0 or E = Emax , we 
have the singular control as

which implies

Equation (2.82) signifies that the total cost of harvest is equal to the total discount of 
a marginal profit of the static effort. Also, we get the fishing cost C from Eq. (2.81) 
as

Equations (2.83) and (2.59) together give the optimum equilibrium solution 
(X� , Y� , Z�) . For � → ∞ , we see that 

Sa

P
 , 
Sb

P
 and 

Sc

P
 tend to zero. Hence Eq. (2.83) 

leads to

Equation (2.85) signifies that the fishing cost per unit effort vanishes at high dis-
count rate. Now

(2.80)�1(t)e
�t =

Sa

P
= constant.

(2.81)

�H

�E
=

[
p1c1l2X

2

(l1E + l2X)
2
+

p2c2l4Y
2

(l3E + l4Y)
2
+

p3c3l6Z
2

(l5E + l6Z)
2
− C

]
e−�t

−
�1c1l2X

2

(l1E + l2X)
2
−

�2c2l4Y
2

(l3E + l4Y)
2
−

�3c3l6Z
2

(l5E + l6Z)
2
= 0,

(2.82)
�1c1l2X

2

(l1E + l2X)
2
+

�2c2l4Y
2

(l3E + l4Y)
2
+

�3c3l6Z
2

(l5E + l6Z)
2
= e−�t

��

�E
.

(2.83)

c1l2X
2

(l1E + l2X)
2

[
p1 −

Sa

P

]
+

c2l4Y
2

(l3E + l4Y)
2

[
p2 −

Sb

P

]
+

c3l6Z
2

(l5E + l6Z)
2

[
p3 −

Sc

P

]
= C.

(2.84)
c1l2X

2
∞

(l1E + l2X∞)
2
+

c2l4Y
2
∞

(l3E + l4Y∞)
2
+

c3l6Z
2
∞

(l5E + l6Z∞)
2
= C,

(2.85)⇒
��

�E
(X∞, Y∞, Z∞,E) = 0.

(2.86)
��

�E
=

p1c1l2X
2

(l1E + l2X)
2
+

p2c2l4Y
2

(l3E + l4Y)
2
+

p3c3l6Z
2

(l5E + l6Z)
2
− C.
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Further, using Eq. (2.83) in Eq. (2.86), we get

Here Sa , Sb and Sc are o(�2) , whereas P is o(�3) . Hence we see that ��
�E

 is o(�−1) . Thus 
��

�E
 is a decreasing function of � (≥ 0) . Therefore, we can say that ��

�E
 has its maximum 

at � = 0 . Hence, it is proved that � = 0 leads to max �.

3  Numerical Simulations

The prime objective of this section is to determine the complex dynamics including 
chaos for the dynamical system (2.3) and to explore the global stability conditions 
numerically. Theoretical studies can never be justified without proper numerical val-
idation. We have conducted several numerical simulations considering multiple data 
sets and found the biological feasible parameter set (3.1) to be the most appropriate. 
This parameter set satisfies all the conditions and restrictions of analysis set out in 
Sect. 2. To analyze the deterministic behaviour and to show the complex dynamics 
of the model, we have generated phase portraits, time evolutions, Lyapunov expo-
nents w.r.t. time, and bifurcation diagrams. It is noticed that the model system (2.3) 
shows numerous diverse dynamics varying the parameter w7 , related to the middle 
predator’s maximum attack rate and half-saturation constant with intrinsic growth 
rate and carrying capacity of the prey populations, for the following parameter set:

The model (2.3) yields chaotic dynamics for the parameter set with w7 = 0.11 
in phase space ℝ3(x, y, z) as seen in Fig. 1a. To ensure this strange behavior of sys-
tem concerning time, we plot its time evolution in Fig.  1b. Chaotic dynamics are 
very sensitive to initial conditions, which means a small change in initial conditions 
leads to very diverse dynamics. Studies say that the Lyapunov exponent provides a 
detailed characterization of chaotic dynamics within dynamical systems (Wolf et al. 
1985; Mishra et al. 2019). A system is chaotic if it has a positive Lyapunov expo-
nent, provided that it is not asymptotic to an unstable periodic solution. The values 
of the Lyapunov exponents are 0.55176, 0.19155 and −0.23735 . Since two values 
are positive the system is chaotic. This result is shown in Fig. 1c. The dynamics of 
the Lyapunov exponents are calculated using the Wolf’s scheme with the param-
eter set (3.1) at w7 = 0.11 , time t = 2000 and time step h = 0.5 . A stable limit cycle 
is visible for the parameter value w7 = 0.3 as shown in Fig.  2a. Time evolution 
concerning the species is given in Fig. 2b. Increasing the parameter value w7 , i.e. 
w7 = 0.5 and keeping the other parameter values the same (see Eq. (3.1)), we can 
see that the dynamics of the system changes towards a stable focus (see Fig. 3a). The 
time evolutions for the stable focus for the three variables are plotted in Fig. 3b.

(2.87)
��

�E
=

Sa

P

c1l2X
2

(l1E + l2X)
2
+

Sb

P

c2l4Y
2

(l3E + l4Y)
2
+

Sc

P

c3l6Z
2

(l5E + l6Z)
2
.

(3.1)

{
w1 = 0.4, w2 = 1.3, w3 = 2.7, w4 = 0.09, w5 = 0.85, w6 = 3.2, w7 = 0.3,

w8 = 0.02, w9 = 0.65, w10 = 0.2, w11 = 0.69, w12 = 0.2, w13 = 2, m = 0.5.
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Fig. 1  For parameter set (3.1) with w7 = 0.11 , the system (2.3) displays a a chaotic attractor in 3D plane, 
b its time evolution, c time evolution w.r.t. Lyapunov exponents
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Fig. 2  Attractor of the system in 3D plane for the parameter set (3.1) with w7 = 0.3 exhibits a a stable 
limit cycle, b time evolution with respect to populations density
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Numerical simulations of any model are required to analyze the behavior of the 
system whose mathematical model is too complicated to produce analytical solu-
tions. Now we calculate the feasible equilibrium points of the system for precise 
parameter values. The system approaches towards the stable equilibrium E0 for 
the value w2 = 1.4 and w3 = 1.3 < w2 (other parameter values fixed as in (3.1)) 
as simulated in Fig.  4a. The prey existing equilibrium E1 = (0.2, 0, 0) is stable 
for the parameter values w1 = 0.7 , w2 = w3 = 0.8 (see Fig.  4b). For w2 = 1.1 and 
w3 = 1.3 with parameter set (3.1), we have calculated the equilibrium point E2 as 
(0.1283, 0.2317, 0). Here tr(J∗

2
) = −0.0427 < 0 and det(J∗

2
) = 0.025 > 0 . Hence this 

parameter set satisfies the stability conditions as given in Eqs. (2.30)–(2.32) and we 
have verified this result graphically in Fig. 4c. The system (2.3) is persistent for the 
parameter set (3.1) as given in Theorem 7. The system approaches towards a glob-
ally asymptotically stable interior equilibrium point E3 = (0.1304, 0.3812, 0.0276) 
for w7 = 0.5 , and with other parameter values as in (3.1). To confirm our global 
stability conditions, we plot the phase portrait diagram setting different initial condi-
tions as given in Fig. 5a and b. These two diagrams witness the existence of a glob-
ally asymptotic stable point which we have found analytically in Theorem 5.

The prey refuge m is an important parameter for our model system. So to under-
stand its effects on the dynamics of the model, we have simulated the phase portrait 
and bifurcation diagram by taking it as a control parameter and found the follow-
ing results. Figure 6 describes the effects of prey refuge m on the dynamics of the 
fishery model (2.3). Prey and middle predator populations display a certain range of 
oscillation whereas the top predator species goes for extinction at m = 0.01 . All the 
species populations show oscillatory behavior for m = 0.3 . Both the predator species 
go for extinction for the prey refuge value m = 0.9 but the prey population remains 
stable. Since the variation of m affects the top predator z most we have plotted the 
bifurcation diagram of population z w.r.t. parameter m in Fig. 7. The system (2.3) 
exhibits a Hopf bifurcation point (H), a limit point (LP) and two branching point 
(BP) for the parameter set (3.1). All the generated bifurcation points with eigen-
values are given in Table 2. For the prey refuge parameter value m < 0.859254 , the 
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Fig. 3  Attractor of the system in 3D plane for the parameter set (3.1) with w7 = 0.5 , the system (2.3) dis-
plays a a stable focus, b time evolution with respect to populations density
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positive equilibrium point is unstable, whereas for m ≥ 0.859254 the equilibria pro-
ceed towards stability but the extinction of z happens.

We have plotted bifurcation diagrams concerning different parameters for the sys-
tem (2.3) as exhibited in Figs. 8, 9, 10, 11, 12 and 13. In Fig. 8, bifurcation dia-
grams for prey-predator populations x, y and z concerning to the parameter w2 are 
generated in the range 0.00 ≤ w2 ≤ 2.0 . Here w2 is related to harvesting effort, prey 
growth rate and the carrying capacity of prey. The top predator concedes toward 
extinction for w2 > 1.78 and the dynamics of the system approaches toward E2 . 

Fig. 4  System (2.3) approaching towards a E0 for w2 = 1.4 , w3 = 1.3 , b E1 = (0.2, 0, 0) for w1 = 0.7 , 
w2 = 0.8 , w3 = 0.8 , c E2 = (0.1283, 0.2317, 0) for w2 = 1.1 , w3 = 1.64 , and other parameter values as 
given in (3.1)
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Fig. 5  a Phase portrait showing the system (2.3) is globally asymptotically stable around the equilibrium 
point E3(0.1304, 0.3812, 0.0276) for the parameter set (3.1) with w7 = 0.5 , b 2D view of global stability
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Fig.  9 portrays the bifurcation diagrams for prey-predator populations x, y and z 
concerning to the parameter w3 for the interval [2.0, 4.0] . This bifurcation diagram 
shows that the dynamics of the proposed model changes from stable focus to chaos 
with increasing parameter value of w3 . Bifurcation diagrams for successive maxima 
of prey, middle and top predator population densities are generated in the interval 
[0.0, 0.6] , [0.0, 1.0] , and [0.0, 0.6] respectively, with respect to parameter w4 in 
the range 0.0 ≤ w4 ≤ 0.2 as displayed in Fig.  10. The system depicts larger peri-
odic and chaotic oscillations for w5 ∈ (0, 0.1) , whereas for w4 ∈ (0.1, 0.2) it shows 
stable behavior. In Fig. 11 bifurcation diagrams are drawn for the fish populations 
x, y and z in the interval [0.0, 0.7] varying the parameter w7 in 0.05 ≤ w7 ≤ 0.5 . 
Fig. 12 illustrates the bifurcation diagrams of x, y and z in the interval [0.0, 0.7] , 
[0.0, 0.65] , and [0.0, 1.1] respectively, with respect to the parameter w10 in the range 
0.001 ≤ w10 ≤ 0.3.

Fig. 6  Dynamical changes of fish populations for prey refuge (m) values, a 0.01, b 0.3, c 0.9. All param-
eters are given in equation (3.1)
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Fig. 7  Bifurcation diagram of z w.r.t. refuge parameter m for the parameter set (3.1)

Table 2  Bifurcation and stability analysis of Fig. 7 for the parameter set (3.1)

Label Bifurcation Equilibrium Eigenvalues
point E

∗ = (x∗, y∗, z∗)

H m = 0.859254 (0.529743, 0.228430, 0.035135) �1 = −0.436479

�2,3 = −2.18594e − 07 ± 0.060406i

BP m = 0.887333 (0.542721, 0.230769, 0.000000) �1 = −0.456222

�2 = −0.005977

�3 = −3.20932e − 13

LP m = 0.014261 (0.160934, 0.218000, 0.212730) �1 = 1.62694e − 07

�2,3 = 0.021175 ± 0.29385i

BP m = 0.072671 (0.065938, 0.230769, 0.000000) �1 = −5.5902e − 17

�2,3 = 0.006374 ± 0.212996i

Fig. 8  Bifurcation diagram of max x, max y and max z for the system (2.3) with respect to w2 is plotted 
in the parameter space (0, 2) for the parameters given in equation (3.1)
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Fig. 9  Bifurcation diagram of max x, max y and max z concerning w3 for the system (2.3)

Fig. 10  Bifurcation diagram of max x, max y and max z concerning parameter w4 for the system (2.3)

Fig. 11  Bifurcation diagram of max x, max y and max z concerning parameter w7 for the system (2.3) is 
illustrated in the range 0.05 ≤ w7 ≤ 0.5

Fig. 12  Bifurcation diagram of max x, max y and max z with respect to w10 for the system (2.3) is drawn 
in the range 0.001 ≤ w10 ≤ 0.3
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The model system (2.3) encounters a Hopf bifurcation at the critical value 
w12 = w∗

12
≈ 0.221827 as given in Fig.  13d. The other highlighted points in this 

figure have negative coordinate values, so we have omitted their existence and sig-
nificance. The Hopf-bifurcation diagram for the model system (2.3) with respect to 
the parameter w12 is shown in Fig. 14. Here the Hopf point (x, y, z, w12) is found 
at (0.387626, 0.227239, 0.277758, 0.221827) , assuming the interior equilibrium 
point E3 as the starting point, with the other parameter values the same as in (3.1). 

Fig. 13  Bifurcation diagrams for the model system (2.3) with respect to w12 for the parameters given in 
equation (3.1)

Fig. 14  Hopf-Bifurcation diagram starting from Hopf point (0.387626, 0.227239, 0.277758, 0.221827) 
with respect to w12 in a x − y plane, b y − z plane, c x − z plane
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The first Lyapunov coefficient is −8.000308e − 01 , hence the Hopf-bifurcation is of 
super-critical type. This numeric outcome supports the analytical result obtained in 
Theorem 6. From the bifurcation diagram (see Fig. 13), it is clear that the system is 
stable for the upper threshold value of w∗

12
 , that is for w12 > 0.24 , and chaotic below 

the critical threshold value of the parameter w∗
12

= w12 < 0.24 . The top predator (z) 
goes extinct for the value w12 > 0.38 . We have observed that for value w12 > 0.24 , 
the prey and the top predator population decrease, whereas the middle predator pop-
ulation increases to a certain value and then proceeds to a fixed growth.

4  Real‑World Application

Lake Victoria occupies 43% of the surface area of Uganda, 6% of Kenya, and 51% 
of Tanzania (Geheb et  al. 2003; NPFMP 2015b). This lake is the home for vari-
ous fish species with diverse feeding habits. For example, Nile perch are piscivore 
with demersal habitat while Nile tilapias are omnivores. Silver cyprinids are zoo-
planktivore with pelagic habitat and haplochromines are benthopelagic with vari-
able feeding mode. Silver cyprinid (locally known as Dagaa) and haplochromines 
are native fish of the lake while perch and Nile tilapia were introduced later in 1950s 
and 1960s. These non-native fish populations dominated the food web of Lake Vic-
toria along with endemic cyprinids. However, the growth of these species disrupted 
the lake biodiversity. Although Silver cyprinid fishery exploded, the real concern is 
the fluctuations of perch from 2011 (Glaser et al. 2019). This decline of the catch is 
maybe due to overfishing or a raise in the fishing efforts which directly or indirectly 
affects the ecosystem of the lake. The annual catch of Nile perch is noted in Fig. 15 
(source LVFO NPFMP 2015a). We know that increase in catches doesn’t render the 
population rise of species but it shows the tread-off efficiency of fishing. Figures 8 
and 12 showcase the fluctuations of the top predator concerning harvesting efforts.

Silver cyprinid is the only native fish in Lake Victoria that persisted and turned 
out to be a sustainable and profitable fishery after 1980s ecological revolutions 
(LVFO 2016). This endurance of the silver cyprinid in the lake may be due to the 

Fig. 15  Annual catches of Nile Perch in Lake Victoria (1990–2014). Source LVFO, NPFMP (2015a)
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factor of prey refuge. Figure 6 also clarifies that the refuge parameter continuously 
enhances the sustainability of the prey population. Dagaa production exhibits a 
steady surge in the volume and Tanzania was the largest producer of dagaa with 
289,873 tons in 2010, extending to 433,845 tons in 2015 (Fig.  16, source LVFO 
2016). Fishing provides maximum employment and livelihood for these African 
countries. The most challenging fact is to maximize economic gains by maintaining 
the ecological structure. According to the LVFO reports (NPFMP 2015a, b), 1 mil-
lion fish are harvested every year worth of US $ 600–850 million by selling the fish 
only. Nile perch, tilapias, cyprinid, and haplochromine cichlids are the most com-
mercial fishes in Lake Victoria. So this type of harvesting model can be valuable 
for the fishing industry. Also, by inflicting this model, we can predict the expected 
synopses according to our necessities.

5  Conclusions

In this paper, a three species predator-prey fishery model system consisting of a 
Holling type-II functional response function is formulated and examined analyti-
cally as well as numerically. We have studied the dynamics of the model consid-
ering external factors such as prey refuge and non-linear harvesting. Also we have 
checked the existence, uniqueness, and uniformly boundedness conditions of the 
solutions of model (2.3). Stability criteria for the existing equilibrium points are 
determined. The persistence of the system is studied using the average Lyapunov 
method. The local bifurcation analysis at each equilibrium point is implemented 
according to conditions given in Sotomayor’s theorem. The existence of a Hopf-
bifurcation about the internal equilibrium point E3 is investigated analytically and 
numerically by choosing the bifurcation parameter as w12 . The proposed model 
(2.3) is numerically illustrated by taking a feasible parameter set (3.1), and fur-
ther analytical findings are justified. The non-linear or Michaelis–Menten type 

Fig. 16  Catches of Silver cyprinid in tonnes over year 2010–2015 on Lake Victoria. Data source LVFO 
(2016)
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of harvesting is used by many researchers (see Krishna et al. 1998; Purohit and 
Chaudhuri 2004; Clark 2005; Das et  al. 2009; Gupta et  al. 2012). However, a 
three-species predator-prey model with all the populations having non-linear har-
vesting are new and also complicated. Nevertheless, we have used this type of 
harvesting in our proposed model and obtained conditions for the existence of a 
bionomic equilibrium point as well as for optimal harvesting control.

The key element of our proposed model is parameter w7 , which is a combina-
tion of factors like the maximum attack rate and half-saturation constant of the 
middle predator, the growth rate of the prey, and the carrying capacity of the 
environment. From the above observations we can say that these four parame-
ters influence the dynamics of the model system. Concerning this parameter, we 
have plotted the bifurcation diagrams and observed that for w7 < 0.3 the system 
oscillates in a certain range showing chaotic behavior; for w7 > 0.3 the dynam-
ics of the system proceed towards stability (see Fig.  11). One more important 
analysis is that for w7 > 0.3 populations of prey and top predator decrease con-
tinuously, whereas the middle predator population increases. The dynamics of the 
proposed model (2.3) has witnessed the period-doubling route to chaos in Fig. 9, 
and period-halving route to a limit cycle in Figs. 8, 10, 11, 12 and 13. The param-
eter w3 , which is related to the harvesting effort and the carrying capacity, also 
has a great impact on the dynamics of the model. Increasing the value of w3 by 
increasing the harvesting effort while keeping the carrying capacity fixed (as well 
as the positive constants l1 and l2 ), makes the system loose its stability, and the 
model dynamics changes from stable to chaotic (see Fig. 9). The parameter w12 
puts the top predator population down. As we can see, increasing this parameter 
value decreases the population density z. Finally, the population tends towards 
extinction for w12 > 0.37 as seen in Fig. f13c. The stable positive equilibrium can 
never be transformed into an unstable state by increasing a predetermined amount 
of prey refuge, which agrees with Kar (2006) and González-Olivare and Ramos-
Jiliberto (2003). Figure 6 signifies that for the larger values of refuge parameter m 
(with 0 < m < 1 ), the state of the system switches to prey existing equilibrium E1 . 
Gradually increasing the coefficient of refuge, we can see that the predator goes 
for extinction. This result shows the realistic picture of nature that due to cer-
tainty of prey species and deduction in predation, the prey population increases 
whereas the predator volume decreases towards extinction, which is in close 
agreement with former results (Gupta et al. 2012; Haque and Sarwardi 2018).

Fishing industries in Lake Victoria export millions of dollars of fish, where the 
majority of the catch is Nile perch (LVFO, NPFMP 2015b). We have observed the 
variation in catches of perch in Fig. 15. Overfishing or over-harvesting may cause 
some species to disappear from the lake ecology (Geheb et  al. 2003). Our model 
also expresses the same concern as we see that higher harvesting efforts diminish 
the growth of Nile perch. We have discerned the variations in catches of this fish in 
Fig. 15. The vital observation regarding this study is that the non-linear harvesting 
and refuge factors have accomplished our model more pragmatic and realistic. The 
researchers may be motivated by this work to ascertain more realistic models and 
explore their qualitative dynamics.
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