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Abstract
Theoretical and experimental studies on prey–predator systems where predator is 
supplied with alternate sources of food have received significant attention over the 
years due to their relevance in achieving biological conservation and biological con-
trol. Some of the outcomes of these studies suggest that with appropriate quality 
and quantity of additional food, the system can be steered towards any desired state 
eventually with time. One of the limitations of previous studies is that the desired 
state is reached asymptotically, which makes the outcomes not easily applicable 
in practical scenarios. To overcome this limitation, in this work, we formulate and 
study optimal control problems to achieve the desired outcomes in minimum (finite) 
time. We consider two different models of additional food provided prey–predator 
systems involving Holling type IV functional response (with inhibitory effect of 
prey). In the first scenario, additional food is incorporated implicitly into the preda-
tor’s functional response with a possibility of achieving biological conservation 
through co-existence of species and biological control by maintaining prey at a level 
that is least harmful to the system. In the second, the effect of additional food is 
incorporated explicitly into the predator’s compartment with the goal of pest man-
agement by maintaining prey density at a very minimal damaging level. For both 
cases, appropriate optimal control strategies are derived and the theoretical findings 
are illustrated by numerical simulations. We also discuss the ecological significance 
of the theoretical findings for both models.
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1  Introduction

Provision of additional food to the predators and its impact on predator–prey system 
dynamics has become one of the active and important areas of research for biolo-
gists, ecologists (both theoretical and experimental), statisticians, and mathema-
ticians (Beltrà et  al. 2017; Elkinton et  al. 2004; Ghasemzadeh et  al. 2017; Guru-
billi et al. 2017; Harwood et al. 2004, 2005; Hik 1995; Kozak et al. 1994; Landis 
et al. 2000; Putman and Staines 2004; Redpath et al. 2001; Soltaniyan et al. 2020; 
Van Baalen et al. 2001). This is because of the applicability of outcomes of these 
studies in achieving both biological conservation of species and biological control 
(bio-control) of harmful/invasive species. Provision of additional food to the gen-
eralist predators not only facilitates depredation on prey species by diverting the 
predator but also provides means to sustain the predator density when the target prey 
species are low in density (Beltrà et al. 2017; Elkinton et al. 2004; Harwood et al. 
2005; Kozak et  al. 1994, 1995; Redpath et  al. 2001). However, lack of adequate 
care while providing additional food could lead to undesired outcomes (Putman 
and Staines 2004; Robb et al. 2008). On the other hand, to achieve bio-control of 
harmful pests in the ecosystem, habitat management and integrated pest manage-
ment schemes (Landis et al. 2000) provide additional food supplements to generalist 
natural enemies for increasing their survival, oviposition rate, longevity, fecundity 
and predation rate thereby resulting in effective control of the pests (Ghasemzadeh 
et al. 2017; Messelink et al. 2014; Sabelis and Van Rijn 2006; Urbaneja-Bernat et al. 
2013; Vandekerkhove and De Clercq 2010; Wade et al. 2008).

Some of the observations from field studies and greenhouse experiments by 
ecologists show that the quality of additional food plays a vital role in determining 
the eventual state of the system by affecting its global dynamics (Blackburn et al. 
2016; Calixto et al. 2013; Magro and Parra 2004; Marcarelli et al. 2011; Putman and 
Staines 2004; Wakefield et al. 2010). Quality of additional food is generally meas-
ured in terms of the nutritional value of the additional food item and the growth 
rate of the predator on consumption of the additional food relative to the consump-
tion of prey. The mirid predator Macrolophus pygmaeus, which is a widely used 
natural enemy to control whiteflies and arthropod pests in Mediterranean Europe, 
is reared on eggs of Ephestia kuehniella for their production and development. Bee 
pollen was found to be nutritionally adequate for M. pygmaeus as an alternative 
source of food for improving its fitness (Vandekerkhove and De Clercq 2010). On 
the other hand, results from (Magro and Parra 2004) show that the additional food 
composed of holotissue of Diatraea saccharalis pupae, fetal bovine serum, egg yolk 
lactoalbumin hydrolysate etc. is a low quality food for rearing Bracon hebetor Say 
(Hymenoptera: Braconidae) because 60% of the larvae failed to produce a protective 
cocoon during pupal phase. The study on responses to sugar (additional food) by the 
parasitoid Diadegma semiclausum which is a natural enemy of Plutella xylostella 
showed that the predator showed response only to the nutritional content irrespec-
tive of the quantity of sugar in the solution (Winkler et al. 2005). Also, it was seen 
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that not all sugars were of high quality for the parasitoid. The effects of providing 
high quality and low quality additional food to predator species have been discussed 
in (Putman and Staines 2004; Kozak et al. 1994) and the review articles (Blackburn 
et al. 2016 and Lu et al. 2014 and references therein).

Some of the mathematical studies involving additional food provided prey–preda-
tor systems include (Das and Samanta 2018; Gurubilli et  al. 2017; Ghosh et  al. 
2017; Prasad and Prasad 2018, 2019; Srinivasu et  al. 2007). One of the key fea-
tures of these mathematical studies is the Functional response, defined as the rate at 
which the predator captures prey (Kot 2001). Among various functional responses 
displayed by different taxa in nature, the Holling type IV functional response is one 
where the catchability of predator reduces at high densities of prey as a consequence 
of prey toxicity or interference. The prey species tend to exhibit group defense 
against their predator when in large numbers as a survival mechanism (Caro 2005; 
Collings 1997; Wilcox and Larsen 2008). This is also called as inhibitory effect of 
the prey. For example, spider mites reduce the predation rate of their natural enemy 
(predatory mite) Euseius sojaensis by living in groups of large numbers and sharing 
the web rather than building new webs (Yano 2012). Also, experimental outcomes 
of the work (McClure and Despland 2011) show that the group defense exhibited 
by the caterpillar species Malacosoma disstria reduced the predation risk by their 
natural enemy parasitoids in spite of multiple attacks due to increasing difficulty of 
attacking defense groups.

Recently, the authors in (Srinivasu et  al. 2018a) and (Vamsi et  al. 2019) have 
studied an additional food provided predator–prey system involving type IV func-
tional response. Findings from these studies reveal that for an appropriate choice 
of quality and quantity of additional food, stable coexistence of both species can 
be achieved. It is also possible to eliminate either of the interacting species through 
provision of suitable choice of additional food. These findings are in accordance 
with the field outcomes presented in (Kozak et al. 1994, 1995; Putman and Staines 
2004) and (Winkler et  al. 2005). Though the findings of (Srinivasu et  al. 2018a) 
and (Vamsi et  al. 2019) are very helpful in the context of biological conservation 
and bio-control, they may not be of good help in practical scenarios owing to their 
asymptotic nature. To overcome these limitations, we wish to study the controlla-
bility aspects of the additional food system involving type IV response in order to 
achieve the desired outcomes in minimum (finite) time.

Motivated by the aforementioned observations and limitations, in this paper, we 
study two optimal control problems dealing with additional food provided systems 
involving type IV functional response with quality of additional food as the control 
parameter keeping the quantity of additional food fixed. The objective of these stud-
ies is to reach the desired state of the system in minimum (finite) time. Since quan-
tity of additional food consumed by the predator is constrained by the gut volume of 
the predator, it is relevant to study the controllabilty aspects of the additional food 
system with respect to the quality of additional food for a fixed quantity. The study 
of controllability of additional food system with respect quantity has its own signifi-
cance and can be found in the author’s work (Ananth and Vamsi 2021).

In this paper, we consider two models of additional food provided systems involv-
ing type IV functional response: In the first scenario, we consider the additional 
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food implicitly incorporated into the predator’s functional response with predator 
exhibiting type II response with respect to the additional food. With the quality as 
the control parameter, we formulate and study a time optimal control problem. We 
use Filippov’s Existence Theorem to prove the existence of optimal solution and 
Pontryagin’s Maximum Principle to obtain the characteristics of the optimal solu-
tions. In the second scenario, we model the additional food provision by explicitly 
incorporating it into the predator’s compartment thereby directly influencing the rate 
of change of predators. This makes the predator density vary linearly with respect 
to the additional food in contrast to the former case where additional food has a 
non-linear influence on the predator’s rate of change of population. This implies that 
in the second scenario, there is a possibility of obtaining linear feedback control 
which is very relevant in cases of inundative bio-control (Blackburn et  al. 2016). 
Thus we model an error system and formulate a feedback control problem in this 
case. Numerical illustrations validate the theoretical results for both these studies. 
The findings from both studies find applications in the context of biological conser-
vation and pest management. The results from the study of implicit control system 
suggest a possibility of achieving biological conservation and bio-control (achieved 
by maintaining the prey at a minimal damaging level). On the other hand, results 
from explicit control system suggest strategies for only bio-control.

The section-wise division of this article is as follows: In the next section, for the 
sake of providing clarity to the reader, we briefly discuss the type IV initial system 
and the corresponding additional food provided system. Later, in Sect. 3, we discuss 
the role of quality of additional food in the dynamics of the system. The next Sect. 4 
is devoted to the time optimal control studies for the additional food provided sys-
tem with quality as implicit control. Further, in Sect. 5 we present the optimal con-
trol studies with quality as explicit control. We first define the error system and later 
formulate a linear feedback control optimal control problem and study its optimal 
solutions and factors that affect the optimal solutions. We briefly study the role of 
inhibitory effect of prey in a subsection at the end of this section. Finally, we present 
the discussion and conclusions in Sect. 6.

2 � The Type IV Predator–Prey System

The predator–prey systems involving type IV functional response in the absence of 
additional food (called as initial system) and in the presence of additional food have 
been derived in (Srinivasu et al. 2018a). To make it easier for the reader to under-
stand the later sections of this paper, in this section, we provide a glimpse of the 
dynamics of initial system and additional food provided system involving Type IV 
functional response as discussed in (Srinivasu et al. 2018a). For detailed analysis of 
stability of the equilibria admitted by both the systems and details of the local and 
global dynamics of the systems, readers are requested to refer to the works (Srini-
vasu et al. 2018a; Vamsi et al. 2019)

Consider the predator–prey system involving type IV functional response given 
by the system of equations (with the time variable here indicated by T)



1 3

Achieving Minimum‑Time Biological Conservation and Pest… Page 5 of 51  5

where N is the prey population and P the predator population. The biological mean-
ing of the parameters have been provided in the table below:

Parameters Biological meaning

r Intrinsic growth rate of the prey
k Prey carrying capacity
m Mortality rate of predators in the absence of prey
c Maximum rate of predation in the absence of inhibitory effect
a Half-saturation rate of predators in the absence of inhibitory effect
e Maximum growth rate of predators due to consumption of prey
b Inhibitory effect of the prey on predators’ foraging

Let N = ax; t = rT; and P = y
ra

c
 ; which implies, dN = adx ; dt

r
= dT  ; dP =

ra

c
dy . 

Now, using the following transformations � =
k

a
, � = ba2, � =

e

r
, � =

m

r
, we 

get the corresponding non-dimensionalized system as follows:

In the non-dimensional system, � and � are parameters that represent the carrying 
capacity and inhibitory effect respectively. Now, consider the additional food of bio-
mass A constantly supplied to the predators. The predator–prey system (1)–(2) now 
becomes

Here, the parameter � is the ratio of the growth rate of predator when it consumes 
prey to the growth rate when it consumes additional food. In other words, � stands 
for the relative efficiency of the predator to convert either of the food available into 
predator biomass. � is inversely proportional to the nutritional value of the addi-
tional food and directly proportional to the handling time of the additional food. 
Since the conversion factor for prey can be treated as constant (obtained naturally 

(1)Ṅ = rN

(

1 −
N

k

)

−
cN

a(bN2 + 1) + N
P

(2)Ṗ =
eN

a(bN2 + 1) + N
P − mP

(3)ẋ =x

(

1 −
x

𝛾

)

−

(

xy

𝜔x2 + x + 1

)

(4)ẏ =

(

𝛽xy

(𝜔x2 + 1) + x

)

− 𝛿y

(5)Ṅ =rN

(

1 −
N

k

)

−

(

cN

(A𝜂𝛼 + a)[bN2 + 1] + N

)

P,

(6)Ṗ =e

(

N + 𝜂A(bN2 + 1)

(A𝜂𝛼 + a)[bN2 + 1] + N

)

P − mP.
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from the ecosystem), we see that when the parameter � increases, handling time of 
additional food also increases. This does not favour bio-control and may also lead 
to prey outbreaks (Srinivasu et al. 2007, 2018a, b). In this study, we use the param-
eter � to represent the Quality of additional food provided to the predators. Addi-
tional food is termed high quality if 𝛼 <

𝛽

𝛿
 and low quality otherwise. The parameter 

� denotes the ratio of nutritional value of prey perceptible to the predator to that of 
the additional food.

Now, using the same transformations as above and taking � = �
A

a
 , the system 

(5)–(6) gets reduced to the non-dimensionalised system given below:

Let f (x) =
x

(1 + ��)(�x2 + 1) + x
 and g(x) =

(

1 −
x

�

)

((1 + ��)(�x2 + 1) + x) . 

Then, the system (7)–(8) can be written as

In this study, the parameter � represents the Quantity of additional food provided 
to the predators. In the additional food system (7)–(8), the parameters �, �, � and 
� are regarded as system parameters whereas the parameters � and � are consid-
ered control parameters. This is because the former are obtained from the ecosystem 
while the latter are under the control of eco-managers/experimental ecologists who 
supply additional food to the predators. (Note: The Control Parameters are not to be 
mistakenly treated as the control variables (functions) of an optimal control problem 
in the mathematical sense. We will formulate the optimal control problems in later 
sections).

The system (7)–(8) admits four equilibrium points: the trivial equilibrium 
E∗
0
= (0, 0) , the axial equilibrium point E∗

1
= (� , 0) , and two interior equilibria 

E∗
2
= (x∗

1
(�, �), y∗

1
(�, �)) and E∗

3
= (x∗

2
(�, �), y∗

2
(�, �)) given by

(7)
dx

dt
=x

(

1 −
x

�

)

−

[

xy

(1 + ��)(�x2 + 1) + x

]

(8)
dy

dt
=�

[

x + �(�x2 + 1)

(1 + ��)(�x2 + 1) + x

]

y − �y

(9)
dx

dt
=(g(x) − y)f (x)

(10)
dy

dt
=

(

�f (x)

[

1 +
�

x
(�x2 + 1)

]

− �

)

y

E∗
2
= (x∗

1
, y∗

1
) =

�

(� − �) −
√

(� − �)2 − 4�[�(1 + ��) − ��]2

2�[�(1 + ��) − ��]
, g(x∗

1
)

�

,

E∗
3
= (x∗

2
, y∗

2
) =

�

(� − �) +
√

(� − �)2 − 4�[�(1 + ��) − ��]2

2�[�(1 + ��) − ��]
, g(x∗

2
)

�

.
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The interior equilibria are admitted only when x∗
1
< 𝛾 and x∗

2
< 𝛾 . The outcomes of 

the studies (Srinivasu et  al. 2018a; Vamsi et  al. 2019) show that the dynamics of 
the system (7)–(8) depend on the dynamics of the initial system (3) - (4) and nature 
of its isoclines. As in (Srinivasu et al. 2018a), we too consider the additional food 
provided to the initial system under the Condition I where the initial system does not 
admit any interior equilibria. We provide the summary of global dynamics of the 
additional food system under condition I in Appendix 1.

3 � Role of Quality in the Dynamics of the Additional Food System

The stability analysis and global dynamics of the system (7)–(8) (refer to Appen-
dix 1) can be applied to both biological conservation of species and bio-control 
(pest eradication) of harmful species. In this paper, we wish to reach these out-
comes in finite time and to that end, we want to formulate and study an optimal 
control problem with quality of additional food ( � ) as the control parameter. With 
this as the objective, henceforth we shall assume that the quantity of additional 
food provided is a constant and keep it fixed ( 𝜉 > 0 ). Also, due to the saddle nature 
of the second interior equilibrium E∗

3
= (x∗

2
, y∗

2
) throughout its existence, in this 

paper, we will focus only on reaching the first interior equilibrium E∗
2
= (x∗

1
, y∗

1
) 

for achieving co-existence of species and this equilibrium point will be denoted by 
E∗
2
= (x∗(�), y∗(�)) . The dynamics of the system in terms of parameter � can be seen 

from the Table 1. The terms P, Q and R in Table 1 are obtained by solving the three 
bifurcation curves (PEC, TBC and HBC mentioned above) for �.

Since this study is based on the quality of additional food, let us consider 
[�min, �max] to be the range of parameter � . Since � depends inversely on the nutri-
tional values of the additional food, we see that �min(�max) represents the highest 
(lowest) quality of additional food. From the analysis presented above, we see that in 
order to eliminate the harmful species (pest which are in the form of prey) eventu-
ally with time, the additional food supplements provided to natural enemies must be 
of high quality. This implies that we need to have 𝛼min <

𝛽𝜉−𝛿

𝛿𝜉
 , so that the trajectories 

which emerge from below the prey isocline curve move towards y-axis to the desired 
state sufficiently close to x = 0 . Otherwise, there is no possibility of any trajectory 

Table 1   Global dynamics of the system (7)—(8) w.r.t. the parameter �

where P =
�� − �

��
 , Q =

−3�(x∗)2 + 2(�� − 1)x∗ + � − 1

�(3�(x∗)2 − 2��x∗ + 1)
 and R =

(�� − �)(1 + ��2) + �(� − �)

��(1 + ��2)

Range of � Nature of equilibria Behavior of trajectories

(0, 0) (� , 0) (x∗(�), y∗(�))

0 < 𝛼 < P Unstable Does not exist Saddle Eventual prey elimination
P < 𝛼 < Q < R Saddle Unstable Saddle Globally asymptotically stable limit cycle
𝛼 > Q, 𝛼 < R Saddle Stable Saddle Towards interior equilibrium x∗(�), y∗(�)
R < 𝛼 Saddle Does not exist Stable Towards axial equilibrium (� , 0)
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that moves towards the predator axis (y-axis). The outcomes of a recent study (Par-
shad et al. 2020) state that for predator–prey systems of the form (7) - (8), prey elim-
ination (x∗ = 0) cannot be achieved in finite time T (with T < ∞ ). Thus, for achiev-
ing bio-control, we choose a terminal state such that x∗(T) = 𝜖 < xd where xd 
denotes the prey density level below which the damage caused to the system is mini-
mal. In some natural systems, to achieve bio-control, it is preferred that the prey 
(pest) continue to exist minimally exist and not get eliminated from the system 
because predator tends to damage the crops of the ecosystem after their target prey 
gets eliminated (Calvo et al. 2009; Urbaneja-Bernat et al. 2013). Thus, maintaining 
the prey at low densities such that they do not damage crops is desirable.

On the other hand, to achieve biological conservation, we need to achieve co-
existence of species. Mathematically, this means that we must drive the system to 
the interior equilibrium. To that end, we will now obtain the set of all admissible 
interior equilibria that could be reached, followed by control strategies to reach 
the same depending on the species to be conserved. If the objective is to conserve 
the prey (predator) species and maintain their density at a certain level x̃(ȳ) , then 
we must reach the admissible equilibrium with the corresponding prey (predator) 
component and possibly maintain the state at that level from then on by providing 
appropriate quality of additional food. From the practical view point, an adaptive 
approach is necessary to continue to maintain that state of co-existence. As the pred-
ators in such cases are usually generalists in nature, if need be, the eco-managers 
could alternate between feasible and low cost additional food of appropriate quality 
to maintain the state of the system as is done in cases of conservation bio-control 
(Blackburn et al. 2016).

Consider the interior equilibrium E∗
2
= (x∗(�), y∗(�)) for a fixed 𝜉 > 0 . The prey 

and predator component are given by

Now, solving (11) for � , we get

Now, substituting � from (13) in (12), we get

Equation (14) gives the set of all admissible equilibrium points for the system 
(7)–(8). This curve intersects the y − axis at y = ��

�
 . To know if a given point 

(x∗(�), y∗(�)) on the curve of admissible equilibrium points is stable or not, we 

(11)x∗(�) =
(� − �) −

√

(� − �)2 − 4�[�(1 + ��) − ��]2

2�[�(1 + ��) − ��]

(12)y∗ =

(

1 −
x∗(�)

�

)

(x∗(�) + (1 + ��)(1 + �(x∗(�))2))

(13)� =
(�� − �)(1 + �(x∗(�))2) + (� − �)x∗(�)

��(1 + �(x∗(�))2)

(14)y∗(�) =
�

�

(

1 −
x∗(�)

�

)

(x∗(�) + �(1 + �(x∗(�))2))
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consider the analysis of the prey isocline curve of the system (7)–(8) as given in 
(Srinivasu et al. 2018a). We provide the details of stability of an admissible equi-
librium in Appendix 2. This analysis helps in determining the terminal state of the 
system to which we want to drive the state in minimum time. Depending on the 
terminal state, we obtain the admissible control using which we fix the range for the 
parameter �.

4 � Time Optimal Control Studies for Additional Food System 
with Quality as Implicit Control

In this section, we formulate and study a time optimal control problem for the sys-
tem (7)–(8) that drives the state trajectory from the initial state (x0, y0) to the desired 
terminal state (x̄, ȳ) in minimum time using optimal quality of additional food pro-
vided to the predator species, with quantity of additional food as constant.

4.1 � Formulation of the Time Optimal Control Problem and Existence of Optimal 
Control

We assume 𝜉 > 0 is fixed and the quality parameter � varies in the interval 
[�min, �max] . Then the time optimal control problem (a Mayer Problem of Optimal 
Control (Cesari 2012)) with respect to the system (7)–(8) is formulated as follows:

where f1(x, y, �) = x

(

1 −
x

�

)

−

(

xy

x+(1+��)(�x2+1)

)

and f2(x, y, �) = �

(

x+�(�x2+1)

x+(1+��)(�x2+1)

)

y − �y. Using 

the equations (9)–(10), we have

where f (x) = x

(1 + ��)(�x2 + 1) + x
 and g(x) =

(

1 −
x

�

)

((1 + ��)(�x2 + 1) + x).

Comparing this problem with the general form of Mayer time opti-
mal control problem, we have n = 2 , m = 1 and �(t) = (x(t), y(t)) , �(t) = �(t) 
with � (t, �(t), �(t)) = (f1(x, y, �), f2(x, y, �)) . The boundary conditions are 
e[�] = (0, x0, y0, T , x̄, ȳ).

The set A for the problem (15) is the subset of t� - space ( ℝ1+2 ), i.e., A ⊂ ℝ
1+2 

from which we get the state variables. For the control problem (15), the set A can be 
represented as A = [0, T] × � where � is the solution space for the system (7)–(8) to 

(15)

min
𝛼min≤𝛼(�)≤𝛼max

T

subject to:

ẋ = f1(x, y, 𝛼)

ẏ = f2(x, y, 𝛼)

(x(0), y(0)) = (x0, y0) and (x(T), y(T)) = (x̄, ȳ).

⎫

⎪

⎪

⎬

⎪

⎪

⎭

Optimal Control Problem

f1(x, y, �) =(g(x) − y)f (x)

f2(x, y, �) =

(

�f (x)

[

1 +
�

x
(�x2 + 1)

]

− �

)

y
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which all trajectories belong. We must note here that � depends on the terminal state 
that is chosen and the corresponding trajectory of the system. We see that whenever 
𝛽𝜉−𝛿

𝛿𝜉
> 0 , using the positivity and boundedness theorem (Vamsi et al. 2019), we can 

define � as � =

{

(x, y) ∈ ℝ
2
+
∶ 0 ≤ x ≤ 𝛾 , 0 ≤ x +

1

𝛽
y ≤ M

𝜂
, 𝜂 > 0

}

 with 
M =

�(1+�)2

4
.

On the other hand, we know that when 𝛼 <
𝛽𝜉−𝛿

𝛿𝜉
 the solution trajectories tend 

towards the predator axis asymptotically. From the discussion in previous sections, 
we see that the terminal state (0, y∗(T)) cannot be reached for T < ∞ based on a 
recent study on additional food provided systems (Parshad et al. 2020). Thus, choos-
ing the terminal state as x∗(T) = 𝜖 < xd , we can define the set 
� =

{

(x, y) ∈ ℝ
2
+
∶ 0 ≤ x ≤ 𝛾 , 0 ≤ y ≤ 𝛽

𝛿
(𝜖 + 𝜉(1 − 𝜖)), 0 < 𝜖 < xd

}

 where xd is a 
threshold pest level below which there is least damage to the system.

Now, we define the set of all admissible solutions to the above problem (15) as

We now wish to obtain a solution from the set Ω which minimizes the time to reach 
the terminal state (x(T), y(T)) that in turn becomes the optimal solution for (15). We 
establish this in the next theorem by proving the existence of an optimal control 
using Filippov’s Existence Theorem (refer to Appendix 3).

Theorem 1  If the desired terminal state of the system (x̄, ȳ) is admissible and satis-
fies the conditions in Proposition 2 (refer to Appendix 2), then there exists an opti-
mal control �∗(t) that drives the system from an initial state (x0, y0) to the desired 
terminal state (x̄, ȳ) in minimum (finite) time for the time optimal control problem 
(15) provided the set of admissible solutions Ω is non-empty.

Proof  We will use Filippov’s Existence Theorem to prove the existence of an opti-
mal control by showing that all the conditions in the theorem are satisfied by the 
considered problem. Using that, it is enough to show that the considered problem 
satisfies the following conditions to prove the existence of optimal control. 

1.	 The set A is compact.
2.	 The set of all controls [�min, �max] is compact.
3.	 The set of boundary points 𝜕� = {0, x0, y0, T , x̄, ȳ} is compact and objective func-

tion is continuous on �.
4.	 For every (x, y) ∈ A the sets Q(x, y) ∶= {(z1, z2)|z1 = f1(x, y, �), z2 = f2(x, y, �), � ∈ [�min, �max]} 

are convex.

   We will now show that the considered control problem (15) satisfies all the proper-
ties above. 

	 (i)	 From the discussion above, we see that the set A can be written as 
A = [0, T] × � where the set � gets defined according to the terminal state 
and the inequality satisfied by the parameter � . We know that [0, T] is compact 

Ω ∶=
{

(�, �) = (x, y, �) ∶ (x, y) is a solution of the system (7) − −(8)∀� ∈ [�min, �max]
}
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by definition. We need to show that the set � is compact in both the following 
cases:

		    Case (a) Whenever 𝛽𝜉−𝛿
𝛿𝜉

< 0 , we know from the system analysis that the 
solution trajectories of the system (7 )–(8) reach y − axis eventually with time. 
Since we have chosen the terminal state in this case as (x̄, ȳ) = (𝜖, y∗(T)) close 
to  t he  p reda to r  ax i s ,  t he  so lu t ions  space  de f ined  by 
� =

{

(x, y) ∈ ℝ
2
+
∶ 0 ≤ x ≤ � , 0 ≤ y ≤ �

�
(� + �(1 − �))

}

 with 0 < 𝜖 < xd 
becomes closed and bounded.

		    Case (b) Whenever 𝛽𝜉−𝛿
𝛿𝜉

> 0 , we have from the positivity and boundedness 
theorem (Vamsi et   al .  2019) that the solutions belong to 
� =

{

(x, y) ∈ ℝ
2
+
∶ 0 ≤ x ≤ 𝛾 , 0 ≤ x +

1

𝛽
y ≤ M

𝜂
, 𝜂 > 0

}

 with M =
�(1+�)2

4
 

which is also closed and bounded. Thus, we can conclude that A is compact 
and this proves condition 1.

	 (ii)	 Conditions 2 and 3 are satisfied from the definitions of the respective sets 
[�min, �max] and 𝜕� = {0, x0, y0, T , x̄, ȳ} and also by definition of the objective 
function J[�] = T

	 (iii)	 To prove condition 4, we need to show that the sets Q(x, y) are convex. To that 

end, consider z1 = f1(x, y, �) = x

(

1 −
x

�

)

−

(

xy

x+(1+��)(�x2+1)

)

 . Rearranging the 

terms, we get 

 Cancelling the extra terms, we get 

 Now consider 

 Replacing the term 
y

x + (1 + ��)(�x2 + 1)
 in the above expression using 

equation (16), we get 

 By rearranging the last expression, we get 

(

xy

x + (1 + ��)(�x2 + 1)

)

= x

(

1 −
x

�

)

− z1

(16)
(

y

x + (1 + ��)(�x2 + 1)

)

=

(

1 −
x

�

)

−
z1

x

z2 = f2(x, y, �) = �

(

x + �(�x2 + 1)

x + (1 + ��)(�x2 + 1)

)

y − �y

z2 =�(x + �(�x2 + 1))

((

1 −
x

�

)

−
z1

x

)

− �y

= − �

(

1 +
�

x
(�x2 + 1)

)

z1 + �(x + �(�x2 + 1))

(

1 −
x

�

)

− �y
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 From the equation (17), we see that the sets Q(x, y) are linear segments of its 
components which are convex. This proves Condition 4.

Hence, the time optimal control problem (15) admits an optimal solution provided 
the set of admissible solutions Ω is non-empty. 	�  ◻

4.2 � Characteristics of Optimal Control

Let us assume that the optimal solution exists for the control problem (15) and 
obtain the characteristics of such a solution using the necessary conditions for opti-
mal solutions given by the Pontryagin’s Maximum Principle (Liberzon 2011).

We first define the Hamiltonian Function associated with the Control Problem 
(15):

Here, � and � are called the Co-state variables or Adjoint variables. Using the 
expressions for dx

dt
 and dy

dt
 from the system (7)–(8), we get

Rearranging the above expression, we get

Using the modified system (9)–(10), the Hamiltonian Function can also be written 
as

According to the maximum principle, the Co-state variables satisfy the canonical 
equations (adjoint system) given by d�

dt
= −

�ℍ

dx
,

d�

dt
= −

�ℍ

dy
 . Using (20), the canonical 

equations become

(17)�

(

1 +
�

x
(�x2 + 1)

)

z1 + z2 = �(x + �(�x2 + 1))

(

1 −
x

�

)

− �y

ℍ(x, y, �, �,�) ∶= �
dx

dt
+ �

dy

dt

(18)
ℍ(x, y, �, �,�) = �

[

x

(

1 −
x

�

)

−

(

xy

x + (1 + ��)(�x2 + 1)

)]

+ �

[

�

(

x + �(�x2 + 1)

x + (1 + ��)(�x2 + 1)

)

y − �y

]

(19)
ℍ(x, y, �, �,�) =

(

�x

(

1 −
x

�

)

− ��y

)

−
y

(x + (1 + ��)(�x2 + 1))
(�x − ��[x + �(�x2 + 1)])

(20)
ℍ(x, y, �, �,�) = �

[

(g(x, �, �) − y)f (x, �, �)

]

+ �

[

�f (x, �, �)

(

1 +
�

x
(�x2 + 1)

)

− �

]

y
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Now, to obtain the characteristics of the optimal control, we differentiate the Hamil-
tonian function (19) with respect to the control parameter �. We see that

We observe that the optimal control �∗(t) cannot be explicitly obtained from the 
above equation. Thus, differentiating the Hamiltonian function twice with respect to 
the control parameter � , we get

From the above equation we see that the Hamiltonian function is a monotone with 
respect to the parameter � provided the quantity �ℍ

��
≠ 0 . Using the Hamiltonian 

maximization condition of the maximum principle (which becomes a minimization 
condition in our problem owing to the objective function) (Liberzon 2011), we see 
that

∀� ∈ [�min, �max] and ∀t ∈ [0, T] . Also, since (15) is a time optimal control problem, 
the Hamiltonian function turns out to be a constant along the optimal trajectory and 
in particular, it assumes value -1 (Clark 1974). Hence,

Now, using equation (19), the condition (25), and the monotonicity property of 
Hamiltonian function with respect to � , we can conclude that the optimal control 
might be of bang–bang type provided singular solution does not exist. This means 
that optimal control function would assume the form:

When �ℍ
��

= 0 for an interval in [0,  T], the optimal control function cannot be 
obtained using the Hamiltonian maximization condition and the monotonicity prop-
erty. This is the case of singularity. In order to show that the optimal solution is of 

(21)

d�

dt
= − �{gx(x, �, �)f (x, �, �) + (g(x, �, �) − y)fx(x, �, �)}

− �{�fx(x, �, �)(1 +
�

x
(�x2 + 1)) +

��

x2
f (x, �, �)(�x2 − 1)}y

(22)
d�

dt
=�f (x, �, �) − �{�f (x, �, �)(1 +

�

x
(�x2 + 1)) − �}

(23)�ℍ

��
=

y�(�x2 + 1)

(x + (1 + ��)(�x2 + 1))2
(�x − ��[x + �(�x2 + 1)])

(24)�2ℍ

��2
=

−2y�(�x2 + 1)

(x + (1 + ��)(�x2 + 1))

�ℍ

��

(25)ℍ(x∗(t), y∗(t), �∗(t), �∗(t),�∗(t)) ≤ ℍ(x∗(t), y∗(t), �, �∗(t),�∗(t))

(26)ℍ(x(t), y(t), �, �(t),�(t)) = −1

𝛼∗(t) =

⎧

⎪

⎨

⎪

⎩

𝛼max, if
𝜕ℍ

𝜕𝛼
< 0

𝛼min, if
𝜕ℍ

𝜕𝛼
> 0

? if
𝜕ℍ

𝜕𝛼
= 0
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bang–bang type only, we must prove that the the solution does not exhibit singular 
arc in some interval (t1, t2),⊆ [0, T] . Thus, to know the exact nature of the optimal 
control, we assume that singular solution exists and analyse the optimal solution.

Let us assume that the singular solution exists, that is, �ℍ

��
= 0 at some time 

t ∈ [0, T] . This implies

Rearranging the terms, we get

which means that when singularity occurs, the co-state variables � and � both have 
the same sign and cannot become zero simultaneously. Otherwise, (26) would not 
hold along the optimal trajectory. To obtain the characteristics of the singular solu-
tion, we differentiate equation (23) with respect to time along the singular solution. 
This gives

Since (27) holds along singular solution, the first term on the right hand side in the 
above expression vanishes and as a result we get

Now consider

Using the canonical equations (21)–(22), the system (7 )–(8), and equation (27) 
along singular solution, (29) becomes

which essentially means that

(27)�(t)x(t) − ��(t)[x(t) + �(�x2(t) + 1)] = 0

�(t)

�(t)
=

(x(t) + �(�x2(t) + 1))

x(t)

d

dt

�ℍ

��
=
d

dt

[

y�(�x2 + 1)

(x + (1 + ��)(�x2 + 1))2
(�x − ��[x + �(�x2 + 1)])

]

= 0

=
d

dt

(

y�(�x2 + 1)

(x + (1 + ��)(�x2 + 1))2

)

(�x − ��[x + �(�x2 + 1)])

+
y�(�x2 + 1)

(x + (1 + ��)(�x2 + 1))2
d

dt
[�x − ��[x + �(�x2 + 1)]] = 0

(28)d

dt

�ℍ

��
=

y�(�x2 + 1)

(x + (1 + ��)(�x2 + 1))2
d

dt
[�x − ��[x + �(�x2 + 1)]] = 0

(29)

d

dt
[�x − ��[x + �(�x2 + 1)]] = x

d�

dt
− �[x + �(�x2 + 1)]

d�

dt

+ [� − ��(1 + 2��x)]
dx

dt
= 0

(30)

d

dt

�ℍ

��
=

��y�(�x2 + 1)

�(x + (1 + ��)(�x2 + 1))2

{

3��x3 + (2 − ����)x2 + (� − ��)x − ���
}

= 0
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along the singular solution. The equation in (31) is a cubic equation with one real 
root x̂ . This shows that singularity occurs at points which are the roots of the above 
equation (provided the roots are positive). To understand more, we differentiate (30) 
again with respect to time along the singular solution (by substituting x̂ and using 
(27)) and get

which implies that

and this means that the if singularity occurs, then it occurs at specific points (x̂, ŷ) 
on the prey isocline. Using the analysis and discussion presented above, we state the 
result

Theorem 2  The optimal control solution for the problem (15) is a combination of 
bang–bang controls only, with possibility of switches occurring in the optimal tra-
jectory. The Optimal control is given by

Now, in order to understand the characteristics of the optimal trajectory and 
nature of the switches (assuming singularity occurs), we divide the phase plane into 
four regions based on the curve of admissible equilibrium points (14) and the line 
passing through the point x̂ , which is the solution of the equation (31). The regions 
are given below and are depicted in the Fig. 1.

(31)3��x3 + (2 − ����)x2 + (� − ��)x − ��� = 0

(32)

d2

dt2
𝜕ℍ

𝜕𝛼
=

𝜇𝛽y𝜉(𝜔x̂2 + 1)

(x̂ + (1 + 𝛼𝜉)(𝜔x̂2 + 1))2

(

9𝜔𝜉x̂2 + 2(2 − 𝛾𝜉𝜔𝛿)x̂ + 𝜉 − 𝛿𝛾

)

(g(x̂, 𝛼, 𝜉) − y)f (x̂, 𝛼, 𝜉) = 0

(33)ŷ = g(x̂, 𝛼, 𝜉)

(34)𝛼∗(t) =

{

𝛼max, if
𝜕ℍ

𝜕𝛼
< 0

𝛼min, if
𝜕ℍ

𝜕𝛼
> 0

Fig. 1   This figure depicts the 
regions I, II, III, and IV  based 
on the curve of admissible equi-
libria (14) and the positive cubic 
root x̂ of Eq. (31)
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Since the optimal strategy is of bang–bang type, switches occur when the optimal 
control switches its values from �min to �max and vice–versa. We know that when 
such a switch occurs, the singular solution occurs at an instant of time where �ℍ

��
= 0 . 

Thus, at that instant we have

Let us define the function �(t) = �(t)x(t) − �(t)�(x(t) + �(�x2(t) + 1)) . Then, we see 
that �(t) = 0 when switch occurs. Also, and being optimal solution, Eq. (26) holds. 
Thus, denoting the instant of time of switch to be � and using (19), (26) and (27), we 
get the equations

Using both the equations above, we get

We know that the along the singular solutions, both �(t) and �(t) have the same sign. 
Thus, using the definitions of the Regions I, II, III and IV and from the equations 
(35) and (37), we conclude that both �(�) and �(�) are positive (negative) if the 
switch occurs in the regions I and II (III and IV).

Now, differentiating �(t) with respect to time and using state system (7)–(8) and 
adjoint system (21)–(22) at time t = � , with �(�) = 0 , we get

From the definition of �(t) and using the optimal control strategy (34), we see 
that when the control switches from �max to �min (or �min to �max ) at t = � , then �ℍ

��
 

Region I ∶=

{

(x, y)
|

|

|

|

y <
𝛽

𝛿

(

1 −
x∗(𝛼)

𝛾

)

(x∗(𝛼) + 𝜉(1 + 𝜔(x∗(𝛼))2)) and x < x̂

}

Region II ∶=

{

(x, y)
|

|

|

|

y <
𝛽

𝛿

(

1 −
x∗(𝛼)

𝛾

)

(x∗(𝛼) + 𝜉(1 + 𝜔(x∗(𝛼))2)) and x > x̂

}

Region III ∶=

{

(x, y)
|

|

|

|

y >
𝛽

𝛿

(

1 −
x∗(𝛼)

𝛾

)

(x∗(𝛼) + 𝜉(1 + 𝜔(x∗(𝛼))2)) and x > x̂

}

Region IV ∶=

{

(x, y)
|

|

|

|

y >
𝛽

𝛿

(

1 −
x∗(𝛼)

𝛾

)

(x∗(𝛼) + 𝜉(1 + 𝜔(x∗(𝛼))2)) and x < x̂

}

y�(�x2 + 1)

(x + (1 + ��)(�x2 + 1))2
(�x − ��[x + �(�x2 + 1)]) = 0

(35)�(�)x(�) − �(�)�[x(�) + �(�x2(�) + 1)] =0

(36)�(�)x(�)

(

1 −
x(�)

�

)

− �(�)�y(�) = − 1

(37)
�(�) =

−1
(

1 −
x(�)

�

)

� [x(�) + �(1 + �(x(�))2)] − �y(�)

(38)
d�

dt

|

|

|

|t=�

= ��

[

3��x3 + (2 − ����)x2 + (� − ��)x − ���

]

t=�
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increases from negative to positive (positive to negative). Thus, d𝜎
dt

> 0 (< 0) at t = � 
for the switch �max to �min (or �min to �max).

Also, we know that x̂ is the root of the Eq. (31). This is the same expression 
in (38). From this and the definitions of the regions, we conclude that the switch 
�max to �min ( �min to �max ) can happen in Regions I and III (II and IV) only. Sum-
marizing the discussion above we have the following result that gives the charac-
teristics of optimal control when switching occurs.

Proposition 1  The optimal solution of the time optimal control problem (15) 
switches from �max to �min ( �min to �max ) in the regions I and III (II and IV) only 
along the optimal trajectory. Moreover, the co-state variables � and � are negative 
(positive) at the switch points occurring in the regions I and II (III and IV).

Note The optimal control strategy is given by the Eq. (34) with the term �ℍ
��

 
given by (23). Also, since (15) is a time optimal control problem, the state and the 
co-state variables satisfy (26) along the optimal path. The trajectory of the state 
variables is given by the system (7)–(8) and that of the co-state variables is given 
by the system (21)–(22). Now, to construct the optimal path from the given initial 
state (x0, y0) , we must choose appropriate initial values for the co-state variables, 
denoted by (�0,�0) , so that the system with initial values (x0, y0, �0,�0) reaches 
the desired terminal state (x̄, ȳ) by implementing the optimal control strategy (34) 
in minimum time satisfying (26) all through the optimal path. Mathematically, we 
can conclude that with appropriate initial values for the co-state variables, we can 
reach any desired state from a given initial state. However, obtaining the initial 
values (�0,�0) that are suitable to the optimal control problem could involve a 
lot of trial and error work. The result 1 stated above indicates that if the terminal 
state is an interior equilibrium, then the optimal strategy could involve multiple 
switches between the extremum values �min and �max of the control �(t).

4.3 � Application of Optimal Strategy in the context of Pest Management

In this section, we apply the results obtained on the characteristics of the optimal 
strategy in the context of pest management. Consider the predator–prey system 
where prey species denote the pests and the predators are their natural enemies that 
do not harm the crops. We aim to obtain ways of achieving the goal of pest eradica-
tion by controlling the quality of additional food supplied to the predators in order to 
eliminate the prey. As per the dynamics of the system (7 )–(8), we want to achieve 
the prey elimination case as stated in Table 4. In the context of the optimal control 
problem (15), we wish to reach the terminal state (0, y(T)) from a given initial state 
in minimum time by providing optimal quality of additional food to the predator 
species. The following result gives the existence of optimal solution and character-
istics of the co-state variables and the optimal control at terminal time in the case of 
pest eradication.
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Lemma 1  The time optimal control problem (15) with x(T) = 𝜖 < xd admits an opti-
mal solution if 𝛼min <

𝛽𝜉−𝛿

𝛿𝜉
 and 𝜆(T) > −1

𝜖
 . Moreover, �∗(T) = �min with 𝜇(T) < 0.

Proof  Let 𝛼min <
𝛽𝜉−𝛿

𝛿𝜉
 . Then, we know from the dynamics of the system (7)–(8) as 

given in Table  1 that the prey get eliminated eventually as the trajectories move 
towards the y − axis. However, for the optimal control problem, we choose the ter-
minal state with x(T) = 𝜖 < xd such that there is least damage caused to the system. 
From the outcomes of the recent work (Parshad et al. 2020), we see that for the sys-
tems of the form

the terminal state x∗(T) = 0 cannot be reached in finite time T < ∞ . Thus, choosing 
x(T) = 𝜖 < xd will make the terminal state admissible which could be reached in 
finite time.

This implies that the admissible solution set Ω ≠ � and thus, we conclude from 
result on the existence of optimal solution that the control problem (15) with 
x(T) = � indeed admits an optimum if 𝛼min <

𝛽𝜉−𝛿

𝛿𝜉
 and drives the system to minimal 

pest density (�, y(T)) in minimum time T.
From (27), we know that

Substituting the terminal state values (�, y(T)) in the above equation, using the fact 
that � is close to 0 and from (19), we get

Rearranging the above equation, we get

From the hypothesis of the lemma, we have 𝜆(T) > −1

𝜖
 . This implies that 

(1 + 𝜆(T)𝜖) > 0 Since 𝛼∗(T) <
𝛽𝜉−𝛿

𝛿𝜉
 , we get 𝛽𝜉

1+𝛼∗(T)𝜉
− 𝛿 > 0 . Thus, using (39), we 

conclude that 𝜇(T) < 0.
Also, since �∗(t) = �min whenever 𝜕ℍ

𝜕𝛼
> 0 , using the fact that 𝜇(T) < 0 , using 

(23), we see that 𝜕ℍ
𝜕𝛼
|

|t=T
> 0 and thus we conclude that

This proves the lemma. 	�  ◻

The above result states that at the instant when the terminal state is reached, 
the optimal quantity is �min and the co-state variable � is negative for 𝜆(T) > −1

𝜖
 . 

ẋ = f1(x, y, 𝛼), ẏ = f2(x, y, 𝛼)

ℍ(�, y(T), �∗(T), �(T),�(T)) = −1

�(T)� + �(T)

(

��

1 + �∗�
− �

)

y(T) = −1

(39)
�(T) =

−1 − �(T)�
(

��

1 + �∗�
− �

)

y(T)

(40)�∗(T) = �min
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The following theorem gives a more stronger property of the optimal strategy in 
the context of pest management.

Theorem  3  If 𝛼min <
𝛽𝜉−𝛿

𝛿𝜉
 , then the optimal solution of the time optimal control 

problem (15) with x(T) = 𝜖 < xd is given by �∗(t) = �min for all t ∈ [0, T].

Proof  Let us assume that 𝛼min <
𝛽𝜉−𝛿

𝛿𝜉
 . Now we re-write the canonical equations 

(21)–(22) as

and

To prove this theorem, we will use the zero solution of the linear system formed 
by the system of canonical equations (41)–(42) which can be expressed in a matrix 
form as given below:

where

From the above expressions, we observe that

•	 a2(t) > 0.
•	 The sign of b1(t) depends on the sign of the term 1 + �� − �.
•	 If �(t) = �min , then b2(t) > 0 by the hypothesis of the theorem.

(41)

d�

dt
= −�

(

1 −
2x

�
−

(1 + ��)(1 − �x2)y

[x + (1 + ��)(�x2 + 1)]2

)

− �

(

�y(1 + �� − �)(�x2 + 1)

[x + (1 + ��)(�x2 + 1)]2

)

(42)
d�

dt
=

(

�x

[x + (1 + ��)(�x2 + 1)]

)

− �

(

� (x + �(�x2 + 1))

[x + (1 + ��)(�x2 + 1)]
− �

)

(43)

⎛

⎜

⎜

⎜

⎝

d�

dt
d�

dt

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

−a1(t) − b1(t)

a2(t) − b2(t)

⎞

⎟

⎟

⎠

�

�(t)

�(t)

�

a1(t) =1 −
2x

�
−

(1 + ��)(1 − �x2)y

[x + (1 + ��)(�x2 + 1)]2

b1(t) =
�y(1 + �� − �)(�x2 + 1)

[x + (1 + ��)(�x2 + 1)]2

a2(t) =
x

[x + (1 + ��)(�x2 + 1)]

b2(t) =
� (x + �(�x2 + 1))

[x + (1 + ��)(�x2 + 1)]
− �
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•	 a1(t) can either be negative or positive given the values of the state variables and 
parameters.

To know the nature of the zero solution of the system (43) qualitatively, we consider 
its characteristic equation given below:

Since the system (43) admits (0, 0) as its equilibrium, it is sufficient to study the 
properties of the functions (a1(t) + b2(t)) and (a1(t)b2(t) + a2(t)b1(t)) to under-
stand the nature of the zero solution (0, 0). If we assume that −1

𝜖
< 0 < 𝜆(T) , then 

using the Lemma - 1 and from the continuity of the functions (a1(t) + b2(t)) and 
(a1(t)b2(t) + a2(t)b1(t)) , we see that there exists an interval [a, T] ⊂ [0, T] in which 
𝜆(t) > 0 and 𝜇(t) < 0 . The proof of this theorem is done if we can show that a = 0 
because a = 0 will imply that 𝜕ℍ

𝜕𝛼
> 0 throughout [0,  T] and this will result in 

�∗(t) = �min ∀t ∈ [0, T].
Using the qualitative behaviour of the zero solution of the system (43), we will 

now discuss below how to choose initial values for � and � such that they maintain 
their signs 𝜆(t) > 0 and 𝜇(t) < 0 throughout the interval [0, T]. Let I = (a1(t) + b2(t)) 
and J = (a1(t)b2(t) + a2(t)b1(t)) . Then the characteristic equation (44) becomes 
m2 + Im + J = 0 , whose discriminant is given by D = I2 − 4J . J plays a major role 
in determining the sign of the discriminant. Now, let us consider two cases based on 
the sign of the function b1(t) that determines the nature of the J:

Case 1 1 + �� − � ≥ 0

In this case, b1(t) ≥ 0 in the system (43). On evaluating the discriminant of the 
characteristic equation (44), in this case it turns out to be positive for all t ∈ [0, T] . 
This implies that the solution trajectories with initial values for � and � chosen such 
that 𝜆(0) > 0 and 𝜇(0) < 0 will remain in the fourth quadrant of the ��− space and 
do not move to any other quadrant. This will ensure that the sign of the switching 
function remains the same throughout [0, T] leading to the desired outcome.

Case 2 1 + 𝛼𝜉 − 𝜉 < 0

In this case, b1(t) < 0 . Thus, we observe that D can change its sign depending on 
a1(t) . Consequently, we observe that if a trajectory (of the state (�(t),�(t)) ) starts 
from fourth quadrant of the �� space, it may leave the quadrant as time progresses. 
Also, it is important to note that at the terminal time T, x(T) = � and as a result, 
using the curve of admissible equilibria (14) we get y(T) > 1 + 𝛼min𝜉 . This means 
that the zero solution of the system (41)–(42) behaves like a saddle as t nears T.

Thus, we need to choose initial values (�0,�0) with �0 far from the origin on 
the negative � - axis and 𝜆0 > 0 , such that the Hamiltonian is −1 at t = 0 . This will 
ensure at that as t increases, when the co-state trajectory approaches the positive 
� - axis, then under the influence of the saddle nature of (0, 0) it does not leave the 
fourth quadrant. This will help achieve our objective.

Therefore, by choosing initial values as suggested, we have 𝜎(t) > 0 ∀ t ∈ [0, T] 
and thus,

(44)m2 + (a1(t) + b2(t))m + (a1(t)b2(t) + a2(t)b1(t)) = 0

�∗(t) = �min ∀ t ∈ [0, T]
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This completes the proof of the theorem. 	�  ◻

4.4 � Numerical Illustrations

In this section, we perform numerical simulations to validate the theory presented 
in the previous sub-sections and discuss the findings. We consider four examples 
depicting different cases. The numerical simulations were run on MATLAB soft-
ware. The figures illustrating each example display the optimal trajectory of the state 
variables, the co-state variables, the optimal control function �(t) and the switching 
function �ℍ

��
 . To obtain the optimal strategy, we first fixed the initial and terminal 

states. Using the parameter values and the terminal state of the system, we obtained 
the optimal control value at the terminal state �∗(T) which is required to maintain 
the system at the terminal state for all future times. Using this, we fixed the range 
of the control parameter [�min, �max] . Then, using the equation (26) along with vari-
ous combinations of trial-error guesses with the objective of reaching the terminal 
state, we obtained the initial values for the co-state variables. Then we used Runge-
Kutta 4th order routine to simulate the systems (7)–(8) and (21)–(22) and switched 
the control accordingly as per (34) which finally gave us the desired trajectories. 
The Hamiltonian function was monitored throughout the process. The step size used 
for the simulations is h = 0.01 based on which the time units obtained at the end of 
simulations are re-scaled by multiplying T × 10−2.

Example 1  This example illustrates the possibility of steering the system (15) from 
the initial state (1.39, 3.62) to the terminal state (6.15, 1.17) with �∗(T) = 1.76 with 
the initial values for co-states being (2,−0.75) . The parameters values are taken to 
be � = 6.5 � = 0.4, � = 0.2, � = 1, � = 0.2, �min = 1, and , �max = 2 . We see that 
this system takes T = 4222 × 10−2 = 42.2 units of time to reach the desired state. 
Once the system reaches the desired state, the quality of additional food is main-
tained at �∗(T) . Figure 2 illustrates this example. This examples is a case with one 
switch. This is applicable in the context of biological conservation of the prey spe-
cies and we see that prey density increases from x(0) = 1.38 to x(T) = 6.15 by feed-
ing the predators with high-quality additional food initially and then reducing the 
quality of additional food later.

Example 2  This example illustrates the possibility of steering the system (15) from 
the initial state (5.17, 4.78) to the terminal state (0.58, 4.8) with �∗(T) = 1.76 and 
the initial values for co-states being (1,−3.90904) . The parameters values are taken 
to be � = 6 � = 0.4, � = 0.2, � = 2, � = 0.26, �min = 1, and , �max = 3 . We see 
that this system takes T = 1712 × 10−2 = 17.12 units of time to reach the desired 
state. Figure 3 illustrates this example. This examples is also a case with one switch. 
This is an illustration of the case where there is reduction of the prey species from 
x(0) = 5.17 to x(T) = 0.58 by feeding the predators with high-quality additional 
food initially and then low-quality additional food with the initial and terminal pred-
ator densities almost same.
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Fig. 2   This figure depicts the optimal trajectory of the time optimal control problem (15) 
from the initial state (1.39,  3.62) to the terminal state (6.15,  1.17) with the parameters values 
� = 6.4 � = 0.4, � = 0.2, � = 1, � = 0.2, �min = 1, and �max = 2.

Fig. 3   This figure depicts the optimal trajectory of the time optimal control problem (15) from 
the initial state (5.17,  4.78) to the terminal state (0.58,  4.8). The parameters values are taken to be 
� = 6 � = 0.4, � = 0.2, � = 2, � = 0.26, �min = 1, and , �max = 3
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Example 3  This example illustrates the possibility of steering the system (15) from 
the initial state (5.17, 4.78) to the terminal state (0.04, 12.2) with the initial values for 
co-states being (0.56170,−6.80) . The parameters values are taken to be are same as 
that of the previous example. We see that this system takes T = 1050 × 10−2 = 10.5 
units of time to reach the desired state. Figure 4 illustrates this example. This exam-
ples is a case without any switch. This case is an illustration of pest management 
with minimal prey density. This is also an illustration of the Theorem  3 where 
𝜆(t) > 0 ∀t ∈ [0, T] and 𝜇(t) < 0 ∀t ∈ [0, T] along with �∗(t) = �min, ∀t ∈ [0, T] . 
This example also shows that if the eco-manager or the experimental ecologist does 
not switch the additional food to low quality at the specified time, then the system 
could tend towards prey elimination eventually.

Example 4  This example illustrates the possibility of steering the system (15) from 
the initial state (0.2, 0.1) to the terminal state (0.4, 3.77) with �∗(T) = 1.69 and the 
initial values for co-states being (7.07, 23). The parameters values are taken to be 
� = 0.9 � = 0.2, � = 0.1, � = 2, � = 0.26, �min = 1, and , �max = 2 . We see that 
this system takes T = 11477 × 10−2 = 114.77 units of time to reach the desired state. 
Figure  5 illustrates this example. This examples is a case with multiple switches. 
This is an illustration of the case where there is an increase in the predator spe-
cies from y(0) = 0.1 to y(T) = 3.37 by feeding the predators with optimal quality 
additional food and with the initial and terminal prey densities almost same. This is 
applicable in the Biological conservation of the predator species.

Fig. 4   This figure depicts the optimal trajectory of the time optimal control problem (15) from the 
initial state (5.17,  4.78) to the terminal state (0.04,  12.2). The parameters values are taken to be 
� = 6 � = 0.4, � = 0.2, � = 2, � = 0.26, �min = 1, and , �max = 3
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4.5 � Ecological Significance

It can be inferred from the above theoretical findings of the implicit control system 
that to achieve prey elimination, it is sufficient to provide the predator with high 
quality additional food ( �min ). This is in line with the outcomes of the work (Toft 
2005) which states that the optimal availability of high quality of alternative food 
sources to the generalist predators maximize the control of the aphids that attack 
on cereal fields. This is also observed from the outcomes of experimental studies 
by Calixto et al. (2013), where the natural enemy Orius insidiosus is provided with 
various combinations of additional food supplements like pollen, Anagasta kuesn-
iella eggs and nymphs of its target prey Frankliniella occidentalis. F. occidentalis 
are thrips whose adult stages damage agro-ecosystems. In this study, it is observed 
that A. kuehniella eggs are an excellent factitious food for rearing O. insidiosus 
were found to be of high nutritional value compared to both pollen and nymphs of 
the target prey. The predation on F. occidentalis thrips was found to be maximum 
when the predators O. insidiosus were supplemented with A. kuehniella eggs which 
increased their longevity and fecundity. This shows that the mathematical findings 
are in accordance with the experimental observations. Figure 4 illustrates this case 
of eliminating pest.

One of the aims of providing additional food is to reduce depredation. From the 
illustrations above it can be observed from Fig. 2 that initially when additional food 
is provided, the predators consume both prey and additional food and hence increase 
in density with reduction in prey. But as the predators increase, competition among 
predators also increases. This demonstrates the case of apparent competition (Muller 
and Godfray 1997) when high-quality of additional food is provided.

Fig. 5   This figure depicts the optimal trajectory of the time optimal control problem (15) from 
the initial state (0.2,  0.1) to the terminal state (0.4,  3.77). The parameters values are taken to be 
� = 0.9 � = 0.2, � = 0.1, � = 2, � = 0.26, �min = 1, and , �max = 2
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5 � Optimal Control Studies for Type IV System (3)–(4) with Quality 
as Explicit Control

In this section, we will define another additional food provided system with Type IV 
functional response where the additional food is explicitly provided as a linear com-
ponent added to the predator’s compartment of the initial system (1)-(2).

5.1 � Explicit Control System and the Error System

Let U represent the additional food term with U = AB , where A represents the qual-
ity of additional food and B represents the quantity of additional food. Since our aim 
is to study the influence of quality of additional food, we assume the quantity to be 
fixed B > 0 and henceforth we shall consider U to represent the quality of additional 
food. When additional food is provided explicitly, the initial system (1)–(2) becomes

Using the same transformations as performed before, and letting u =
U

r
 , the non-

dimensionalised explicit additional food system is given by the system of equations

The goal of this study is to maintain the prey (pest population) at the level 
x∗ = xc < xd by providing additional food to the predator which is of optimal qual-
ity u∗ , where xd is the threshold level below which there is no damage by pests to 
the ecosystem. To ensure that the state (x∗, y(x∗)) , is admissible, we consider the 
isoclines of the system (47)–(48) with x∗ = xc fixed and solve for y∗ and u∗ . We must 
also ensure that x∗ that is chosen satisfies the condition x∗ < 𝛾 . Choosing such an x∗ , 
using equation (47), we get y∗ as follows:

Rearranging the above expression, we get

(45)
dN

dT
=rN

(

1 −
N

K

)

−
cN

a(bN2 + 1) + N
P

(46)
dP

dT
=

eN

a(bN2 + 1) + N
P − mP + U

(47)ẋ =x

(

1 −
x

𝛾

)

−

(

xy

𝜔x2 + x + 1

)

(48)ẏ =𝛽

(

𝛽xy

(𝜔x2 + 1) + x

)

− 𝛿y + u

x∗
(

1 −
x∗

�

)

−

(

x∗y∗

1 + x∗ + �(x∗)2

)

= 0

y∗

1 + x∗ + �(x∗)2
=

(

1 −
x∗

�

)
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Now, using equations (48) and (49), we get

Solving for u∗ , we get

To obtain the expression using x∗ , we substitute for y∗ and get

Cancelling and rearranging the terms in the above expression, we get

The desired state is (x∗, y∗) controlled by u∗ may not be stable always because the 
value xd is chosen based on the damage caused to the ecosystem. Since the goal of 
the study is to drive the system (49)–(50) optimally to the state (x∗, y∗) , we will carry 
out the following steps to that end: 

1.	 Define an error system (also called perturbed system) using linearization of the 
system (49)–(50) with respect to the desired terminal state (x∗, y∗).

2.	 Formulate a linear feedback control optimal control problem with respect to the 
error system that drives the system to the origin.

3.	 Once the running cost of the control problem is shown to be positive definite, 
then using the results of an infinite horizon LQR problem the optimal solution 
can be shown as a feedback control that minimizes the objective and also ensures 
the asymptotic stability of the terminal state of the error system.

4.	 Using the feedback control, control for the system (49)–(50) can be obtained, 
which will make the terminal state stable.

5.	 Translating back to the original system, the terminal state would be reached 
optimally.

We will now implement the above mentioned procedure to reach the desired state 
optimally. We define the variables for the error system as follows:

(49)y∗ =

(

1 −
x∗

�

)

(1 + x∗ + �(x∗)2)

�x∗y∗

1 + x∗ + �(x∗)2
− �y∗ + u∗ = 0

u∗ =

(

� −
�x∗

1 + x∗ + �(x∗)2

)

y∗

u∗ =
�(1 + x∗ + �(x∗)2) − �x∗

1 + x∗ + �(x∗)2

(

1 −
x∗

�

)

(1 + x∗ + �(x∗)2)

(50)u∗ =

(

1 −
x∗

�

)

(1 − (� − �)x∗ + �(x∗)2)

(51)v =

[

v1
v2

]

=

[

x − x∗

y − y∗

]

, � = u − u ∗
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Using the isoclines of the system (49)–(50), the first order Taylor’s expansion of 
the state variables x and y around x∗ and y∗ , and the new variables, we get the error 
system as

where

and

5.2 � The Linear Feedback Control Optimal Control Problem and Optimal Solution

The linear feedback control optimal control problem involving error system (52) is 
defined as follows:

with l(v) defined as

The control system (54) and the associated optimal control problem (53) is a spe-
cial case of the general perturbed non-linear system dX

dt
= A�X + g(X) + B�U and its 

associated control problem studied in Rafikov and Limeira (2012), where A� ∈ ℝ
n×n 

is a constant matrix, g a vector whose elements are continuous non-linear func-
tions, U ∈ ℝ

m is the control vector, and B� ∈ ℝ
n×m is a constant matrix. Thus, the 

results proved for the general system in Rafikov and Limeira (2012) can be applied 
to obtain the optimal solution. The l(v) of the objective function in (53) is a variation 
of the linear quadratic regulator defined for strictly linear systems (Liberzon 2011). 
Since the error system (52) is based on feedback control, the objective function J in 
(53) makes the control problem similar to the infinite horizon LQR control problem.

(52)v̇ = Mv + h(v) + N𝛼

M =

⎡

⎢

⎢

⎢

⎣

1 −
2x∗

�
−

y∗(1 − �(x∗)2)

1 + x∗ + �(x∗)2
−

x∗

(1 + x∗ + �(x∗)2)
�y∗(1 − �(x∗)2)

(1 + x∗ + �(x∗)2)2

�x∗

1 + x∗ + �(x∗)2
− �

⎤

⎥

⎥

⎥

⎦

, N =

�

0

1

�

h(v) =

�

h1(v)

h2(v)

�

=

�

h1(v1, v2)

h2(v1, v2)

�

=

⎡

⎢

⎢

⎢

⎢

⎣

−v2
1

�
−

v2
1
v2

1 + v1 + �v2
1

�v1v2

1 + v1 + �v2
1

⎤

⎥

⎥

⎥

⎥

⎦

(53)

Minimize:

J = ∫ ∞

0

(

l(v) + 𝛼TR𝛼
)

dt

Subject to :

v̇ = Mv + h(v) + N𝛼

(v1(∞), v2(∞)) = (0, 0)

(54)l(v) = [vTQv − hT (v)Pv − vTPh(v)]
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Theorem 4  For any matrix P and

the function l(v) defined in the Eq. (54) is positive definite in a neighbourhood Γ0 of 
the origin (0, 0).

Proof  Letting the matrix P to be 
[

p11 p12
p21 p22

]

 , using Q and h(v) from the hypothesis of 

the theorem, and expanding the function l(v) we get

The first partial derivatives of l(v) are given by

It is obvious from the above equations that

and the Hessian of l(v) at the origin is given by

which is clearly positive definite. This implies that the origin is the strict local mini-
mum of function l(v) and that this function is positive definite at the neighbourhood 
Γ0 of the origin. This completes the proof of the theorem. 	�  ◻

The following theorem from Rafikov and Limeira (2012) shows that the 
feedback control � for the error system (52) minimizes the objective functional 

Q =

�

q11 0

0 q22

�

, h(v) =

⎡

⎢

⎢

⎢

⎢

⎣

−v2
1

�
−

v2
1
v2

1 + v1 + �v2
1

�v1v2

1 + v1 + �v2
1

⎤

⎥

⎥

⎥

⎥

⎦

(55)

l(v) = l(v1, v2) = q11v
2
1
+ q22v

2
2
+

2p11v
3
1

�
+

2(p11 − �p12)v
2
1
v2

1 + v1 + �v2
1

+
2p12v

2
1
v2

�
+

2(p12 − �p22)�v1v
2
2

1 + v1 + �v2
1

�l

�v1
=2q11v1 +

6p11v
2
1

�
+

4p12v1v2

�
+ 2(p11 − �p12)

2v1v2 + v2
1
v2

(1 + v1 + �v2
1
)2

+ 2(p12 − �p22)
v2
2
(1 − �v2

1
)

(1 + v1 + �v2
1
)2

�l

�v2
=2q22v2 +

2(p11 − �p12)v
2
1

1 + v1 + �v2
1

+
4(p12 − �p22)v1v2

1 + v1 + �v2
1

+
2p12v

2
1

�

�l

�v1
(0, 0) =

�l

�v2
(0, 0) = 0

H(0) =

[

2q11 0

0 2q22

]
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defined above and also ensures that the desired terminal state is asymptotically 
stable.

Theorem 5  If there exist constant matrices Q and R, positive definite, Q begin sym-
metric, such that the function l(v) as defined in (54) is positive definite, then the lin-
ear feedback control

is optimal, in order to drive the non-linear system (52) from an initial state to the 
final state

minimizing the functional

where P the symmetric, positive definite matrix is the solution of the Algebraic Ric-
cati Equation

Moreover, with the feedback control given by (56), there exists a neighbourhood 
Γ0 ⊂ Γ ⊂ ℝ

2 , of the origin such that if v0 = (v1(0), v2(0)) ∈ Γ0 , then the solu-
tion v(t) = 0, t ≥ 0 of the controlled error system (52) is locally asymptotically 
stable, and Jmin = vT

0
P(0)v0 (Liberzon 2011). Finally, if Γ = ℝ

2 , then the solution 
v(t) = 0, t ≥ 0 becomes globally asymptotically stable.

From the theorems 4 and 5, we can now conclude that the optimal control prob-
lem (53) admits an optimal solution and the error system (52) controlled by linear 
feedback control � as given in (56) is locally asymptotically stable. Hence the sys-
tem (49)–(50), controlled by

tends to the desired equilibrium (x∗, y∗).

5.3 � Numerical Simulations

In this section, we numerically illustrate the application of the control strategy in 
equation (60). We apply this to the explicit control system (47)–(48) by defining the 
error system (52) for a specific desired terminal state (x∗, y∗) and implementing the 
feedback control (56) for the same, thereby obtaining the optimal strategy for pest 
management in finite time. The terminal state is obtained by choosing x∗ = xc < sd 
such that the prey (pest) population is no longer harmful to the ecosystem.

We know from Srinivasu et al. (2018a) that the initial system (1)–(2) admits two 
interior equilibrium points E∗

2
 and E∗

3
 provided the parameters of the system satisfy 

(56)� = −R−1NTP(t)v

(57)(v1(∞), v2(∞)) = (0, 0)

(58)J = ∫
∞

0

(

l(v) + �TR�
)

dt

(59)PM +MTP − PNR−1NTP + Q = 0

(60)u = u∗ + �
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certain conditions. The stability of these equilibria (if they exist) depend in the posi-
tion of the prey component and the nature of the prey isocline curve, which is given 
by y = g(x) , where

Since the system (47)–(48) is obtained by incorporating additional food explicitly 
to the predator component of the initial system (3 )–(4), we see that the dynamics of 
the initial system could play a crucial role in the implementation of control strategy, 
depending on the choice of the terminal state with respect to the nature of the prey 
isocline. We want to quantitatively obtain this relation and also see how the control 
strategy is affected with the variation of inhibitory effect.

5.3.1 � Nature of the Prey Isocline

Consider the prey isocline curve y = g(x) . To obtain the nature of the curve, we 
consider the equation g�(x) = 0:

Simplifying the above equation we get the quadratic equation

Depending on the nature of roots of the above equation, which in turn is based on 
the values of the parameters �, �, � and � , we obtain the following cases: 

	 (i)	 Case I (1 − 𝜔𝛾)2 − 3𝜔(1 − 𝛾) > 0, 1 − 𝛾 > 0 and 1 − 𝜔𝛾 < 0

	 (ii)	 Case II (1 − 𝜔𝛾)2 − 3𝜔(1 − 𝛾) > 0, 1 − 𝛾 < 0

	 (iii)	 Case III (1 − 𝜔𝛾)2 − 3𝜔(1 − 𝛾) > 0, 1 − 𝛾 > 0 and 1 − 𝜔𝛾 > 0

	 (iv)	 Case IV(1 − 𝜔𝛾)2 − 3𝜔(1 − 𝛾) < 0

The Fig.  6 shows the various cases depicting the nature of prey isocline. E∗
2
 

is the first interior equilibrium. Since 𝛾 < E∗
3
 , the second interior equilbrium is 

not admitted by the system. The values chosen for the parameters and resulting 
equilibrium points for all the cases of the prey isocline of initial system have been 
listed in the Table 2.

First, we numerically simulate the trajectory of the state variables in the 
absence of the control from the initial point (4.5, 3). This is depicted in Fig. 7. We 
observe that in all the cases, the system undergoes initial oscillations and tends to 
stabilize eventually. However, the desired state is not reached in the absence of 
the control.

Let us consider the desired prey (pest) population to be x∗ = 0.01 such that 
there is almost no harm caused to the ecosystem. Then, using Eqs. (49) and (50), 

(61)g(x) =

(

1 −
x

�

)

(1 + x + �x2)

d

dx

[(

1 −
x

�

)

(1 + x + �x2)

]

= 0

3�x2 + (1 + ��)x + (1 − �) = 0
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we obtain the values for y∗ and u∗ respectively. Using (x∗, y∗(x∗)) and u∗ we define 
the error system (52) and formulate the optimal control problem (53) for each 
case. Choosing the matrices

and solving the Algebraic Riccati Equation (59) using the LQR command of MAT-
LAB, we get the solution matrix P for each case using which we obtain the feedback 
control for the error system. Then using equation (60), we get the optimal control for 
the explicit control system (47)–(48). The optimal trajectory of the state variables 
is depicted in Fig. 8. We observe that in all the cases, the optimal control drives the 
system from the same initial point (4.5, 3) to the desired terminal state in finite time.

Q =

[

0.01 0

0 0.01

]

, R = [1]

Fig. 6   This figure shows the nature of the curve y = g(x) given in the Eq. (61) under the four cases men-
tioned above

Table 2   Parameter values and 
equilibrium points for various 
cases of prey isocline behavior

Cases Values of Param-
eters

Prey Com-
ponent of 
Equilibrium 
Points

Predator density 
corresponding to 
x∗ = 0.01

� � � � E∗
2

E∗
3

I 4 1 0.9 0.2 0.5 1 0.99
II 4 1 1.1 1 0.38 2.61 1.00
III 4 1 0.8 0.4 0.35 7.16 0.99
IV 4 1 0.6 0.8 0.37 3.38 0.99
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Figures 9 and 10 depict the local definiteness of the function l(v) and the tra-
jectory of the optimal control u in each case. We see that the local definiteness 
of the function l(v) ensures the asymptotic stability of the terminal state of the 
system.

Now, we will simulate the trajectories of the state variables under the applica-
tion of the control (60) for each case but with the terminal prey population chosen 
to be x∗ = E∗

2
+ 0.05 , where E∗

2
 is the respective first interior equilibrium point for 

each case. The resulting terminal states for all cases have been listed in Table 3. 
Under ideal circumstances, we will expect the system to reach the desired ter-
minal state under the application of the control. However, we observe that does 
not happen in this case. We see from Fig. 11 that in none of the cases the system 
reaches the desired state. Moreover, the system becomes unstable with predator 
density becoming negative in all cases. This in feasibility is attributed to the cho-
sen prey component of the terminal state x∗.

We know from the dynamics of the initial system (3)–(4) that when the equi-
libria E∗

2
 alone exists, it is either stable or there is an asymptotically stable limit 

cycle which is formed and the axial equilibrium (� , 0) is always saddle. Thus, 

Fig. 7   This figure shows the trajectory of the state variables from the initial state (4.5, 3) without appli-
cation of any control for all the four cases. The system undergoes oscillations initially but becomes stable 
over a period of time in Case IV but in other cases oscillations persist. Also, in all the cases, the system 
does not reach the desired terminal state
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when we choose x∗ > E∗
2
 , the resulting point on the prey isocline curve (x∗, y∗(x∗)) 

lies on the unstable manifold of (� , 0) . This results in the unexpected behavior of 
the system. Thus, we conclude that the control can drive the system only when the 
prey component of the terminal state x∗ is chosen sufficiently close to zero. Thus, 
the control strategy provided by the explicit control system is applicable only for 
the pest management applications with feedback optimal control mechanism.

5.3.2 � Inhibitory Effect of the System

In this section, we consider the variation of inhibitory effect (represented by 
the parameter � ) in the optimal strategies by keeping other parameters fixed to 
� = 2.2, � = 0.4, and � = 0.9 . By considering x∗ = 0.2 , we consider 7 cases with 
� varying from 0 to 8.

Figures 12 and 13 represent the optimal trajectories of the prey and predator 
respectively with the application of feedback control as the parameter � varies. 
For the cases where � takes the values 0, 0.5 and 1, we see that the system is 
driven by the control to the corresponding terminal state. However, as the param-
eter increases starting from from � = 2 the states start oscillating instead of 
reaching the desired state and as � further increases, oscillations also increase. 
When � = 6 , the prey population increases out of the range as compared to its 

Fig. 8   This figure shows the optimal trajectory of the state variables from the initial state (4.5, 3) to the 
desired terminal State with the application of control for all the four cases. In all the cases, the system 
reaches the desired terminal state in finite time
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Fig. 9   This figure shows the local definiteness of the function l(v) = l(v1, v2) around the origin (0, 0)

Fig. 10   This figure shows the trajectory of the Optimal Control function (60) for all the four cases
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desired level and correspondingly the predator population becomes too nega-
tive. When � = 8 , then prey start to grow exponentially and predators behavior 
becomes more unpredictable.

5.4 � Ecological Significance

The theoretical findings of the explicit control system show that bio-control of spe-
cies can be achieved using feedback control by maintaining the pest at minimal lev-
els without causing damage to the systems. This type of control strategy is appli-
cable when additional food needs to be provided at regular intervals as feed back 
apart from the usual optimally regulated supply (Wade et  al. 2008). In particular, 
when the goal is to achieve inundative bio-control (Blackburn et al. 2016), the natu-
ral enemies are mass reared and released into eco-systems which are not natural for 
them. Thus, providing additional food in a feedback fashion helps them to sustain in 
the ecosystem.

Fig. 11   This figure shows the trajectory of the state variables under the application of control when the 
prey component of the terminal state is chosen to be greater than the equilibrium of the initial system 
x∗ > E∗

2
 for all the four cases

Table 3   This tables shows the 
values of the chosen terminal 
states for all cases

Cases Prey Component of E∗
2

Chosen terminal state

x∗ y∗(x∗)

I 0.5 0.55 0.62
II 0.38 0.43 0.98
III 0.35 0.40 0.73
IV 0.37 0.42 0.46
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Fig. 12   This figure shows the optimal trajectory of the prey (pest) with the application of feedback con-
trol as the parameter � varies

Fig. 13   This figure shows the optimal trajectory of the predator with the application of feedback control 
as the parameter � varies
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We also see from the numerical illustrations that the increase in inhibitory effect 
in the system can de-stabilize the system and even the controlled system need not 
be driven to the desired state. Ecological experimental findings from McClure and 
Despland (2011) reveal similar outcomes when the inhibitory effect of social cater-
pillar is studied against three of its natural enemies: spiders, parasitoids and stink-
bugs. In all cases the results show that as the number of fourth instar caterpillars 
increase, the capture by the predator starts to drastically reduce. In particular, for a 
group of two fourth instar caterpillars, for 0.8 mean number of attacks by stinkbugs, 
0.6 were captured where as for a group of 30 caterpillars, for every 0.8 mean number 
of attacks, only 0.2 were captured. Not just being together as a group, the caterpil-
lars also used techniques such as jerking away, thrashing and even biting. It is stated 
in McClure and Despland (2011) that: “When stinkbugs were used as predators, 
evasive behaviours were the most efficient in creasing survival". Similarly, when in 
large groups, caterpillars also employed head flicking and biting against parasitoids. 
The authors also state that: “In general. the fourth instar caterpillars showed more 
varied defensive responses, including falling off the bridge and biting the aggres-
sor, and were more successful against all the three natural enemies". These find-
ings show that the mathematical results obtained are in line with the ecological field 
observations and that the inhibitory effect plays a major role in foraging of the pred-
ator especially in high prey densities.

6 � Discussion and Conclusions

Studies on providing additional food to the predators have been receiving attention 
over the years by theoretical and experimental scientists (Harwood et al. 2004, 2005; 
Redpath et al. 2001; Sabelis and Van Rijn 2006; Soltaniyan et al. 2020; Van Baalen 
et al. 2001; van Rijn et al. 2002; Wade et al. 2008) in the contexts of both biological 
conservation and bio-control. The role of quality of additional food to predators and 
its impact on the system is discussed in Redpath et al. (2001), Sabelis and Van Rijn 
(2006), Wade et al. (2008), Winkler et al. (2005). A detailed study involving qualita-
tive properties and asymptotic controllability of the additional food provided system 
involving type IV response has been done in Srinivasu et al. (2018a) and Vamsi et al. 
(2019). The findings reveal that the system admits either an asymptotically stable 
equilibrium or a limit cycle surrounding an unstable equilibrium. It is also observed 
that the system could be asymptotically driven to any of the two states under certain 
conditions. Most importantly, it is shown that providing additional food need not 
always result in successful achievement of biological conservation or bio-control. 
This, in fact, is supported by the experimental findings in Harwood et  al. (2004, 
2005); Putman and Staines (2004), Toft (2005). The extent of achieving the desired 
objective depends on the choice of quality and quantity of additional food provided 
(Marcarelli et al. 2011, Soltaniyan et al. 2020).

Though the findings of Srinivasu et al. (2018a), Vamsi et al. (2019) are useful, 
they cannot be practically implemented because of the asymptotic nature of the 
results. In practice, achieving the objective of reaching the terminal state in finite 
time is highly desirable. In that context, the focus of this article has been to use the 



	 V. S. Ananth, D. K. K. Vamsi

1 3

5  Page 38 of 51

available control parameters to optimally reach the desired terminal state in finite 
time. Two optimal control problems involving type IV functional response have 
been considered: one with the additional food system where quality of additional 
food is an implicit control and other, with the quality of additional food as explicit 
control. Mathematically, the rate of change of the predator density is linear with 
respect to the explicit control and non-linear with respect to the implicit control. 
Accordingly, in the first case, a time optimal control problem is formulated and stud-
ied using the Maximum Principle approach. In the second, a linear feedback control 
optimal control problem is formulated and studied using the Dynamic Programming 
approach. The outcomes of these studies are applicable in both biological conserva-
tion and bio-control.

6.1 � Study 1: Time Optimal Control Problem

The objective of this study is to drive the system from a given initial state to the 
desired terminal state in minimum time by varying the quality of additional food. 
Using the characteristics of the optimal solution provided by Pontryagin’s Maximum 
Principle, the optimal strategy turned out to be of bang–bang type with possibility 
of multiple switches. One of the significant findings of this work is that both biologi-
cal conservation and bio-control can be achieved in finite time. In the case of biolog-
ical conservation, the terminal state is one of the points in the curve of admissible 
equilibria. Depending on the nature of the admissible curve and the prey component 
of the desired state, the terminal state is either stable or unstable. The advantage of 
this optimal strategy is that the system is driven to the terminal state even if it is 
unstable. Once the terminal state is reached, the optimal strategy suggests that the 
additional food of constant quality needs to be provided so as to maintain the sys-
tem in the same state for all future times. However, there is a need to employ a cost 
effective technique to provide additional food especially on a long term basis. One 
such technique is to grow some suitable alternate sources of food to predator in the 
ecosystem itself (Landis et al. 2000).

On the other hand, if the objective of the study is to control the pest (prey) at a 
minimal level, then the results indicate that the predators must be constantly sup-
plied with high-quality additional food. As a result, there would be no switches in 
the optimal strategy. This will lead to an increase in predator population and leads to 
a minimal level of the prey (pest) that exist in the ecosystem with the predator spe-
cies feeding predominantly on additional food (Srinivasu et al. 2018a). These results 
are in agreement with the experimental findings of Calixto et al. (2013); Soltaniyan 
et  al. (2020). Numerical illustrations validate these theoretical results for specific 
examples.

In the case of biological conservation, switching in optimal strategy (Proposition 
1) is very pertinent because outcomes of ecological studies show that constant pro-
vision of high quality additional food not only leads to apparent competition (Holt 
1977) leading to reduction of prey but could also eventually eliminate prey (Srini-
vasu et al. 2018a; Vamsi et  al. 2019). On the other hand, providing predator con-
stantly with low quality additional food leads to the reduction in survival, fecundity 
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and predation capacity (Magro and Parra 2004; Putman and Staines 2004; Redpath 
et al. 2001). If the predators are not optimal foraging species, then feeding low qual-
ity additional food could lead to adverse effects. The findings of Putman and Staines 
(2004) state that “the red deer Cervus elaphus may develop a reliance on the food 
supplement provided, reducing intake of natural forages to near zero; where feed 
provided is less than 100 percent of daily requirement, these animals may regularly 
lose, rather than gain condition. Also, it is stated that provision of low quality food 
supplements such as grain, root crops which are deficient in fiber may adversely 
affect the water balance of predators. It has been observed that winter feeding did 
not produce calves with greater birth weights than those reported for animals which 
are not given supplementary feed.”

6.2 � Study 2: Linear feedback control Optimal Control Problem

For this study, additional food is explicitly incorporated into the functional response 
by linear addition into the predator compartment. Here, the desired terminal state 
is chosen based on the threshold pest density such that there is least or no damage 
to the ecosystem. This is motivated from the ecological findings that have shown 
that the predators could damage the ecosystem by feeding on the crops (Calvo et al. 
2009; Urbaneja-Bernat et al. 2013) in the absence of prey. In some of the ecological 
experiments by Hamdi et al. (2013), it was seen that once the pest were eradicated 
from the system, the predators displayed cannibalistic behaviour when there was a 
reduction in the supply of high quality additional food. These results show that it is 
better to sometimes not eliminate the pest completely but sustain them at low densi-
ties such that there is no damage to the crops and at the same time predators also 
have their target prey.

Using the steady states of the system, the corresponding predator density and the 
control are obtained. The disadvantage of this control is that the terminal state may 
not be asymptotically stable. Thus, to overcome this limitation, an error system is 
defined and an linear feedback control optimal control problem is formulated based 
on the error system to drive the state to the origin. This would drive the actual sys-
tem to the desired state. The optimal control is shown to be a feedback control that 
ensures asymptotically stability of the terminal state. The optimal strategy obtained 
suggests to the experimental ecologists a way of maintaining the pest at the least 
harmful level without eradicating them completely. This is shown to be reached 
within finite time. Numerical illustrations validate the above results.

The numerical simulations when performed by taking the terminal prey value 
greater than the prey component of the interior equilibrium of the initial system 
showed that the desired state could not be reached with the control strategy. This 
could be attributed to the inherent instability of the system. In fact, this is one major 
difference between both the studies undertaken in this work. While the time optimal 
control strategy can steer the system even to unstable interior equilibrium, the feed-
back control fails to do so. Similar simulations were also carried out by varying the 
inhibitory effect of the prey. The results showed that on increase of the inhibitory 
effect, the system could not be driven to prey control (pest management) state. These 
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theoretical findings validate the experimental outcomes in Collings (1997) where 
spider mites display group defense when in large densities.

The outcomes of the implicit control system studies are qualitatively similar to 
the findings of optimal control studies (Srinivasu and Prasad 2010) involving the 
type II additional food provided system (Srinivasu et al. 2007). Recently, it has been 
pointed out by Parshad et al. (2020) that some of the results of the work (Srinivasu 
et al. 2007) have flaws pertaining to elimination of prey in finite time. Thus, in this 
work, we have modified the terminal state to a minimal prey density to achieve bio-
control rather than eliminating prey from the system. This work can also be seen in a 
more general manner as we consider Holling type IV response which is a generaliza-
tion of Holling type II response. In the present work we also model the control in the 
explicit fashion that helps us to have a feedback mechanism which is suited for adap-
tive studies. We also discuss the role and effect of inhibitory effect.

In conclusion, the outcomes of these studies show that the additional food pro-
vided predator–prey systems involving type IV functional response can be driven to 
a desired state in finite time with quality of additional food as implicit and explicit 
control parameter. The analysis shows the vital role played by the quality of addi-
tional food provided to the predators, emphasizing the importance of switching the 
quality from high to low or vice–versa depending on the objective. Due care must 
be taken while doing so because arbitrary choice of quality could lead to adverse 
effects.

Appendix: 1

Global Dynamics of the Additional Food System (7)–(8)

We will now briefly describe the global dynamics of the additional food provided 
system (7)–(8). Let us consider the following condition holding true for the initial 
system (3)–(4):

Under this condition, when additional food is provided to the initial system (3)–(4) 
we get three different cases depending on the behavior of the prey isocline of the 
initial system (3)–(4). The Fig. 14 depicts the different types of the prey isocline that 
occur under the condition - I.

Along with the nature of the prey isocline curve (as shown in Fig. 14), the dynam-
ics of the additional food provided system (7)–(8) also depend on the values that the 
parameters � and � take with respect to the following four curves where the first 
three determine the stability of equilibria while the fourth determines the existence 
of interior equilibrium points (for the additional food system):

The Prey Elimination Curve (PEC)

𝜔 −
(𝛽 − 𝛿)2

4𝛿2
> 0

�� − �(1 + ��) = 0



1 3

Achieving Minimum‑Time Biological Conservation and Pest… Page 41 of 51  5

the Transcritical Bifurcation Curve (TBC)

the Hopf Bifurcation Curve (HBC)

and the Discriminant Curve (DISC)

The Figs.  15, 16, and 17 (called bifurcation diagrams) show the division of the 
(�, �) - space based on the four curves mentioned above and the curve � =

�

�
 for each 

of the sub-conditions I-1, I-2 and I-3 respectively. Table 4 summarizes the global 
dynamics of the system (7)–(8).

�(� + �(��2 + 1)) − �((1 + ��)(��2 + 1) + �) = 0

3�(1 + ��)

�

(� − �) −
√

(� − �)2 − 4�[�(1 + ��) − ��]

2�[�(1 + ��) − ��]

�2

+ (2 − 2��(1 + ��))

�

(� − �) −
√

(� − �)2 − 4�[�(1 + ��) − ��]

2�[�(1 + ��) − ��]

�

+ (1 + ��) − � = 0

(� − �)2 − 4�(−�� + �(1 + ��))2 = 0

Fig. 14   This figure shows the nature of prey isocline curve of the initial system under the three sub-cases 
I-1, I-2 and I-3 of condition—I. These are plotted for the values of parameters � = 2.2 and � = 0.4



	 V. S. Ananth, D. K. K. Vamsi

1 3

5  Page 42 of 51

Appendix: 2

Stability of the Admissible Equilibria (14)

Fig. 15   This figure represents the division of control parameter space by the discriminant curve (DISC), 
the prey elimination curve (PEC), the Hopf bifurcation curve (HBC), the transcritical bifurcation curve 
(TBC) and the curve � =

�

�
 . The parameter values chosen are � = 2.2, � = 0.4, � = 1.2, and � = 8 , sat-

isfying the condition I-1

Fig. 16   This figure represents the division of control parameter space by the discriminant curve (DISC), 
the prey elimination curve (PEC), the Hopf bifurcation curve (HBC), the transcritical bifurcation curve 
(TBC) and the curve � =

�

�
 . The parameter values chosen are � = 2.2, � = 0.4, � = 0.63, and � = 7 , sat-

isfying the condition I-2
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The study reveals that the possibility of instability in the interior equilibrium occurs 
only if one or more positive critical points exist for the derivative of the prey iso-
cline of the system (7)–(8). The quadratic equation obtained by equating the deriva-
tive of the prey isocline to zero is given by

3�(1 + ��)x2 + 2(1 − ��(1 + ��))x + (1 + ��) − � = 0

Fig. 17   This figure represents the division of control parameter space by the discriminant curve (DISC), 
the prey elimination curve (PEC), the transcritical bifurcation curve (TBC) and the curve � =

�

�
 . The 

parameter values chosen are � = 2.2, � = 0.4, � = 0.42, and � = 6.4 , satisfying the condition I-3

Table 4   Global dynamics of the additional food provided system (7)–(8)

Figure Nature of the equilibria

Fig. 15 Fig. 16 Fig. 17 E
∗
0

E
∗
1

E
∗
2

E
∗
3

A1 B1 C1 Saddle Stable – –
– B2 C2 Saddle Stable Stable Saddle
A2 B3 – Saddle Stable Unstable Saddle

GAS Limit Cycle
Homoclinic Orbit

– B4 – Saddle Saddle Stable –
A3 B5 – Saddle Saddle Unstable –

GAS Limit Cycle
A4 B6 C3 Saddle Saddle Stable –
A5 B7 C4 Unstable Saddle – –
A6 B8 C5 Saddle Stable – –
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From the above equation we observe that for the prey isocline to have a positive real 
critical point, the sum of the roots of the equation, must satisfy the inequality 
−

2(1−��(1+��))

3�(1+��)
≥ 0 along with the discriminant being positive. This implies that we 

must have

Rearranging the expression, we get

Now, we apply this result to the curve of admissible equilibrium points by substitut-
ing for � from Eq. (13). Then, the above inequality (62) becomes

The last expression contains a quadratic polynomial in x∗(�) . Solving for x∗(�) , we 
get

where x̂1 and x̂2 are the roots of the quadratic equation

and they are given by

Clearly, from the above expressions, x̂1 < x̂2 depending on the existence of these 
roots. If they exist, then using the inequalities (62) and (63), we conclude that 
instability occurs in the admissible equilibria only if the prey component x∗(�) lies 
between the two, i.e., if x̂1 < x∗(𝛼) < x̂2 . In other words, whenever x∗(𝛼) < x̂1 and 
x∗(𝛼) > x̂2 , the admissible equilibrium point (x∗(�), y∗(�)) is stable. Thus, the exist-
ence of the points x̂1 and x̂2 determine the nature of the admissible equilibrium curve 
and thus the stability of the equilibrium point. The existence is determined by the 
sign of the discriminant D = (� − �)2�2�2 − 4�(� − ���)2 . Based on this we have 
the following cases:

(��(1 + ��) − 1) ≤0
�� + ���� ≤1

���� ≤1 − ��

(62)� ≤ 1 − ��

���

(�� − �)(1 + �(x∗(�))2) + (� − �)x∗(�)

��(1 + �(x∗(�))2
≤1 − ��

���

((�� − �)(1 + �(x∗(�))2) + (� − �)x∗(�))(���) ≤(1 − ��)��(1 + �(x∗(�))2

(63)(x∗(𝛼) − x̂1)(x
∗(𝛼) − x̂2) ≤ 0

((�� − �)(1 + �(x2)) + (� − �)x)(���) − (1 − ��)��(1 + �x2) = 0

(64)x̂1 =
−(𝛽 − 𝛿)𝛾𝜔 −

√

(𝛽 − 𝛿)2𝛾2𝜔2 − 4𝜔(𝛿 − 𝛽𝜉𝜔)2

2𝜔(𝛽𝛾𝜉𝜔 − 𝛿)

(65)x̂2 =
−(𝛽 − 𝛿)𝛾𝜔 +

√

(𝛽 − 𝛿)2𝛾2𝜔2 − 4𝜔(𝛿 − 𝛽𝜉𝜔)2

2𝜔(𝛽𝛾𝜉𝜔 − 𝛿)
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•	 Case Ia: D ≥ 0, x̂1 < 0 and x̂2 > 0

	   In this case, the admissible equilibrium has a positive local maximum and 
hence a crest. Thus for points between x∗(�) = 0 and x∗(𝛼) = x̂2 , the corre-
sponding equilibrium points are unstable. The relationship between the admis-
sible equilibria and the control parameter � for this case is depicted in two-
quadrant plot in the Fig.  18. The dotted lines on the curve from A till ymax 
represent the unstable branch x∗y∗ - plane. The point A =

��

�
 represents the 

curve touching the y − axis . We also see from the figure that whenever we 
choose predator density between 0 and A (represented by point B in the fig-
ure), there are two choices of the prey component for admissible equilibria. 
The one that lies to the left of x̂2 on the x − axis would be unstable and the 
other would be stable. On the other hand, for the choice of predator population 
less than A =

��

�
 (represented by C in the figure) there exits a unique prey den-

sity and control and the resulting admissible equilibrium is stable.
•	 Case Ib: D > 0, x̂1 > 0 and x̂2 > 0

	   In this case, the admissible equilibrium curve has both local maximum and 
local minimum in the positive quadrant and hence there is both trough and 
crest. Here the admissible equilibria is unstable between the two points x̂1 
and x̂2 as discussed before but stable elsewhere. The relationship between the 
admissible equilibria and the control parameter � for this case is depicted in 
two-quadrant plot in the Fig. 19. The dotted lines on the curve from ymin till 
ymax represent the unstable branch in the x∗y∗ - plane. The points B and C rep-
resent the same quantities as discussed in the above case.

•	 Case II: D > 0, x̂1 < 0 and x̂2 < 0 or D < 0

Fig. 18   Admissible equilibria and control—Case Ia
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	   In this case, either the two points x̂1 and x̂2 exist and are negative or they 
are not real numbers. This means that there are no positive critical points for 
the admissible equilibrium curve and thus the admissible equilibrium curve is 
monotonically decreasing. As a result, any equilibrium point on the curve is 
stable. This case is depicted in two-quadrant plot in Fig. 20.

Fig. 19   Admissible equilibria and control—Case Ib

Fig. 20   Admissible equilibria and control—Case II
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The following proposition summarizes the discussion above and can be applied 
to the case of biological conservation:

Proposition 2  For Prey Species Conservation:

For 0 < x̄ < 𝛾 , there exists a unique 𝛼̄ such that (x̄, ȳ(𝛼̄)) is an admissible interior 
equilibrium for the system (7)–(8). Further, this equilibrium is asymptotically stable 
provided x̂1 < x̄ < x̂2 and unstable otherwise (see Figs. 18, 19 and 20)

For Predator Species Conservation: 

1.	 For every ỹ below the crest (in Fig. 18) and between the crest and trough (in 
Fig. 19), there exist two values of quality, �1 and �2 such that (x(𝛼1), ỹ) , (x(𝛼2), ỹ) 
are admissible equilibria for the system (7)–(8). Moreover, (x(𝛼1), ỹ) is unstable 
since x̂1 < x(𝛼1) < x̂2 and (x(𝛼2), ỹ) is stable since x̂2 < x(𝛼2).

2.	 For ỹ below the point A (see Figs. 18, 19 and 20) with ỹ < A , there exists a unique 
𝛼̃ such that (x̃(𝛼̃, ỹ) is an admissible equilibria for the system (7)–(8). Moreover 
this equilibrium is asymptotically stable.

3.	 For ỹ above the crest with ỹ > ymax (see Figs. 18 and 19), there exists no admis-
sible equilibrium point for the system (7)–(8).

Appendix: 3

General form of Mayer Problem of Optimal Control

We will present here the general form of Mayer Problem of Optimal Control  as 
stated in Cesari (2012). Let A = [t1, t2] × � be a subset of the t� - space ℝ1+n , let U 
be a given subset of the � - space ℝm . Let � (t, �, �) = (f1, f2, ..., fn) be a given func-
tion on A × U . For every (t, �) ∈ A , let Q(t, �) = �(t, �,U) ⊂ ℝ

n be the set of all 
z = (z1, z2, ..., zn) with zi = fi(t, �, �), i = 1, 2, ..., n for some � ∈ U . Let E be a given 
subset of t1�1t2�2 - space ℝ2n+2 . The Mayer problem of optimal control is to find the 
optimal solution, usually to minimize the functional

for pairs of functions �(t) = (x1, x2, ..., xn) , �(t) = (u1, u2, ..., um) , t1 ≤ t ≤ t2 , x abso-
lutely continuous, u measurable satisfying

boundary conditions

(66)I[�, �] = g(t1, �(t1)t2�(t2))

(67)
d�

dt
= � (t, �(t), �(t)), t1 ≤ t ≤ t2
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and constraints

in the class Ω of all admissible pairs (�, �) . By an admissible pair for the problem 
(66)–(70) we mean a pair (�(t), �(t)), t1 ≤ t ≤ t2 , x absolutely continuous, u meas-
urable, satisfying all the requirements (66)–(70). Here, x and u are also called an 
admissible trajectory and admissible control respectively.

We will now state the Filippov’s Existence Theorem which is used to prove the 
existence of an optimal solution to the optimal control problem (66)–(70).

Theorem 6  (The Filippov existence Theorem for Mayer problem of optimal control) 
If A and U are compact, E closed, � is continuous on A × U , g is continuous on E, 
Ω ≠ Φ , and for every (t, �) ∈ A the set Q(t, �) = �(t, �,U) ⊂ ℝ

n is convex, then the 
objective functional I[�, �] has an absolute minimum in Ω.
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