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Abstract
The origin of the genetic code has been attributed in part to an accidental assign-
ment of codons to amino acids. Although several lines of evidence indicate the sub-
sequent expansion and improvement of the genetic code, the hypothesis of Fran-
cis Crick concerning a frozen accident occurring at the early stage of genetic code 
evolution is still widely accepted. Considering Crick’s hypothesis, mathematical 
descriptions of hypothetical scenarios involving a huge number of possible coexist-
ing random genetic codes could be very important to explain the origin and evolu-
tion of a selected genetic code. This work aims to contribute in this regard, that is, 
it provides a theoretical framework in which statistical parameters of error functions 
are calculated. Given a genetic code and an amino acid property, the functional code 
robustness is estimated by means of a known error function. In this work, using ana-
lytical calculations, general expressions for the average and standard deviation of the 
error function distributions of completely random codes with standard stop codons 
were obtained. As a possible biological application of these results, any set of amino 
acids and any pure or mixed amino acid properties can be used in the calculations, 
such that, in case of having to select a set of amino acids to create a genetic code, 
possible advantages of natural selection of the genetic codes could be discussed.

Keywords Origin · Evolution · Genetic code · Random · Error function

1 Introduction

All current natural genetic codes may have evolved from a single ancestral code. 
According to the Crick hypothesis in 1968, this ancestral code would have consisted 
of fixed random codon assignments for each encoded amino acid and the stop sig-
nal. This approach is known as "the frozen accident" (Crick 1968). An explanation 
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for the original fixed codon assignments could be the deleterious effects of genetic 
changes. These effects would be increasingly catastrophic as the number of genes in 
organisms increased. However, in early evolution extensive horizontal gene transfer 
might have been useful because only one code survived, a requirement for the tran-
sition to the cellular level of complexity (Vetsigian et  al. 2006). Given the above, 
the origin of LUCA (Last Universal Cellular Ancestor) (Weiss et al. 2018), the first 
common ancestor of all current organisms, but not the first cell, would have been a 
bottleneck resulting from this horizontal gene transfer, which would have resulted in 
the selection of a universal code (Koonin 2003, 2017; Vetsigian et al. 2006).

Thus, at an early stage a completely random universal code could be possible. 
However, this evolved in such a way that there were fewer reading and writing fail-
ures, diminishing the structural and functional consequences of the encoded pro-
teins (i.e., the error function as a cost function) (Freeland and Hurst 1998). Moreo-
ver, considering that sometimes code errors could be important for developing new 
cellular adaptive properties, perhaps genetic code evolution, rather than a way of 
optimizing stability, tended to optimize the balance between stability and adapta-
bility. According to an evolutionary increase in stability, it has been found that the 
errors associated with the standard genetic code are considerably smaller than most 
random codes, although its achieved stability is not the best possible (Błażej et al. 
2018, 2016; Buhrman et al. 2011; Freeland and Hurst 1998; Goldman 1993; Haig 
and Hurst 1991, 1999; Novozhilov et al. 2007; Salinas et al. 2016; Santos and Mon-
teagudo 2010; Wnętrzak et al. 2018, 2019). The remarkable stability of the stand-
ard genetic code, besides being a driving force through the selection pressure, may 
have been a consequence of the expansion of the genetic code by mean of similar 
mechanism of codon assignments to physicochemically similar amino acids (Crick 
1968; Koonin 2017). Thus, the hypothetical accidental nature of a selected ancestral 
genetic code is in agreement with subsequent genetic code extension and optimi-
zation mechanisms (Koonin and Novozhilov 2017). In this work, the average and 
standard deviation of error functions of random genetic codes with fixed standard 
stop codons were analytically obtained assuming that a primitive and completely 
random version of an ancestral genetic code may have been selected from a large 
set of random codes. The used error functions are different depending on a param-
eter indicating which codon bases (i.e., first, second or third) can be wrong. As a 
possible application of these results in future research, the deduced expressions of 
statistical parameters could be useful to select different sets of natural amino acids 
and many kinds of amino acid properties, either pure or mathematically combined. 
This approach, regarding the different statistical behaviors of the error function in a 
random Crick scenario, could allow a better understanding of the code stability as a 
selective pressure on the origin and evolution of the genetic code.

For calculations, the following mathematical formalism is introduced:
In the standard genetic code, from the 64 possible codons, there are 3 stop codons 

and 61 amino acid encoding codons, which encode the 20 standard amino acids. 
Hence, a genetic code can be described by a function, such that there are 61 different 
triplets ijk (with bases i, j, k ∈ B = {A, C, G, U} termed codons, each one encoding 
one amino acid; Ep is the set of pairs of triplets indicated by 

(
ijk, i′j′k′

)
 , that only dif-

fer in position p, with p = 1, 2 or 3, such that only codon pairs 
(
ijk, i′jk

)
 , 
(
ijk, ij′k

)
 and 
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(
ijk, ijk′

)
 ( i ≠ i′, j ≠ j′ and k ≠ k′ respectively) are considered. For p = 0, E0 denotes 

the union E1∪E2 ∪ E3 (Buhrman et al. 2011).
Let rijk be the numeric value of property au as expressed by the standard amino 

acid u coded by triplet ijk codon (that is, in functional notation, u = u(ijk))

The rijk values of the six amino acid properties used in this work are shown in 
Table 1. Four of these properties are real properties taken from Haig and Hurst (Haig 
and Hurst 1991); however, two other properties are not real, but are only arbitrary 
values to increase the number of cases to test the theoretical results of this study.

To understand the robustness of the genetic code, the consequences of single-
point changes in codons (either mutation or translation errors) have been studied. 
Hence, genetic code robustness can be inversely estimated by measuring a global 
error, basically a cost function associated with decoding mistakes. Such an error 
function (MS) is defined as follows:

(1)rijk ≡ au = au(ijk)

Table 1  Values of amino acid properties used in this study

Four properties are taken from Haig and Hurst [9]: polar requirement, hydropathy, molecular volume 
and isoelectric point. The other two amino acid properties are not real, but are arbitrary designations to 
increase the number of cases to apply the analytical and numerical calculation modes used in this study

Amino acid Value of the 
amino acid 
property
(au)

Amino acid property

Polar 
require-
ment

Hydropathy Molecu-
lar 
volume

Isoelectric 
point

Random
(∈ [0, 10])

Binary
(∈ {1, − 1})

Ala a1 = 7.0 1.8 31 6.00 7.8 1
Arg a2 = 9.1 − 4.5 124 10.76 5.1 1
Asn a3 = 10.0 − 3.5 56 5.41 4.3 1
Asp a4 = 13.0 − 3.5 54 2.77 5.3 1
Cys a5 = 4.8 2.5 55 5.07 1.9 1
Gln a6 = 8.6 − 3.5 85 5.65 4.2 1
Glu a7 = 12.5 − 3.5 83 3.22 6.3 1
Gly a8 = 7.9 − 0.4 3 5.97 7.2 1
His a9 = 8.4 − 3.2 96 7.59 2.3 1
Ile a10 = 4.9 4.5 111 6.02 5.3 1
Leu a11 = 4.9 3.8 111 5.98 9.1 − 1
Lys a12 = 10.1 − 3.9 119 9.74 5.9 − 1
Met a13 = 5.3 1.9 105 5.74 2.3 − 1
Phe a14 = 5.0 2.8 132 5.48 3.9 − 1
Pro a15 = 6.6 − 1.6 32.5 6.30 5.2 − 1
Ser a16 = 7.5 − 0.8 32 5.68 6.8 − 1
Thr a17 = 6.6 − 0.7 61 6.16 5.9 − 1
Trp a18 = 5.2 − 0.9 170 5.89 1.4 − 1
Tyr a19 = 5.4 − 1.3 136 5.66 3.2 − 1
Val a20 = 5.6 4.2 84 5.96 6.6 − 1
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where |Ep| is the cardinality of set Ep.
We find that

and verify that

Considering 61 amino acid encoding codons and the 3 standard stop codons 
(UAG, UAA, and UGA), and since codon pairs with inner differences simultane-
ously in more than one position are not considered, we have |E0|= 263, |E1|= 87, 
|E2|= 88, and |E3|= 88 (Buhrman et al. 2011).

2  Theoretical Framework and Results

Only completely random models of the genetic code with the fixed three standard 
stop codons (also named the unrestricted structure model (Wnętrzak et  al. 2018)) 
were considered. Genetic codes were built fixing the three standard stop codons 
and using the other 61 codons to encode the 20 standard amino acids. Although 
the number of possible codes is finite (Novozhilov et al. 2007; Schönauer and Clote 
1997), the number of randomly selected codes from the huge number of possible 
codes can be infinite. Hereinafter we will refer to an “infinite number of sampling 
cycles of random genetic codes” as “infinite random codes”. Thus, let ⟨⟩∞ be the 
average of infinite random codes. Then we denote the average of MSp (Eq. 2) over 
infinite random genetic codes by ⟨MSp⟩∞:

Let �p be the standard deviation of MSp over infinite random genetic codes. Then 
�2

p
 is the variance given by

For the computer calculations, 100,000 randomly sampled genetic codes were 
obtained using randomly-generated non-overlapping block of codons with random 
assignment of the amino acids. In addition, six kinds of amino acid properties 
(Table 1) were used and their statistical properties were analyzed with respect to 
changes in a single position of the codon (p = 1, 2, or 3). The parameters ⟨MSp⟩∞ 
and �p were numerically calculated using the Monte Carlo method. Subsequently, 

(2)MSp ≡
1

|||Ep
|||

∑
(ijk,i�j�k�)∈Ep

(
rijk − ri�j�k�

)2

(3)
|||Ep

||| =
∑

(ijk,i�j�k�)∈Ep

1

(4)||E0
|| = ||E1

|| + ||E2
|| + ||E3

||

(5)⟨MSp⟩∞ = ⟨ 1

���Ep
���

�
(ijk,i�j�k�)∈Ep

�
rijk − ri�j�k�

�2⟩
∞

(6)�2

p
= ⟨�MSp − ⟨MSp⟩∞

�2⟩
∞
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these parameters were analytically calculated using general expressions, which 
were obtained for any amino acid property and any set of encoded amino acids. 
Comparisons between the values obtained using numerical and analytical meth-
ods are shown in Tables  2 and 3. The analytical results are very similar to the 
numerical results of the Monte Carlo computational calculation. In fact, because 
the results of the analytical calculations are completely based on mathematical 
arguments, a numerical proof of these results is not necessary. However, Tables 2 
and 3 are useful to show how derived statistical expressions can be applied and 
numerically contrasted.

Table 2  Analytical and numerical calculations of the average of MSp over infinite completely random 
genetic codes with standard stop codons ( ⟨MSp⟩∞)

MSp (Eq. 2) is the error function of the genetic code. ⟨MSp⟩∞ is calculated analytically using Eq. 10 and 
numerically by computational statistics over 100,000 completely random genetic codes with standard 
stop codons. The values of the amino acid properties are shown in Table 1. The ⟨MSp⟩∞ error is defined 
as Error = 100%

�
Analytical⟨MSp⟩∞ − Numerical⟨MSp⟩∞

�
∕Analytical⟨MSp⟩∞ . Moreover, in addition to 

the two artificial properties of the table, more artificial random properties were applied (using 100 set 
of random properties and the same 1000 random codes for each one). As a result, the averages of Error 
were equal to − 0.5% (0.6), − 0.5% (0.5) and − 0.6% (0.5), for non-binary random properties between 
0 and 10 ( ∈ [0, 10]), and − 0.4% (0.5), − 0.5% (0.4) and − 0.5% (0.4), for binary random properties ( ∈ 
{1, − 1}). In both cases, with p = 1, 2 and 3, respectively, and with the standard deviations of the Error in 
parentheses

Amino acid property P Average of MSp ( ⟨MSp⟩∞) Error 
(%)

Analytical Numerical

Polar requirement 1 11.995 12.066 − 0.6
2 11.995 12.059 − 0.5
3 11.995 12.060 − 0.5

Hydropathy 1 16.952 17.047 − 0.6
2 16.952 17.036 − 0.5
3 16.952 17.039 − 0.5

Molecular volume 1 3505.4 3522.2 − 0.5
2 3505.4 3526.2 − 0.6
3 3505.4 3522.4 − 0.5

Isoelectric point 1 5.9302 5.9626 − 0.5
2 5.9302 5.9674 − 0.6
3 5.9302 5.9651 − 0.6

Random
(∈ [0, 10])

1 8.156 8.2001 − 0.5
2 8.156 8.2010 − 0.5
3 8.156 8.1986 − 0.5

Binary
(∈ {1, − 1})

1 2 2.0109 − 0.5
2 2 2.0115 − 0.6
3 2 2.0096 − 0.5
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3  Analytical Calculation of ⟨MSp⟩∞ (p = 1, 2, or 3) for Infinite 
Completely Random Genetic Codes with the Standard Stop Codons

From Eq. 5, since summations of r2
ijk

 and r2
i′j′k′

 are equal, by exchanging summation 
and average operators ( ⟨∑⟩ = ∑⟨⟩ ), we obtain

Table 3  Analytical and 
numerical calculations of the 
standard deviation of MSp over 
infinite completely random 
genetic codes with standard stop 
codons ( σp)

σp is calculated analytically using Eq.  11 and calcu-
lated numerically by computational statistics using the 
same genetic codes for Table  2. The σp error is defined as 
Error = 100%

(
Analyticalσp − Numericalσp

)
∕Analyticalσp . Moreo-

ver, for the same simulation of codes with additional artificial ran-
dom properties described in the legend of Table  2, the calculated 
averages of Error were equal to 0.9% (2.1), 0.2% (2.2) and 0.3% 
(1.9), for non-binary random properties, and 0.6% (2.3), 0.7% (2.4) 
and 1.0% (2.3), for binary random properties. In both cases, with 
p = 1, 2 and 3, respectively, and with the standard deviations of the 
Error in parentheses

Amino acid property P Standard deviation of MSp 
( σp)

Error 
(%)

Analytical Numerical

Polar requirement 1 2.1320 2.1095 1.1
2 2.1199 2.1066 0.6
3 2.1199 2.1099 0.5

Hydropathy 1 2.3867 2.3666 0.8
2 2.3731 2.3617 0.5
3 2.3731 2.3636 0.4

Molecular volume 1 568.03 560.83 1.3
2 564.79 563.65 0.2
3 564.79 559.59 0.9

Isoelectric point 1 1.4088 1.3946 1.0
2 1.4008 1.3989 0.1
3 1.4008 1.3985 0.2

Random
(∈ [0, 10])

1 1.3287 1.3101 1.4
2 1.3211 1.3133 0.6
3 1.3211 1.3169 0.3

Binary
(∈ {1, − 1})

1 0.2144 0.2128 0.8
2 0.2132 0.2108 1.1
3 0.2132 0.2112 0.9
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where ⟨r2
ijk
⟩
∞

 and ⟨rijkri�j�k�⟩∞ are constants because they are obtained from infinite 
selected random codes from all possible codes. That is, the averages ⟨⟩∞ do not 
depend on the subscripts for r and therefore they can be written outside of the sum-
mations, as a factor.

Note that

Using Eqs. 1, 3 and 8 in Eq. 7 results in

Because each u-th amino acid has the same statistical weight in calculations of 
averages over infinite random genetic codes, in Eq. 9 we replace ⟨⟩∞ with ⟨⟩Aa , that is 
the average over the 20 standard amino acids (i.e. ⟨(...)u⟩Aa ≡

∑20

u=1
(...)u∕20 ). Thus, 

we obtain

where p = 1, 2, or 3. The application results are shown in Table 2, and another dem-
onstration of Eq. 10 is shown in Appendix A.

4  Analytical Calculation of �p (p = 1, 2, or 3) for Infinite Completely 
Random Genetic Codes with Standard Stop Codons

In Appendix B the following expression for the standard deviation is obtained

where p = 1, 2, or 3. The application results are shown in Table 3.

(7)

⟨MSp⟩∞ = 2
|

|

|

Ep
|

|

|

⎛

⎜

⎜

⎝

∑

(ijk,i′j′k′)∈Ep

⟨r2ijk⟩∞ −
∑

(ijk,i′j′k′)∈Ep

⟨rijkri′j′k′⟩∞
⎞

⎟

⎟

⎠

= 2
|

|

|

Ep
|

|

|

⎛

⎜

⎜

⎝

⟨r2ijk⟩∞
∑

(ijk,i′j′k′)∈Ep

1 − ⟨rijkri′j′k′⟩∞
∑

(ijk,i′j′k′)∈Ep

1
⎞

⎟

⎟

⎠

(8)⟨rijkri�j�k�⟩∞ = ⟨rijk⟩2∞

(9)⟨MSp⟩∞ = 2
�⟨a2

u
⟩
∞
− ⟨au⟩2∞

�

(10)⟨MSp⟩∞ = 2
�⟨a2

u
⟩
Aa

− ⟨au⟩2Aa
�

(11)�p = 2

⎡⎢⎢⎣
1

���Ep
���
⟨�au − ⟨au⟩Aa

�4⟩
Aa

⎤⎥⎥⎦

1

2
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5  Discussion

In the calculation of the averages over random genetic codes, each code has the 
same probability of being obtained by the Monte Carlo method. Therefore, the aver-
ages for infinite number of sampling cycles of random genetic codes are equal to the 
corresponding averages for the finite set of all possible genetic codes. Using stand-
ard stop codons in the completely random model of genetic code, we analytically 
obtained the average (Eq.  10) and standard deviation (Eq.  11) of error functions 
(Eq. 2) of infinite random codes selected. The formulae in Eqs. 10 and 11 were exact 
and applicable for any kind of amino acid property, even for new properties result-
ing from combinations of some already known (e.g., a linear combination of sev-
eral amino acid properties). Similarly, the set of encoded amino acids could also be 
redefined into the formulae. In computational experiments, using 100,000 random 
genetic codes, in addition to the 20 standard amino acids and 6 kinds of amino acid 
properties (4 real properties and the other 2 invented, for test purposes only) both 
statistical parameters (i.e., ⟨MSp⟩∞ and σp (p = 1, 2, or 3) were obtained with values   
very similar to those predicted by the analytical calculations (See Tables 2 and 3).

It is interesting that the average of the error function of the code is proportional to 
the mean squared change (Eq. 10) of the encoded amino acid property, as long as the 
variance is proportional to the mean quartic change (Eq. 49). Such a simple result 
could avoid a large number of computational calculations and was capable of estab-
lishing a theoretical framework that could be applied to a random scenario prior to 
a universal code. For example, it seems plausible that genetic codes with small error 
function values are more competitive (i.e., genetic codes having a greater tolerance 
to errors of use) as σp decreases and ⟨MSp⟩∞ increases. That could be achieved by 
a suitable selection of sets of amino acids and their properties (pure or mathemati-
cally combined) to give the appropriate parameters to the error function in primitive 
systems containing amino acids, such as in some meteorites or in primary organic 
soups (Burton et al. 2012; Cleaves 2010; Zaia et al. 2008). In this regard, the follow-
ing question seems interesting: how optimal are the current standard amino acids 
and their selected properties in terms of the competitiveness of genetic codes within 
a system with more options of amino acids to be encoded? Therefore, the statisti-
cal parameters found here to describe the error in random genetic codes could be 
applied to the selection of sets of amino acids or to find more appropriated amino 
acid properties function, so that a few codes could be much more efficient (greater 
tolerance to error) than the rest, something very appropriate for a natural selection of 
a genetic code.

Despite the optimization patterns of the standard genetic code, Francis Crick’s 
frozen accident theory still survives when combined with theories of genetic code 
expansion (Koonin 2017), although it has been said that the emphasis is on the fro-
zen part (Kun and Radvanyi 2018). However, it seems important to consider random 
events in the earliest stages of the genetic code. Assuming a hypothetical early ran-
dom scenario for the origin of the genetic code, in this approach the distribution of 
the error function for the completely random model was mathematically described 
under very general conditions, which may facilitate subsequent applications.
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Appendix A

Alternative Calculation of ⟨MSp⟩∞ for Infinite Completely Random 
Genetic Codes with Standard Stop Codons

From p = 3 into Eq. 5, we obtain

Using the Kronecker delta function �xy (i.e., given that x and y are positive inte-
gers, if x = y , then �xy = 1 and else �xy = 0), Eq. 12 becomes

whereby

Note that

and

given that x ≠ z. Moreover, since that Eq. 12 does not depend of any values of the 
rUAG , rUAA and rUGA , we conveniently choose the values of those parameters as

Applying Eqs. 15–18 in Eq. 14 results in

(12)⟨MS3⟩∞ = ⟨ 1

��E3
��

�
(ijk,ijk�)∈E3

�
rijk − rijk�

�2⟩
∞

(13)

⟨MS3⟩∞ = ⟨ 1

2��E3
��

�
i,j,k,k�∈B

�
rijk − rijk�

�2�
1 − �Ui�Aj�Gk − �Ui�Aj�Ak − �Ui�Gj�Ak

��
1 − �Ui�Aj�Gk� − �Ui�Aj�Ak� − �Ui�Gj�Ak�

�⟩∞

(14)

⟨MS3⟩∞ =⟨ 1

2��E3
��

�
i,j,k,k�∈B

�
rijk − rijk�

�2�
1 − �Ui�Aj�Gk� − �Ui�Aj�Ak� − �Ui�Gj�Ak� − �Ui�Aj�Gk

+�Ui�Aj�Gk�Ui�Aj�Gk� + �Ui�Aj�Gk�Ui�Aj�Ak� + �Ui�Aj�Gk�Ui�Gj�Ak� − �Ui�Aj�Ak

+�Ui�Aj�Ak�Ui�Aj�Gk� + �Ui�Aj�Ak�Ui�Aj�Ak� + �Ui�Aj�Ak�Ui�Gj�Ak� − �Ui�Gj�Ak

+�Ui�Gj�Ak�Ui�Aj�Gk� + �Ui�Gj�Ak�Ui�Aj�Ak� + �Ui�Gj�Ak�Ui�Gj�Ak�
�⟩∞

(15)
∑

i,j,k,k�∈B

(
rijk − rijk�

)2
�xi�yj�zk =

∑
i,j,k,k�∈B

(
rijk − rijk�

)2
�xi�yj�zk�

(16)�xy�xy = �xy

(17)�xy�zy = 0

(18)rUAG = rUAA = rUGA = 0
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which is

equivalently

and this can be written as

Considering Eqs. 18 and 22, results from left to right in Eq. 22 summations having 
61, 2, 3 and 176 amino acidic terms, respectively. Besides, the average of those terms 
are such that ⟨r2

ijk
⟩
∞
= ⟨r2

UAk
⟩
∞
= ⟨r2

UGk
⟩
∞

 . Then, we obtain

so that

From |E3| = 88 and Eq. 24 we have

Similar to that indicated to obtain Eq. 10 from Eq. 9, in Eq. 25 we replace rijk and 
⟨⟩∞ by au and ⟨⟩Aa , respectively. Thus, 25 becomes

Similar demonstrations for p = 1 and 2 can be developed. Thus we obtain

where p = 1, 2, 3, in agreement with Eq. 10.

(19)

⟨MS3⟩∞ =
1

2��E3
��

� �
i,j,k,k�∈B

�
rijk − rijk�

�2�
1 − 2�Ui�Aj�Gk − 2�Ui�Aj�Ak − 2�Ui�Gj�Ak

��

∞

(20)⟨MS3⟩∞ =
1

2��E3
��

� �
i,j,k,k�∈B

�
rijk − rijk�

�2
− 4

�
k∈B

r2
UAk

− 2
�
k∈B

r2
UGk

�

∞

(21)

⟨MS3⟩∞ =
1

��E3
��

� �
i,j,k,k�∈B

r2
ijk
−

�
i,j,k∈B

r2
ijk
−

�

i, j, k, k� ∈ B

(k ≠ k�)

rijkrijk� − 2
�
k∈B

r2
UAk

−
�
k∈B

r2
UGk

�

∞

(22)

⟨MS3⟩∞ =
1

��E3
��

�
3

�
i,j,k∈B

r2
ijk
− 2

�
k∈B

r2
UAk

−
�
k∈B

r2
UGk

�

∞

−
1

��E3
��

� �
i,j,k,k�∈B(k≠k�)

rijkrijk�

�

∞

(23)⟨MS3⟩∞ =
(3x61 − 2x2 − 1x3)

��E3
��

⟨r2
ijk
⟩
∞

−
176

��E3
��
⟨rijkrijk�⟩

∞

(24)⟨MS3⟩∞ =
176

��E3
��
⟨r2

ijk
⟩
∞

−
176

��E3
��
⟨rijk⟩

2

∞

(25)⟨MS3⟩∞ = 2

�
⟨r2

ijk
⟩
∞
− ⟨rijk⟩2∞

�

(26)⟨MS3⟩∞ = 2
�⟨a2

u
⟩
Aa

− ⟨au⟩2Aa
�

(27)⟨MSp⟩∞ = 2
�⟨a2

u
⟩
Aa

− ⟨au⟩2Aa
�
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Appendix B

Analytical Calculation of �p (p = 1, 2, 3) for Infinite Completely 
Random Genetic Codes with Standard Stop Codons

Alternatively, Eq. 6 can be written as

From p = 3 into Eq. 28 we obtain

Calculating the term ⟨MS2
3
⟩
∞

 , from p = 3 and Eq. 2, it becomes

equivalently

Calculating from Eq. 31

 which is

On the other hand

(28)�2

p
= ⟨MS2

p
⟩
∞
− ⟨MSp⟩2∞

(29)�2

3
= ⟨MS2

3
⟩
∞
− ⟨MS3⟩2∞

(30)⟨MS2
3
⟩
∞
=

1

��E3
��2
�� �

(ijk,ijk�)∈E3

�
rijk − rijk�

�2
�2�

∞

(31)⟨MS2
3
⟩
∞
=

4

��E3
��2
�� �

(ijk,ijk�)∈E3

�
rijk

2 − rijkrijk�
��2�

∞

(32)

⟨MS2
3
⟩
∞
=

4

��E3
��2
⟨ �
�
ijk, ijk�

�
,�

lmn, lmn�
�

∈ E3

�
rijk

2rlmn
2 + rijkrijk�rlmnrlmn� − 2rijk

2r
lmn

rlmn�

�
⟩∞

(33)

⟨MS2
3
⟩
∞
=

4

��E3
��2
⟨ �
�
ijk, ijk�

�
,�

lmn, lmn�
�

∈ E3

�
rijk

2rlmn
2 + rijkrijk�rlmnrlmn�

�⟩∞

−
8

��E3
��2
⟨ �
�
ijk, ijk�

�
,�

lmn, lmn�
�

∈ E3

�
rijk

2r
lmn

rlmn�

�
⟩∞
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And then, reordering

which is, considering Eqs. 3 and 36,

(34)

⟨ �
�
ijk, ijk�

�
,�

lmn, lmn�
�

∈ E3

�
rijk

2rlmn
2 + rijkrijk�rlmnrlmn�

�⟩∞

= ⟨ �
�
ijk, ijk�

�
∈ E3

r4
ijk
+

�
�
ijk, ijk�

�
,�

lmn, lmn�
�

∈ E3�
ijk, ijk�

�
≠
�
lmn, lmn�

�

rijk
2rlmn

2

+
�

�
ijk, ijk�

�
∈ E3

rijk
2rijk�

2 +
�

�
ijk, ijk�

�
,�

lmn, lmn�
�

∈ E3�
ijk, ijk�

�
≠
�
lmn, lmn�

�

rijkrijk�rlmnrlmn�⟩∞

⟨ �

(ijk, ijk�),

(lmn, lmn�)

∈ E3

�
rijk

2rlmn
2 + rijkrijk�rlmnrlmn�

�⟩∞

=
�

(ijk, ijk�)

∈ E3

⟨r4
ijk
⟩
∞
+

�

(ijk, ijk�),

(lmn, lmn�)

∈ E3

(ijk, ijk�) ≠ (lmn, lmn�)

⟨r2
ijk
⟩2
∞
+

�

(ijk, ijk�)

∈ E3

⟨r2
ijk
⟩2
∞

(35)

+
�

�
ijk, ijk�

�
,�

lmn, lmn�
�

∈ E3�
ijk, ijk�

�
≠
�
lmn, lmn�

�

⟨rijkrijk�rlmnrlmn�⟩∞
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Considering 36 in 33, we obtain

and using constants �, �, and γ Eq. 37 can be written as

Similar to that indicated to obtain Eq. 10 from Eq. 9, in Eq. 38 we replace rijk 
and ⟨⟩∞ by au and ⟨⟩Aa , respectively. Thus, 38 becomes

Replacing Eqs. 10 and 39 into Eq. 29, we obtain

Let a change of variable given by

(36)

⟨ �
�
ijk, ijk�

�
,�

lmn, lmn�
�

∈ E3

�
rijk

2rlmn
2 + rijkrijk�rlmnrlmn�

�⟩∞

= ��E3
��⟨r4ijk⟩∞ + ��E3

��2⟨r2ijk⟩
2

∞

+
�

�
ijk, ijk�

�
,�

lmn, lmn�
�

∈ E3�
ijk, ijk�

�
≠
�
lmn, lmn�

�

⟨rijkrijk�rlmnrlmn�⟩∞

(37)

⟨MS2
3
⟩
∞
=

4

��E3
��
⟨r4

ijk
⟩
∞
+ 4⟨r2

ijk
⟩2
∞
+

4

��E3
��2

�
�
ijk, ijk�

�
,�

lmn, lmn�
�

∈ E3�
ijk, ijk�

�
≠
�
lmn, lmn�

�

⟨rijkrijk�rlmnrlmn�⟩∞

−
8

��E3
��2

�
�
ijk, ijk�

�
,�

lmn, lmn�
�

∈ E3

⟨rijk2rlmnrlmn�⟩∞

(38)

⟨MS2
3
⟩
∞
=

4

��E3
��
⟨r4

ijk
⟩
∞
+ 4⟨r2

ijk
⟩2
∞
+ �⟨r2

ijk
⟩
∞
⟨rijk⟩2∞ + �⟨rijk3⟩∞⟨rijk⟩∞ + �⟨rijk⟩4∞

(39)

⟨MS2
3
⟩
∞
=

4

��E3
��
⟨a4

u
⟩
Aa

+ 4⟨a2
u
⟩2
Aa

+ �⟨a2
u
⟩
Aa
⟨au⟩2Aa + �⟨au3⟩Aa⟨au⟩Aa + �⟨au⟩4Aa

�2

3
=

4

��E3
��
⟨a4

u
⟩
Aa

+ 4⟨a2
u
⟩2
Aa

+ �⟨a2
u
⟩
Aa
⟨au⟩2Aa + �⟨au3⟩Aa⟨au⟩Aa + �⟨au⟩4Aa

(40)−4
�⟨a2

u
⟩
Aa

− ⟨au⟩2Aa
�2
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and

(defining a new amino acid property).
Equations 1, 41 and 42 give

Let MS′
3
 be an error function calculated for the encoded bu values of the new 

amino acid property

Let �′
3
 be the standard deviation of MS′

3
 over infinite random genetic codes

(Similar to Eq. 6 with p = 3)
Then, considering the bu values of the new amino acid property results

(Similar to Eq. 40, but using �3′2 and bu instead of �2

3
 and au , respectively)

Replacing ⟨bu⟩Aa = 0 (from 42) in Eq. 46, we obtain

Finally, from σ3 = σ�
3
 (because rijk − rijk� = r�ijk − r�ijk� ), Eqs. 42 and 47, we have

Similar demonstrations for p = 1 and 2 can be developed. Thus, we obtain

where p = 1, 2, 3. Whereby the standard deviation is

(41)r�
ijk

= rijk − ⟨au⟩Aa

(42)bu = au − ⟨au⟩Aa

(43)r�
ijk

= bu

(44)MS�
3
=

1

||E3
||

∑
(ijk,ijk�)∈E3

(
r�
ijk
− r�

ijk�

)2

(45)��2
3
=
��

MS�
3
− ⟨MS�

3
⟩∞

�2�
∞

��2
3
=

4

��E3
��
⟨b4

u
⟩
Aa

+ 4⟨b2
u
⟩2
Aa

+ �⟨b2
u
⟩
Aa
⟨bu⟩2Aa + �⟨bu3⟩Aa⟨bu⟩Aa + �⟨bu⟩4Aa

(46)−4
�⟨b2

u
⟩
Aa

− ⟨bu⟩2Aa
�2

(47)��2
3
=

4

��E3
��
⟨b4

u
⟩
Aa

(48)�2

3
=

4

��E3
��
⟨�au − ⟨au⟩Aa

�4⟩
Aa

(49)�2

p
=

4

���Ep
���
⟨�au − ⟨au⟩Aa

�4⟩
Aa
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