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Abstract
In this paper, a HIV-TB co-infection model is explored which incorporates a non-
linear treatment rate for TB. We begin with presenting a HIV-TB co-infection model 
and analyze both HIV and TB sub-models separately. The basic reproduction num-
bers corresponding to HIV-only, TB-only and the HIV-TB full model are computed. 
The disease-free equilibrium point of the HIV sub-model is shown to be locally as 
well as globally asymptotically stable when its corresponding reproduction num-
ber is less than unity. The HIV-only model exhibits a transcritical bifurcation. On 
the other hand, for the TB sub-model, the disease-free equilibrium point is locally 
asymptotically stable but may not be globally asymptotically stable. We have also 
analyzed the full HIV-TB co-infection model. Numerical simulations are performed 
to investigate the effect of treatment rate in the presence of resource limitation for 
TB infected individuals, which emphasize the fact that to reduce co-infection from 
the population programs to accelerate the treatment of TB should be implemented.
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1  Introduction

Mathematical modeling is a process of representing a real-world problem in 
mathematical terms, so as to have an idea about real-world solutions. Epide-
miological modeling is a branch of mathematical modeling which describes the 
transmission dynamics of infectious diseases among individuals. From epidemio-
logical modeling, we are able to predict the macroscopic behavior by using the 
microscopic description of an infectious disease in a population. Recently some 
infectious diseases, such as HIV which can lead to AIDS and TB (due to bacte-
rial infection) have become an important concern for both developing and devel-
oped countries. The Human Immunodeficiency Virus (HIV) weakens people’s 
defence against infections by targeting an individual’s immune system. It was first 
reported in June 1981 (De Cock et  al. 2012). The most advanced stage of HIV 
infection is AIDS, which can take from 2 to 15 years to develop depending on 
an individual. There are multiple modes of transmission for HIV such as sharing 
needles with infected people, breastfeeding or anything which transfers contami-
nated blood. As reported by the World Health Organisation, 1.7 million people 
became newly infected in 2018 and there were approximately 37.9 million people 
living with HIV at the end of 2018 (https​://www.who.int/news-room/fact-sheet​s/
detai​l/hiv-aids). In 2018, 770,000 people died from HIV-related causes globally. 
According to WHO, currently, only 70% of HIV-infected individuals know their 
status.

Tuberculosis (TB) is a bacterial disease caused by Mycobacterium tubercu-
losis, which most often affects the lungs. TB transmission occurs by infectious 
droplets in the air and through interactions with infected individuals. About one-
third of the total world population is infected with TB. People infected with TB 
bacteria have a 5 to 15% lifetime risk of falling ill with TB. Both HIV and TB 
accelerate the progression of each other (https​://www.tbfac​ts.org/tb-hiv/). Immu-
nity declines as HIV infection progresses and this makes infected individuals 
more vulnerable to opportunistic infections like TB. TB is the most opportunistic 
infection for HIV infected individuals. Worldwide TB is one of the top 10 causes 
of death among individuals and the leading cause of death for people living with 
HIV. Between 2000 and 2016 diagnosis and treatment of TB saved almost 53 
million from the disease (http://www.who.int/media​centr​e/facts​heets​/fs104​/en/). 
Globally people living with HIV were 20 times more likely to fall ill with TB 
than those without HIV in 2017. According to WHO, 10.4 million people fell ill 
with TB and 1.7 million died from the disease (including 0.4 million among peo-
ple living with HIV) in 2016. TB is curable and preventable, but there is no effec-
tive vaccine for HIV which can treat infected individuals permanently. Therefore, 
it is essential to pay adequate attention to study the dynamics of the co-infection 
to control its spread.

Many mathematicians are working on HIV-TB co-infection models and a lot of 
work has already been done in this field (Agusto and Adekunle 2014; Denysiuk 
et  al. 2017; Naresh and Tripathi 2005; Sharomi et  al. 2008; Tanvi and Aggar-
wal 2020). West and Thompson (1997) proposed a model to explore the effect 

https://www.who.int/news-room/fact-sheets/detail/hiv-aids
https://www.who.int/news-room/fact-sheets/detail/hiv-aids
https://www.tbfacts.org/tb-hiv/
http://www.who.int/mediacentre/factsheets/fs104/en/
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of HIV infection on TB infection. The purpose of their work was to investigate 
the duration and magnitude of the effect that the HIV epidemic may have on TB. 
Naresh et al. (2009) developed a HIV-TB co-infection model to study the effect 
of tuberculosis on the transmission dynamics of HIV in a logistically growing 
human population instead of taking constant recruitment rate. Bhunu et al. (2009) 
developed a HIV-AIDS and TB co-infection model by considering both latent and 
active forms of TB and by incorporating re-infection for recovered cases. They 
concluded that the treatment of HIV along with both latent and active forms of 
TB infectives results in delayed onset of the AIDS stage of HIV infection. Treat-
ment also had a great impact in decreasing the infected population. Roeger et al. 
(2009) proposed a model to explore the consequences of the joint dynamics of 
HIV and TB on the prevalence of both. Gakkhar and Chavda (2012) formulated 
a simple non-linear HIV-TB co-infection model to show the non-existence of a 
co-infection equilibrium point. Since currently no cure exists for the HIV disease, 
we believe that the detection of HIV infection and subsequent counseling can be 
effective in controlling its spread amongst the population. Based on this, Kaur 
et  al. (2014) developed a simple HIV-TB co-infection model by incorporating 
screening for both HIV and TB infectives and treatment for screened individuals. 
Silva and Torres (2015) proposed a HIV-TB co-infection model in which opti-
mal control theory is applied to discuss the optimal treatment strategies for co-
infected individuals with HIV and TB. Kumar and Jain (2018) analyzed a HIV-
TB co-infection model to explore the effect of early and late HIV treatment on 
disease-induced deaths during the TB treatment course.

It is obvious that in any (sufficiently large) community there is a limited capac-
ity for the treatment of a disease. Till now authors have used a constant removal 
rate (that is, constant recovery from the infected population per unit time) which 
is described as follows (with I denoting the density of infected individuals):

This is called a Holling type-I functional response. There are different types of func-
tional responses, that is, Holling type-II, type-III and type-IV (Dubey et al. 2013), to 
consider limited treatment capacity.

Many researchers are working with Holling type functions as treatment rates 
for their models. Dubey et al. (2013) explored the effect of Holling type-III and 
IV functional response as the treatment rate for infectives in a SEIR epidemic 
model. Dubey et al. (2015) proposed a SIR model with non-linear incidence rate 
and Holling type-II function as the treatment rate. It may be noted that although 
various types of HIV-TB models have been studied and analyzed, HIV-TB mod-
els with different types of removal rates, that is, Holling type-II, type-III and 
type-IV, are yet to be studied. Also along with the high burden countries that are 
facing problems with the supply of anti-tuberculosis drugs, in the United King-
dom, almost two thirds of hospital pharmacy departments reported problems with 
accessing anti-tuberculosis treatment (https​://www.tbfac​ts.org/tb-treat​ment/]. In 

h(I) =

{
r, I > 0,

0, I = 0.

https://www.tbfacts.org/tb-treatment/
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view of this, we propose a HIV-TB co-infection model with Holling type-II func-
tion as the treatment rate for TB infected individuals, which is given as

where � ⩾ 0 is the initial per capita treatment rate for TB infectives and 𝜔 > 0 
denotes the limitation on resources for the treatment of TB. In this paper, the Hol-
ling type-II function depicts the condition when the number of TB infected indi-
viduals is very large and the treatment capacity reaches to its maximum value due to 
limited treatment resources. To study the qualitative behavior of the model we use 
the stability theory of non-linear differential equations (Perko 1991).

The content of this paper is organized as follows. A deterministic non-linear math-
ematical model is proposed in the second section, together with the discussion of posi-
tivity and boundedness of its solutions. In the third section the HIV sub-model is con-
sidered and analyzed. The fourth section deals with the analysis of the TB-only model. 
Then the full model is discussed in the fifth section. In the sixth section, the system is 
solved numerically to illustrate the analytical results and to gain more insights into the 
system. In the last section we conclude the paper with a brief discussion.

2 � Model Formation

In this section we propose a deterministic non-linear mathematical model for the trans-
mission dynamics of HIV and TB co-infection with non-linear treatment rate. Here we 
use a Holling type-II function as treatment rate for TB. We are making a few assump-
tions in formulating the model. We assume that the susceptibles are recruited into the 
population at a constant rate. We divide the total population density N(t), that is, no. of 
individuals per unit area, into ten sub-populations, which are as follows 

	 (1)	 S(t)—the class of individuals susceptible to both the diseases.
	 (2)	 LT (t)—the class of individuals latently infected with tuberculosis.
	 (3)	 IT (t)—the class of individuals actively infected with tuberculosis only.
	 (4)	 RT (t) — the class of individuals recovered from TB with temporal immunity.
	 (5)	 IH(t)—the class of individuals infected with HIV only.
	 (6)	 AH(t)—the class of individuals infected with AIDS.
	 (7)	 LTH (t)—the class of individuals co-infected with HIV and latent TB.
	 (8)	 ITH (t)—the class of individuals co-infected with HIV and TB.
	 (9)	 LAT

(t)—the class of individuals co-infected with AIDS and latent TB.
	(10)	 ATH

(t)—the class of individuals co-infected with AIDS and TB.

The total population is divided in such a way that,

Further we assume that in a given compartment all individuals are identically infec-
tious, which might ignore the effects caused due to variation among individuals. 

h(I) =
�I

1 + �I
,

N(t) = S(t) + LT (t) + IT (t) + RT (t) + IH(t) + AH(t) + LTH (t) + ITH (t) + LAT
(t) + ATH

(t).
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Susceptible individuals acquire HIV infection due to effective contact with HIV-
infected individuals at a rate �H , where �H is the force of infection associated with 
HIV infection and is given as

where 𝛾 > 1 is a modification parameter which accounts for the fact that individuals 
infected with AIDS are more likely to spread HIV infection. Susceptibles become 
TB infectives following effective contact with TB-infected individuals at a rate �T . 
The force of infection associated with TB infection, denoted by �T is given by

HIV-infected individuals and AIDS patients may acquire TB at the rate �1�T and 
�2�T , respectively. Here, 𝜂1 > 1 and 𝜂2 > 1 are the modification parameters which 
correspond to the fact that HIV-infected and AIDS-infected individuals have a weak-
ened immune system and hence are more prone to get a TB infection than suscepti-
bles. AIDS-infected individuals after getting anti-retroviral therapy at the rate � live 
a healthy life but are still infected with HIV and enter into the HIV-infected class. 
TB-infected individuals are getting TB treatment at the rate h(I) =

�I

1+�I
 , 

𝛼 ⩾ 0, 𝜔 > 0, I ⩾ 0, which is a Holling type-II function. The term 1

1+�I
 represents 

the effect of inhibition in the treatment of TB. It can be clearly seen that h(I) is a 
continuously differentiable, increasing function of I and 

	 (i)	 h(0) = 0,

	 (ii)	 h�(I) > 0, h��(I) < 0,

	 (iii)	 lim
I→∞

h(I) =
�

�
,

where �
�
 is the maximum treatment capacity of some community.

From the assumptions, definition of variables, parameter description (Table  1) 
and the above-mentioned facts, the mathematical model is formulated according to 
the schematic diagram given in Fig.  1. The equations representing the model are 
given as

�H =
�H

(
IH + ITH + LTH + �

(
AH + LAT

+ ATH

))

N
,

�T =
�T (IT + ITH + ATH

)

N
.
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Table 1   Parameter description

Parameter Description

Λ Constant recruitment rate
�
T

Contact rate for TB
�
H

Contact rate for HIV
d Natural death rate
d
T

TB induced death rate
d
A

AIDS induced death rate
d
A
T

AIDS-TB induced death rate
r Rate at which recovered individuals become susceptibles
� Initial per capita treatment rate for TB infectives
� Resource limitation parameter for TB
� Treatment rate for AIDS
�
1

Progression rate from HIV to AIDS
�
2

Progression rate from latent TB and HIV to latent TB and AIDS
�
3

Progression rate from HIV-TB to AIDS-TB
k
1

Progression rate from latent TB to active TB
k
2

Progression rate from with HIV and latent TB to HIV-TB
k
3

Progression rate from AIDS and latent TB to AIDS-TB
� Modification parameter
�
1

Modification parameter
�
2

Modification parameter
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IH

LT

IT

RT

AH

ITH
LTH

ATH
LAT

Λ

dS

(d+ dT )IT

dLT

dRT

dIH

(d+ dT )ITH

(d+ dA)AH

(d+ dAT
)ATH

dLTH

(d+ dA)LAT

k3LAT

k2LTH

λHS
λTS

k1LT

h(IT )

ρ1IH

τAH

λHLT

λHRT

h(ATH
)

h(ITH
)

h(LT )

rRT

λHIT

ρ2LTH
τLAT

η2λT

h(LAT
)

τATH
ρ3ITH

η1λT
h(LTH

)

Fig. 1   Schematic Diagram of the Model
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The initial conditions of the model (2.1) are given as

2.1 � Positivity and Boundedness of Solutions

Based on biological considerations, the region under consideration is:

It is necessary to show that all the variables 
S(t), LT (t), IT (t), RT (t), IH(t), AH(t), LTH (t), ITH (t), LAT

(t) and ATH
(t) are positive 

for all time t ⩾ 0 , as all of them describe human sub-populations. Hence, we state 
the following theorem:

Theorem  2.1  For the initial conditions given by (2.2), the solution components 
S(t),  LT (t), IT (t), RT (t), IH(t), AH(t), LTH (t), ITH (t), LAT

(t) and ATH
(t) for the model 

(2.1)

dS

dt
= Λ − �TS − �HS − dS + rRT ,

dLT

dt
= �TS − �HLT − h(LT ) − (k1 + d)LT ,

dIT

dt
= k1LT − �HIT − h(IT ) − (d + dT )IT ,

dRT

dt
= h(LT ) + h(IT ) − �HRT − (r + d)RT ,

dIH

dt
= �HS − �1�TIH + h(ITH ) + h(LTH ) + �HRT + �AH − (�1 + d)IH ,

dAH

dt
= �1IH − �2�TAH + h(LAT

) + h(ATH
) − (d + dA + �)AH ,

dLTH

dt
= �1�TIH − h(LTH ) + �HLT − (�2 + k2 + d)LTH + �LAT

,

dITH

dt
= k2LTH + �HIT − h(ITH ) − (�3 + d + dT )ITH + �ATH

,

dLAT

dt
= �2�TAH + �2LTH − h(LAT

) − (k3 + d + dA + �)LAT
,

dATH

dt
= k3LAT

+ �3ITH − h(ATH
) − (d + dAT

+ �)ATH
.

(2.2)

S(0) = S0 ⩾ 0, LT (0) = LT0 ⩾ 0, IT (0) = IT0 ⩾ 0, RT (0) = RT0
⩾ 0,

IH(0) = IH0
⩾ 0, AH(0) = AH0

⩾ 0, LTH (0) = LTH0
⩾ 0,

ITH (0) = ITH0
⩾ 0, LAT

(0) = LAT0

⩾ 0 and ATH
(0) = ATH0

⩾ 0.

(2.3)G =
{
(S, LT , IT ,RT , IH ,AH , LTH , ITH , LAT

,ATH
) ∈ ℝ10

+
∶ N(t) ⩽

Λ

d

}
.
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system (2.1) are positive for t ⩾ 0 and the region G is positively invariant, that is, all 
the solutions starting in G remain in G.

Proof  First, we prove that, under the given initial conditions, all the components of 
the model system (2.1) are positive. For proving this, on the contrary, we assume 
that there exists a first time t1 > 0 such that

In view of our assumption, let,

Hence, S(t1) = 0 and S(t) > 0 for all t ∈ [0, t1) . But,

from which we get that

This implies that S(t1) > 0 , contradicting the assumption that S(t1) = 0 . Therefore, 
our assumption is not true. Hence, S(t) > 0 for all t ⩾ 0 . Similarly, for all other cases 
we can prove that all the solution components are positive for t ⩾ 0.

Now,

which gives

Thus, we get

In particular, 0 < N(t) ⩽
Λ

d
 if, N(0) ⩽ Λ

d
 . Thus, N(t) is bounded and all the solutions 

starting in G remain in G. Therefore, the model system (2.1) can be considered as a 
well-posed model both epidemiologically and mathematically.

min{S(t1), LT (t1), IT (t1), RT
(t1), IH(t1), AH

(t1), LT
H
(t1), IT

H
(t1), LA

T
(t1), AT

H
(t1)} = 0 and

min{S(t), L
T
(t), I

T
(t), R

T
(t), I

H
(t), A

H
(t), L

T
H
(t), I

T
H
(t), L

A
T
(t), A

T
H
(t)} > 0, for all t ∈ [0, t1).

min{S(t1), LT (t1), IT (t1), RT (t1), IH(t1), AH(t1), LTH (t1), ITH (t1), LAT
(t1), ATH

(t1)} = S(t1).

dS(t)

dt
= Λ − �TS(t) − �HS(t) − dS(t) + rRT (t)

⩾ −(�H + �T + d)S(t),

S(t) ⩾ S0e
− ∫ t

0
(𝜆H+𝜆T+d) dz > 0.

N�(t) = Λ − dN(t) − dT (IT (t) + ITH (t)) − dA(AH(t) + LAT
(t)) − dAT

ATH
(t)

⩽ Λ − dN(t),

dN

dt
+ dN ⩽ Λ.

N(t) ⩽ N(0)e−dt +
Λ

d
(1 − e−dt).
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3 � HIV Sub‑model

We obtain the HIV sub-model from the equations in (2.1) when 
LT = IT = RT = LTH = ITH = LAT

= ATH
= 0 , which is given by

with the initial conditions S(0) = S0 ⩾ 0, IH(0) = IH0
⩾ 0, AH(0) = AH0

⩾ 0 and 
�H =

�H
N
(IH + �AH) as the force of infection.

Based on biological considerations, the region of attraction for this sub-model is:

3.1 � The Basic Reproduction Number

The disease-free equilibrium point for the HIV sub-model is given by

Mathematically, the basic reproduction number is the threshold quantity which 
counts the number of secondary infections generated by a single infected individual 
in a completely susceptible population (Jones 2007). For calculating the basic repro-
duction number we use the next-generation matrix approach (van den Driessche and 
Watmough 2002) and compute the matrices F and V corresponding to the new infec-
tion terms and the remaining transfer terms, respectively. The matrices F and V are 
given as

Therefore, using FV−1 we get the basic reproduction number for HIV as

(3.1)

dS

dt
= Λ − �HS − dS,

dIH

dt
= �HS − (�1 + d)IH + �AH ,

dAH

dt
= �1IH − (d + dA + �)AH ,

(3.2)GH =
{
(S, IH ,AH) ∈ ℝ3

+
∶ 0 < N(t) ⩽

Λ

d

}
.

(3.3)EH0
=(S0, IH0

,AH0
) =

(
Λ

d
, 0, 0

)
.

F =

[
�H ��H
0 0

]
and V =

[
�1 + d − �
−�1 � + d + dA

]
.

(3.4)RH =
�H(� + d + dA + ��1)

(�1 + d)(� + d + dA) − �1�
.
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3.2 � Stability Analysis of the Disease‑Free Equilibrium

In this section we discuss the local stability of the disease-free equilibrium point to 
see whether small perturbations away from the equilibrium point will grow or shrink 
in time.

Theorem 3.1  The disease-free equilibrium point EH0
 for the model system (3.1) is 

locally asymptotically stable if RH < 1 , and is a saddle point if RH > 1.

Proof  The Jacobian matrix for the model system (3.1), evaluated at EH0
 is given by

The characteristic equation of JH0
 is:

One eigenvalue of the matrix JH0
 is �1 = −d and the remaining factor is 

�2 + a1� + a0 = 0 where,

Here, a1 and a0 are positive if RH < 1 . Therefore, by Routh-Hurwitz criterion all 
the eigenvalues of JH0

 have a negative real part if RH < 1 . Hence, the disease-free 
equilibrium point is locally asymptotically stable if RH < 1 , and is a saddle point if 
RH > 1.

We now list two conditions which are sufficient to guarantee the global stability 
of the disease-free equilibrium point.

For that, following (Castillo-Chavez et  al. 1999), we rewrite the model system 
(3.1) as

where U denotes the number of uninfected individuals and I denotes the number 
of infected individuals. According to (Castillo-Chavez et al. 1999), the disease-free 
equilibrium point (U0, 0) is globally asymptotically stable if the following conditions 
are satisfied: 

	(H1)	 For dU
dt

= F(U, 0) , U0 is globally asymptotically stable,

JH0
=

⎡
⎢⎢⎣

−d − �H − ��H
0 �H − (�1 + d) ��H + �
0 �1 − (d + dA + �)

⎤
⎥⎥⎦
.

(d + �)
(
�2 + �

(
2d + dA + � + �1 − �H

)
− �H

(
d + dA + � + ��1

)
+
(
�1 + d

)(
d + dA + �

)
− ��1

)
= 0.

a1 = 2d + dA + � + �1 − �H ,

a0 = − �H
(
d + dA + � + ��1

)
+
(
�1 + d

)(
d + dA + �

)
− ��1.

(3.5)

dU

dt
= F(U, I),

dI

dt
= G(U, I),

G(U, 0) = 0,
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	(H2)	 G(U, I) = AI − Ĝ(U, I),   Ĝ(U, I) ⩾ 0 for (U, I) ∈ G�,

where A = DIG(U0, 0) is an M-matrix and G′ is the region where the HIV sub-
model model makes biological sense, that is, where all the components of the 
HIV sub-model are positive.

Theorem 3.2  The equilibrium point EH0
= (U0, 0) for the model system (3.1) is glob-

ally asymptotically stable, provided RH < 1 and the conditions (H1) and (H2) are 
satisfied.

Proof  For an equilibrium point to be globally stable in a given region, it is neces-
sary for the equilibrium point to be locally asymptotically stable in that region. In 
the previous theorem, it has been proved that EH0

 is locally asymptotically stable for 
RH < 1 . Thus, the global stability of EH0

 can be studied in the region where RH < 1 . 
For the region where RH < 1 , we consider U = S ∈ ℝ+ as the number of uninfected 
individuals and I = (IH ,AH)

T ∈ ℝ2
+
 as a vector whose coordinates represent the two 

classes IH and AH of infected individuals. Here, EH0
= (U0, 0) , with U0 =

Λ

d
.

For our model system given by (3.1), F(U, I) and G(U, I) in Eq. (3.5) are given as

Therefore,

Now, for condition (H2) we consider the equation

from which we get that

It can be clearly seen that Ĝ(U, I) ⩾ 0 (as S∕N ⩽ 1 ). Hence, the equilibrium point 
EH0

 is globally asymptotically stable for RH < 1.

3.3 � Existence and Bifurcation Analysis of the Endemic Equilibrium Point

In this section we compute the non-trivial equilibrium point of the HIV sub-
model and discuss its stability.

The non-trivial equilibrium point for the model system (3.1) is given by

F(U, I) = Λ − �HS − dS and G(U, I) =

[
�HS − (�1 + d)IH + �AH

�1IH − (d + dA + �)AH

]
.

F(U, 0) =
[
Λ − dS

]
. Clearly, U0 =

Λ

d
is globally asymptotically stable for F(U, 0).

G(U, I) = AI − Ĝ(U, I), where A = DIG(U0, 0)

Ĝ(U, I) =

[
𝛽H(IH + 𝛾AH)

(
1 −

S

N

)

0

]
.
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The value of N∗ can be determined by substituting the values of I∗
H

 and A∗
H

 from Eqs. 
(3.7) and (3.8), respectively in equation dN

∗

dt
= Λ − dN∗ − dAA

∗
H
= 0 . Thus, we get

Therefore, the non-trivial equilibrium point for the HIV sub-model is given by

where S∗, I∗
H

 and A∗
H

 are given by Eqs. (3.6), (3.7) and (3.8), respectively. It is clear, 
that the non-trivial equilibrium point E∗

H
 exists if RH > 1.

On introducing S = x1, IH = x2 and AH = x3 such that N = x1 + x2 + x3 , the 
model system (3.1) becomes

where

The linearization matrix of system (3.10) evaluated at the disease-free equilibrium 
point EH0

 is given by

Clearly, it has a zero eigenvalue which is simple when RH = 1 , and the other eigen-

values have negative real part, with �H = �∗ =
(�1 + d)(� + d + dA) − �1�

d + dA + � + ��1
 . There-

fore, the system has a non-hyperbolic critical point. The Center manifold theory 

(3.6)S∗ =
N∗

RH

,

(3.7)I∗
H
=

d + dA + �

�1 + d + dA + �

(
1 −

1

RH

)
N∗,

(3.8)A∗
H
=

�1
d + dA + �

I∗
H
.

N∗ =
Λ(�1 + d + dA + �)RH

d(�1 + d + dA + �)RH + dA�1(RH − 1)
.

(3.9)E∗
H
= (S∗, I∗

H
,A∗

H
),

(3.10)

dx1

dt
= f1 = Λ − �Hx1 − dx1,

dx2

dt
= f2 = �Hx1 − (�1 + d)x2 + �x3,

dx3

dt
= f3 = �1x2 − (d + dA + �)x3,

�H =
�H(x2 + �x3)

x1 + x2 + x3
.

JH0
=

⎡⎢⎢⎣

−d − �H − ��H
0 �H − (d + �1) ��H + �
0 �1 − (d + dA + �)

⎤⎥⎥⎦
.
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(Carr 1981) can be used to determine the local stability of the non-hyperbolic criti-
cal point.

We use Theorem  4.1 of Castillo-Chavez and Song (2004) to prove the local 
asymptotic stability of the non-hyperbolic critical point for the HIV sub-model. 
For convenience, the theorem in Castillo-Chavez and Song (2004) is stated here:

Theorem 3.3  Consider the following general system of ordinary differential equa-
tions with a parameter �:

where 0 is an equilibrium point of the system (that is, f (0,�) = 0 for all � ) and 
assume 

(1)	 A = Dxf (0, 0) =
( dfi

dxj
(0, 0)

)
 is the linearization matrix of system (3.11) at the 

equilibrium 0 and � evaluated at 0. Zero is a simple eigenvalue of A and all other 
eigenvalues of A have a negative real part.

(2)	 Matrix A has a right eigenvector w and a left eigenvector v (each corresponding 
to the zero eigenvalue). Let fk be the kth component of f and 

 The local dynamics of the system around 0 is totally determined by the signs 
of a and b. 

(a)	 a > 0, b > 0 . When 𝜙 < 0 with |𝜙| << 1, 0 is locally asymptotically stable and 
there exists a positive unstable equilibrium; when 0 < 𝜙 << 1 , 0 is unstable and 
there exists a negative, locally asymptotically stable equilibrium point.

(b)	 a < 0, b < 0 . When 𝜙 < 0 with |𝜙| << 1, 0 is unstable; when 0 < 𝜙 << 1 , 0 is 
locally asymptotically stable and there exists a positive, unstable equilibrium 
point.

(c)	 a > 0, b < 0 . When 𝜙 < 0 with |𝜙| << 1, 0 is unstable and there exists a negative, 
locally asymptotically stable equilibrium; when 0 < 𝜙 << 1 , 0 is stable and a 
positive unstable equilibrium appears.

(d)	 a < 0, b > 0 . When � changes sign from negative to positive, 0 changes its stabil-
ity from stable to unstable. Correspondingly, a negative unstable equilibrium 
becomes positive and locally asymptotically stable.

Following Theorem  3.3, we now compute left and right eigenvectors of the 
Jacobian matrix JH0

 . The right eigenvector of the matrix JH0
 associated with the 

disease-free equilibrium point is given as w = [w1,w2,w3] , where

(3.11)
dx

dt
= f (x,�),

f ∶ ℝ
n ×ℝ → ℝ and C2(ℝn ×ℝ),

(3.12)a =

n∑
k,j,i=1

vkwiwj

�2fk
�xi�xj

(0, 0), b =

n∑
k,i=1

vkwi

�2fk
�xi��

(0, 0).
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The left eigenvector satisfying vJH0
= 0 is given by v = [v1, v2, v3] , where

Computation of a and b. To compute a and b, we have to compute the partial deriv-
atives of f1, f2 and f3 with respect to x1, x2, x3 and �∗ . As v1 = 0 , it is not required to 
compute the partial derivative of f1 with respect to any variable. The remaining non-
zero second order partial derivatives associated with the system (3.10) evaluated at 
the disease-free equilibrium are given as

Now, using the expressions given by Eq. (3.13), we get

We can see that a < 0 and b > 0 . Therefore, by Theorem (3.3) the unique endemic 
equilibrium point for the model system (3.10) is locally asymptotically stable when 
RH > 1 and 𝛽∗ < 𝛽H , with �H close to �∗ . The system undergoes a supercritical tran-
scritical bifurcation at �H = �∗ . This can be summarized in the following theorem:

Theorem 3.4  The endemic equilibrium point E∗
H

 is locally asymptotically stable for 
RH > 1 and the system exhibits a supercritical transcritical bifurcation at RH = 1, 
with �H = �∗ as bifurcation parameter.

w1 = −
�∗(d + dA + � + ��1)

d(d + dA + �)
, w2 = 1 and w3 =

�1
d + dA + �

.

v1 = 0, v2 = 1 and v3 =
�∗ − (�1 + d)

�1
.

(3.13)

�2f2

�x2
2

= −
2�∗d

Λ
,

�2f2
�x2�x3

= −
�∗d(1 + �)

Λ
,

�2f2

�x2
3

= −
2�∗�d

Λ
,

�2f2
�x2��

∗
= 1 and

�2f2
�x3��

∗
= � .

a =

3∑
k,j,i=1

vkwiwj

𝜕2fk
𝜕xi𝜕xj

(0, 0)

= v2w
2
2

𝜕2f2

𝜕x2
2

(0, 0) + v2w2w3

𝜕2f2
𝜕x2𝜕x3

(0, 0) + v2w
2
3

𝜕2f2

𝜕x2
3

(0, 0)

= − 2
𝛽∗d

Λ

(
1 + (1 + 𝛾)w3 + 𝛾w2

3

)
< 0.

b =

3∑
k,i=1

vkwi

𝜕2fk
𝜕xi𝜕𝛽

∗
(0, 0)

= v2w2

𝜕2f2
𝜕x2𝜕𝛽

∗
(0, 0) + v2w3

𝜕2f2
𝜕x3𝜕𝛽

∗
(0, 0)

= 1 + 𝛾w3 > 0.
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Theorem 3.5  The unique endemic equilibrium point E∗
H

 is globally asymptotically 
stable for RH > 1.

Proof  The unique endemic equilibrium point E∗
H

 exists and is locally asymptotically 
stable if RH > 1 . To prove the global stability in the region RH > 1 , we have to 
show that all the solution trajectories approach E∗

H
 as t → ∞ . To prove this, we first 

show that there does not exist any periodic orbit for the HIV sub-model. Consider a 
real valued function H in the interior of the positive region of ℝ3 defined as

Now, let us consider

Thus, we have

It can be seen that div(Hh1,Hh2,Hh3) is not equal to zero and will not change its 
sign in the positive region of ℝ3 . Therefore, by Dulac’s criterion (Strogatz 2014), 
the existence of any periodic orbit for the HIV sub-model can be ruled out. Now, 
if RH > 1 , the disease-free equilibrium point is a saddle point with the S-axis as 
stable manifold. Any solution starting at IH(0) = 0 and AH(0) = 0 will remain on the 
S-axis and will converge towards the disease-free equilibrium point, as the S-axis is 
a stable manifold. On the other hand, if IH(0) > 0 and AH(0) > 0 , the solution will 
be repelled by the disease-free equilibrium point and gets closer to the HIV endemic 
equilibrium point due to the absence of any periodic orbit. Once the solution gets 
close to the endemic equilibrium point, this equilibrium point will attract the solu-
tion since it is locally asymptotically stable for RH > 1 . Thus, it attracts all the solu-
tion trajectories starting from any initial point satisfying IH(0) > 0 and AH(0) > 0 . 
Therefore, the unique HIV endemic equilibrium point E∗

H
 is globally asymptotically 

stable for RH > 1.

H(S, IH ,AH) =
1

SIHAH

.

h1(S, IH ,AH) = Λ −
�H

S + IH + AH

(IH + �AH)S − dS,

h2(S, IH ,AH) =
�H

S + IH + AH

(IH + �AH)S − (�1 + d)IH + �AH ,

h3(S, IH ,AH) = �1IH − (d + dA + �)AH .

div(Hh1,Hh2,Hh3) =
𝜕

𝜕S

(
Hh1

)
+

𝜕

𝜕IH

(
Hh2

)
+

𝜕

𝜕AH

(
Hh3

)

= −
Λ

S2IHAH

−
𝜏

SI2
H

−
𝜌1

SA2
H

−
𝛽H𝛾

NI2
H

< 0.
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4 � TB Sub‑model

The TB sub-model can be obtained from the full model system given by (2.1) when 
IH = AH = LTH = ITH = LAT

= ATH
= 0 , which is given by

with the initial conditions

where

The TB sub-model is studied in the following positively invariant region

4.1 � Stability Analysis of the Disease‑Free Equilibrium Point

The disease-free equilibrium point of the TB sub-model is given by

The basic reproduction number obtained using the next-generation matrix approach 
is given as

Now, we analyze the local and global asymptotic stability of the disease-free equi-
librium point given by Eq. (4.3).

Theorem  4.1  The disease-free equilibrium point ET0
 for the model system (4.1) is 

locally asymptotically stable if RT < 1 , and is a saddle point if RT > 1.

(4.1)

dS

dt
= Λ − �TS − dS + rRT ,

dLT

dt
= �TS − h(LT ) − (k1 + d)LT ,

dIT

dt
= k1LT − h(IT ) − (d + dT )IT ,

dRT

dt
= h(LT ) + h(IT ) − dRT − rRT ,

(4.2)
S(0) = S0 ⩾ 0, LT (0) = LT0 ⩾ 0, IT (0) = IT0 ⩾ 0 and RT (0) = RT0

⩾ 0,

�T =
�TIT
N

is the force of infection.

GT =
{
(S, LT , IT ,RT ) ∈ ℝ4

+
∶ 0 < N(t) ⩽

Λ

d

}
.

(4.3)ET0
=

(
Λ

d
, 0, 0, 0

)
.

(4.4)RT =
�Tk1

(k1 + d + �)(d + dT + �)
.
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Proof  The Jacobian matrix evaluated at ET0
 is given as

The characteristic equation of the matrix JT0 is:

The first two factors of the characteristic equation give �1 = −d and �2 = −(d + r) 
as eigenvalues and the remaining factor is �2 + b1� + b0 = 0, where

Here, b0 is positive if and only if RT < 1 . Therefore, by the Routh-Hurwitz criterion 
all the eigenvalues of JT0 have a negative real part if RT < 1 . Hence, the disease-free 
equilibrium point is locally asymptotically stable if RT < 1 , and is a saddle point if 
RT > 1.

Theorem 4.2  The equilibrium point ET0
= (

Λ

d
, 0, 0, 0) for the model system (4.1) is 

globally asymptotically stable, provided RT < 1 and the conditions (H1) and (H2) 
given in Sect. 3.2 are satisfied.

Proof  We know that the disease-free equilibrium point ET0
 for the TB sub-model 

exists and is locally asymptotically stable for RT < 1 . Thus, the global stability of 
ET0

 can be proved in the region where RT < 1 . For proving this, let 
U = (S,RT )

T ∈ ℝ2
+
 be the vector whose coordinates represent the uninfected class of 

the population and let I = (LT , IT )
T ∈ ℝ2

+
 be the vector whose coordinates represent 

the two classes LT and IT of TB-infected individuals. Here, ET0
= (U0, 0) , with 

U0 =
(

Λ

d
, 0
)
. For our model system in Eq. (4.1), F(U, I) and G(U, I) of Eq. (3.5) are 

given by

Now, for condition (H2) we consider the expression

Thus, we get

JT0 =

⎡
⎢⎢⎢⎣

−d 0 − �T r

0 − (k1 + d + �) �T 0

0 k1 − (d + dT + �) 0

0 � � − (d + r)

⎤
⎥⎥⎥⎦
.

(� + d)(� + d + r)(�2 + �
(
k1 + 2d + 2� + dT

)
+
(
k1 + d + �

)(
d + dT + �

)
− �Tk1) = 0

b1 = k1 + 2d + 2𝛼 + dT > 0,

b0 =
(
k1 + d + 𝛼

)(
d + dT + 𝛼

)
− 𝛽Tk1.

F(U, I) =

[
Λ − �TS − dS + rRT

h(LT ) + h(IT ) − (d + r)RT

]
and G(U, I) =

[
�TS − h(LT ) − (k1 + d)LT
k1LT − h(IT ) − (d + dT )IT

]
.

G(U, I) = AI − Ĝ(U, I), where A = DIG(U0, 0).
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It can be clearly seen that Ĝ(U, I) ⩾ 0 , if � = 0 . This implies that the disease-free 
equilibrium point is globally asymptotically stable for RT < 1 in the absence of 
resource limitation. Epidemiologically, if there is no limitation on resources for the 
treatment of TB then the disease will die out in the long run.

Remark 4.3  If � ≠ 0 , the disease-free equilibrium point may not be globally asymp-
totically stable. Hence, a transcritical bifurcation may occur near RT = 1.

4.2 � Existence and Stability of the Endemic Equilibrium Point

In this section we shall compute the endemic equilibrium point for the TB 
sub-model.

The endemic equilibrium point for the TB sub-model is given as 
ÊT = (Ŝ, L̂T , ÎT , R̂T ) with

where ÎT can be determined by substituting the values of Ŝ and R̂T in equation

and �T can be computed using the expression

The endemic equilibrium point exists if Ŝ > 0 , L̂T > 0 , ÎT > 0 and R̂T > 0 . Further 
the endemic equilibrium point ÊT is unique if ÎT and the corresponding value of �T 
can be uniquely obtained from Eqs. (4.8) and (4.9), respectively.

Let us assume S = x1, LT = x2, IT = x3 and RT = x4 , such that 
N = x1 + x2 + x3 + x4 . With this, the TB sub-model can be expressed as

Ĝ(U, I) =

⎡
⎢⎢⎢⎢⎣

𝛽TIT (1 −
S

N
) −

𝛼𝜔L2
T

1 + 𝜔LT

−
𝛼𝜔I2

T

1 + 𝜔IT

⎤
⎥⎥⎥⎥⎦
.

(4.5)Ŝ =
(k1 + d + 𝛼)L̂T + 𝜔(k1 + d)L̂2

T

𝜆T (1 + 𝜔L̂T )
,

(4.6)L̂T =
(𝛼 + d + dT )ÎT + 𝜔(d + dT )Î

2
T

k1(1 + 𝜔ÎT )
,

(4.7)R̂T =
1

d + r

(
𝛼ÎT

1 + 𝜔ÎT
+

𝛼(𝛼 + d + dT )ÎT + 𝛼𝜔(d + dT )Î
2
T

k1 + 𝜔(𝛼 + k1 + d + dT )ÎT + 𝜔2(d + dT )Î
2
T

)
,

(4.8)Λ = (𝜆T + d)Ŝ − rR̂T

(4.9)𝜆T (Ŝ + L̂T + ÎT + R̂T ) = 𝛽T ÎT .
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with �T =
�Tx3
N

.
Now, RT = 1 gives �T = �∗ =

(k1 + d + �)(d + dT + �)

k1
 . The Jacobian matrix 

evaluated at the disease-free equilibrium point ET0
 is given as

Clearly, this matrix has zero as a simple eigenvalue when RT = 1 . The remaining 
eigenvalues of the matrix JT0 have a negative real part. Therefore, the system (4.10) 
has a non-hyperbolic critical point. We use Theorem (3.3), which along with deter-
mining the local stability of the non-hyperbolic critical point also gives condition for 
the occurrence of a transcritical bifurcation. We calculate left and right eigenvectors 
for the Jacobian matrix JT0 . The left eigenvector is computed as v = [v1, v2, v3, v4] , 
where

The right eigenvector is w = [w1,w2,w3,w4] , where

By evaluating all the partial derivatives of fi with respect to xi , for i = 1, 2, 3, 4 , and 
�∗ , at the disease-free equilibrium point, we get

The remaining second derivatives appearing in the formula for a and b are all zero. 
Hence, we get

(4.10)

dx1

dt
= f1 = Λ − �Tx1 − dx1 + rx4,

dx2

dt
= f2 = �Tx1 − h(x2) − (k1 + d)x2,

dx3

dt
= f3 = k1x2 − h(x3) − (d + dT )x3,

dx4

dt
= f4 = h(x2) + h(x3) − (d + r)x4,

JT0 =

⎡
⎢⎢⎢⎣

−d 0 − �T r

0 − (k1 + d + �) �T 0

0 k1 − (d + dT + �) 0

0 � � − (d + r)

⎤
⎥⎥⎥⎦
.

v1 = 0, v2 =
k1

k1 + d + �
, v3 = 1, v4 = 0.

w1 =
r�(k1 + d + �T + �) − �T (d + r)(k1 + d + �)

d(d + r)(k1 + d + �)
, w2 =

�T
k1 + d + �

,

w3 = 1 and w4 =
�(k1 + d + �T + �)

(d + r)(k1 + d + �)
.

(4.11)

�2f2

�x2
2

= 2��,
�2f2

�x2�x3
= −

�∗d

Λ
,

�2f2

�x2
3

= −
2�∗d

Λ
,

�2f2
�x3�x4

= −
�∗d

Λ

�2f3

�x2
3

= 2�� and
�2f2

�x3��
∗
= 1.
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We observe that a < 0 if M < 0 . Also we can clearly see that b > 0 . Therefore, by 
Theorem (3.3) the endemic equilibrium point for the model system (4.1) is locally 
asymptotically stable when RT > 1 , 𝛽∗ < 𝛽T , with �T close to �∗ and M < 0 . The 
system undergoes a supercritical transcritical bifurcation at �T = �∗ . We summarize 
this in the form of the following theorem:

Theorem 4.4  The endemic equilibrium point ÊT is locally asymptotically stable for 
RT > 1 if M < 0 . Further the system exhibits a supercritical transcritical bifurca-
tion at RT = 1, with �T = �∗ as bifurcation parameter for M < 0 , and undergoes a 
subcritical transcritical bifurcation for M > 0.

Remark 4.5  If � = 0 , that is, there are no treatment options available for TB, then for 
RT < 1 the disease-free equilibrium point is globally asymptotically stable, and for 
RT > 1 the system exhibits a supercritical transcritical bifurcation. Hence, for � = 0 
the endemic equilibrium point for the TB sub-model is locally asymptotically stable 
(if it exists) when RT > 1.

5 � Analysis of the Full Model

In this section we analyze the full HIV-TB co-infection model given by Eq. (2.1). 
The full model will have four endemic equilibrium points, namely, a disease-free 
equilibrium point E0 , a HIV endemic equilibrium point EH , a TB endemic equilib-
rium point ET and an interior endemic equilibrium point ETH

.

5.1 � Stability Analysis of the Disease‑Free Equilibrium Point

The disease-free equilibrium point for the full model is given by

The associated basic reproduction number R0 calculated using the next-generation 
matrix approach is given as

a =

3∑
k,j,i=1

vkwiwj

𝜕2fk
𝜕xi𝜕xj

(0, 0)

=
1

(k1 + d + 𝛼)2
M, where

M =
2𝛼𝜔

k1 + d + 𝛼

((
k1 + d + 𝛼

)3
+ k1𝛽

∗2
)
−

2𝛽∗k1d

Λ(d + r)
(𝛽∗ + k1 + d + 𝛼)(d + r + 𝛼).

b =

3∑
k,i=1

vkwi

𝜕2fk
𝜕xi𝜕𝛽

∗
(0, 0)

= v2 > 0.

(5.1)E0 =
(
Λ

d
, 0, 0, 0, 0, 0, 0, 0, 0, 0

)
.
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Here, RH and RT are the reproduction numbers corresponding to HIV and TB given 
by Eqs. (3.4) and (4.4), respectively.

Theorem  5.1  The disease-free equilibrium point for the full HIV-TB model (2.1) 
given by E0 is locally asymptotically stable if R0 < 1 , and unstable otherwise.

Proof  The Jacobian matrix for the system (2.1) evaluated at the disease-free equilib-
rium point given by Eq. (5.1) is

where g1 = −(k1 + � + d) , g2 = −(� + d + dT ) , g3 = �H − (�1 + d) , 
g4 = −(d + dA + �) , g5 = −(� + �2 + k2 + d) , g6 = −(� + �3 + d + dT ) , 
g7 = −(� + k3 + d + dA + �) and g8 = −(� + � + d + dAT

).

The characteristic equation for the matrix J0 is given by

In the first four factors of the characteristic equation, all coefficients of � and the 
constant terms are positive. Therefore, by the Routh-Hurwitz criterion all the roots 
corresponding to the first four factors have a negative real part. Whereas in the fifth 
factor the coefficient of � , which is 2d + � + dA + �1 − �H , and the constant term 
(d + �1)(d + dA + �) − �H(d + dA + � + ��1) − ��1 are positive if RH < 1 . Thus, 
both the roots of the fifth factor have a negative real part if RH < 1.

In the sixth factor, the coefficient of � , which is 2d + 2� + dT + k1 is always posi-
tive. The constant term in the sixth factor is (d + � + dT )(d + � + k1) − k1�T . Now,

that is, if RT < 1 . Thus, both the roots of the sixth factor have negative real part if 
RT < 1.

Therefore, if RH < 1 and RT < 1 , that is, max{RH ,RT} = R0 < 1 then all 
the roots of the characteristic equation corresponding to the matrix J0 have a 

(5.2)R0 = max{RH ,RT}.

J0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−d 0 − �T r − �H − ��H − �H − �T − �H − ��H − �T − ��H
0 g1 �T 0 0 0 0 �T 0 �T
0 k1 g2 0 0 0 0 0 0 0

0 � � − (r + d) 0 0 0 0 0 0

0 0 0 0 g3 ��H + � �H + � �H + � ��H ��H
0 0 0 0 �1 g4 0 0 � �
0 0 0 0 0 0 g5 0 � 0

0 0 0 0 0 0 k2 g6 0 �
0 0 0 0 0 0 �2 0 g7 0

0 0 0 0 0 0 0 �3 k3 g8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(� + d)(� + d + r)(�2 + �(2d + 2� + � + �3 + dAT
) + dAT

(d + � + �3) + (d + �)(d + � + � + �3))

(�2 + �(2d + 2� + � + dA + k2 + k3 + �2) + (d + � + k2)(d + dA + � + � + k3) + �2(d + dA + � + k3))

(�2 + �(2d + � + dA + �1 − �H) + (d + �1)(d + dA + �) − �H(d + dA + � + ��1) − ��1)

(�2 + �(2d + 2� + dT + k1) + (d + � + dT )(d + � + k1) − k1�T ) = 0.

(d + 𝛼 + dT )(d + 𝛼 + k1) − k1𝛽T > 0 if and only if
k1𝛽T

(d + 𝛼 + dT )(d + 𝛼 + k1)
< 1,
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negative real part. Hence, E0 is locally asymptotically stable if R0 < 1 , and unstable 
otherwise.

Theorem  5.2  For the model system (2.1), the disease-free equilibrium point E0 is 
globally asymptotically stable provided R0 < 1 and the conditions (H1) and (H2) 
given in Sect. 3.2 are satisfied.

Proof  In the previous theorem it has been proved that E0 is locally asymptotically 
stable for R0 < 1 . Thus, we can check the global stability of E0 in the region where 
R0 < 1 . Let us consider U = (S,RT )

T ∈ ℝ2
+
 as the vector whose coordinates repre-

sent the uninfected class of population, and I = (LT , IT , IH ,AH , LTH , ITH , LAT
,ATH

)T 
∈ ℝ8

+
 as an 8−dimensional vector in which each coordinate represents a class of 

infected individuals. Here E0 = (U0, 0) , with U0 =
Λ

d
.

For our model system in equation (2.1)

where C = IH + ITH + LTH + �(AH + LAT
+ ATH

) . Clearly, it can be seen that 
Ĝ(U, I) ≱ 0 , which means that the condition (H2) is not satisfied. Thus, the fixed 
point E0 = (U0, 0) may not be globally asymptotically stable.

5.2 � Endemic Equilibrium Points

We have computed three more equilibrium points corresponding to HIV, TB and 
HIV-TB co-infection which are given as follows: 

(1)	 The HIV endemic equilibrium point is given by 

Ĝ(U, I) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛽T (IT + ITH + ATH
)
�
1 −

S

N

�
+ 𝜆HLT −

𝛼𝜔L2
T

1+𝜔LT

𝜆HIT −
𝛼𝜔I2

T

1+𝜔IT

𝜂1𝜆TIH + 𝛽HC
�
1 −

S

N

�
− 𝜆HRT +

𝛼𝜔L2
TH

1+𝜔LTH
+

𝛼𝜔I2
TH

1+𝜔ITH

𝜂2𝜆TAH +
𝛼𝜔L2

AT

1+𝜔LAT
+

𝛼𝜔A2
TH

1+𝜔ATH

−𝜂1𝜆TIH −
𝛼𝜔L2

TH

1+𝜔LTH
− 𝜆HLT

−𝜆HIT −
𝛼𝜔I2

TH

1+𝜔ITH

−
𝛼𝜔L2

AT

1+𝜔LAT
− 𝜂2𝜆TAH

−
𝛼𝜔A2

TH

1+𝜔ATH

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

EH = (S∗, 0, 0, 0, I∗
H
,A∗

H
, 0, 0, 0, 0),
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 where S∗, I∗
H
,A∗

H
 are given by Eqs. (3.6), (3.7) and (3.8), respectively. The HIV 

endemic equilibrium point EH exists if RH > 1.
(2)	 The TB endemic equilibrium point is given as 

 where Ŝ, L̂T , ÎT and R̂T take the values as given by Eqs. (4.5), (4.6), (4.8) and 
(4.7), respectively. The TB endemic equilibrium point ET exists when Ŝ > 0 , 
L̂T > 0 , ÎT > 0 and R̂T > 0.

ET = (Ŝ, L̂T , ÎT , R̂T , 0, 0, 0, 0, 0, 0),

Table 2   Parameter values Parameter Value Source

Λ 250 year−1 Kaur et al. (2014)
�
T 1.05 year−1 Variable
�
H 0.055 year−1 Bhunu et al. (2009)

d 0.02 year−1 Sharomi et al. (2008)
d
T 0.1 year−1 Bhunu et al. (2009)
d
A 0.333 year−1 Bhunu et al. (2009)
d
A
T

0.3996 year−1 Bhunu et al. (2009)
r 0.2 year−1 Variable
� 0.7 year−1 Estimate
� 0.07 Variable
� 0.33 year−1 Bhunu et al. (2009)
�
1 0.1 year−1 Bhunu et al. (2009)

�
2 0.102 year−1 Bhunu et al. (2009)

�
3 0.25 year−1 Bhunu et al. (2009)
k
1 0.213 year−1 Estimate
k
2 0.00017 year−1 Bhunu et al. (2009)
k
3 0.0002 year−1 Bhunu et al. (2009)
� 1.02 Estimate
�
1

1.02 Assumed
�
2

1.04 Assumed

(a) (b)

Fig. 2   Global stability of the equilibrium points for the HIV sub-model
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(3)	 The interior endemic equilibrium point for the system (2.1) exists when both 
diseases are present in the population and is given by 

 which exists if all the components of ETH
 are positive.

6 � Numerical Simulations

In this section numerical simulations are performed, by taking into account 
the initial conditions S(0) = 9080, LT (0) = 2080, IT (0) = 354, RT (0) = 0, 
IH(0) = 1500, AH(0) = 420, LTH (0) = 1095, ITH (0) = 137, LAT

(0) = 325, and 
ATH

(0) = 29 , together with the estimated value of parameters. Due to limitation on 
resources, approximately 70% of TB infected population will initially get the treat-
ment facility, which enforced to estimate the value of � as 0.7. In this paper, the 
value of k1 is taken as 0.213 due to the fact that a latent TB infected individual takes 
on an average about 4.69 years to become actively infected with TB. Since, HIV 
infectives have a weak immune system, therefore �1 is chosen as 1.02 which implies 
that they are more prone to catch TB than the susceptibles. Also, AIDS infectives 
have a weaker immune system than HIV infectives, therefore, �2 is taken as 1.04 
which indicates that they can be affected by TB faster than the susceptibles. The 

ETH
= (S̃, L̃T , ĨT , R̃T , ĨH , ÃH , L̃TH , ĨTH , L̃AT

, ÃTH
),

(a) (b)

(d)(c)

Fig. 3   Local stability of E2

T
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remaining initial conditions have been taken as per the reviewed literature, men-
tioned in Table (2).

We begin with illustrating the stability of the disease-free and the endemic equi-
librium point for the HIV sub-model numerically. By using the prescribed param-
eter values, the disease-free equilibrium point is obtained as EH0

= (12500, 0, 0) 
corresponding to the reproduction number RH = 0.881842 < 1 . In Fig. 2a it can be 
seen that in the long run every solution trajectory with different initial conditions 
approach towards EH0

 . This justifies the global stability of the disease-free equi-
librium point EH0

 for RH < 1 . If we choose �H = 0.075 , we obtain RH = 1.20251 , 
which is greater than unity. Thus, the HIV-endemic equilibrium point computed as 
E∗
H
= (7653.96, 1352.06, 197.959) becomes locally asymptotically stable. Figure 2b 

illustrates the stability of E∗
H

 , in which solution trajectories started from different 
initial values are approaching towards the components of E∗

H
.

As the full model is a ten-dimensional system of non-linear differential equa-
tions, only limited analytical results are obtained for the full model in compari-
son to the HIV and the TB sub-models. Hence, we try to investigate some 
results for the full model system numerically with the parameter values given in 
Table 2 and the initial conditions as described above. With those parameter val-
ues it is found that R0 < 1 ( RH = 0.881842 and RT = 0.29233 ). In this case 
along with the locally stable disease-free equilibrium point 
E0 = (12500, 0, 0, 0, 0, 0, 0, 0, 0, 0) , two TB endemic equilibrium points exist, 
namely, E1

T
= (12338.1, 29.9981, 13.21, 52.6293, 0, 0, 0, 0, 0, 0) which is unstable 

and E2
T
= (467.153, 1067.72, 1812.53 , 89.9535, 0, 0, 0, 0, 0, 0) which is stable. 

(a) (b)

(c) (d)

Fig. 4   Local stability of E
T
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In Fig.  3a, b it can be seen that the susceptibles are approaching towards 
467.153, individuals infected with latent TB are approaching towards 1067.72, 
TB infectives approach towards 1812.53, individuals recovered from TB 
approach towards 89.9535 and the remaining solution trajectories correspond-
ing to IH ,AH , LTH , ITH , LAT

 and ATH
 are approaching toward zero. This justifies 

the local stability of E2
T
 . Using XPPAUT (Ermentrout 2002), phase portraits are 

formed (see Fig. 3c, d), from which it can be seen that all the nearby solution 
trajectories are approaching toward the components of E2

T
 , which also justifies 

the local stability of E2
T
 . The existence of TB endemic equilibrium points E1

T
 

and E2
T
 for R0 < 1 illustrate the fact that under resource limitation conditions 

reducing the reproduction number below one is not enough to control the dis-
ease. Next, the case when RH = 0.881842 < 1 and RT = 1.03012 > 1 (for 
�H = 0.055 and �T = 3.7 , respectively) is considered. In this case two equilib-
rium points are found, one is the disease-free equilibrium point E0 which is 
unstable and the other is the locally asymptotically stable TB endemic equilib-
rium point ET = (122.162, 1097.34, 1865.09, 89.9794, 0, 0, 0, 0, 0, 0), which can be 
seen in Fig.  4. Our numerical calculations show interesting aspects under the 
setting when RH = 1.20251 and RT = 0.29233 (for �H = 0.075 and �T = 1.05 , 
respectively). In this case five equilibrium points are computed, namely, a dis-
ease-free equilibrium point E0 which clearly is unstable, a HIV endemic equi-
librium point EH(7653.96, 0, 0, 0, 1352.06, 197.959, 0, 0, 0, 0) , two TB endemic 
equilibrium points E1

T
 and E2

T
 and an interior endemic equilibrium point 

(a) (b)

(c)

Fig. 5   Local stability of Ew

0
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E1
TH

= (7530.02, 35.9683, 16.9064, 54.0949, 1324.85, 194.153,  3.66679,  1.29311, 
0.486523 ,  0.323809). This shows that under resource limitation conditions 
both diseases HIV and TB can co-exist, even if the reproduction number corre-
sponding to TB is less than one.

The effect of the reproduction number on infected individuals by considering a 
linear treatment rate for HIV-TB co-infection can be seen in Kumar and Jain’s paper 
(Kumar and Jain 2018). This paper (Kumar and Jain 2018) is different from our 
paper from biological point of view as they have taken a linear treatment rate for 

(a) (b)

Fig. 6   Local stability of Ew

T

(a) (b)

(c) (d)

Fig. 7   Local stability of Ew

H
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infected individuals, which signifies an infinite capacity for the treatment of a dis-
ease. To make the model more realistic, a Holling type-II function for the treatment 
for TB has been considered in our paper. In the Kumar and Jain’s paper (Kumar and 
Jain 2018) single disease treatment was studied, that is, treatment for TB-only and 
HIV-only patients. They showed that no epidemic can last forever when there is no 
limitation on resources. But according to our model, HIV and TB can co-exist in the 
population when the amount of resources for the treatment of TB is limited.

Our model has also been investigated for the case when there is no resource limi-
tation, that is, � = 0 . In this case, for R0 < 1 ( RH = 0.881842 and RT = 0.29233 ) 
only the disease-free equilibrium point Ew

0
= (12500, 0, 0, 0, 0, 0, 0, 0, 0, 0) exists, 

which is locally asymptotically stable, as shown in Fig.  5. If RH = 0.881842 < 1 
and RT = 1.03012 > 1 , two equilibrium points exist, an unstable disease-free equi-
librium point Ew

0
 and a stable TB endemic equilibrium point 

Ew
T
= (12047.7, 68.8717, 17.8898, 276.059, 0, 0, 0, 0, 0, 0). Local stability of Ew

T
 can 

be seen in Fig. 6. On the other hand, if RH = 1.20251 and RT = 0.29233 , an unsta-
ble disease-free equilibrium point Ew

0
 and a stable HIV endemic equilibrium point 

Ew
H
= (7653.96, 0, 0, 0, 1352.06, 197.9590, 0, 0, 0, 0) (see Fig.  7) exist. If 

RH = 1.20251 > 1 and RT = 1.03012 > 1 (for �H = 0.075 and �T = 3.7 , respec-
tively), four equilibrium points are obtained, namely, Ew

0
 , Ew

T
 , Ew

H
 and an endemic 

equilibrium point Ew
TH

= (7318.28, 76.329, 19.5362, 288.999, 1283.6, 188.212, 
13.2656, 3.89858, 1.96221,   1.0649). This shows that for � = 0 both diseases can 
co-exist in the population if both RH and RT are greater than one.

Furthermore, the effect of treatment rate and resource limitation on total infected 
( LT (t) + IT (t) + IH(t) + AH(t) + LTH (t) + ITH (t) + LAT

(t) + ATH
(t) ) individuals and 

uninfected individuals ( S(t) + R(t) ) can be seen when both the disease are endemic, 
that is, when RH = 1.20251 > 1 and RT = 1.03012 > 1 . From Fig. 8a it can be seen 
that the total infectives initially increase to a higher level and then settle down when 
both the treatment rate and the resource limitation term are zero in comparison to the 
case when treatment for TB is available with very small limitation on resources. On 
the other hand, if treatment for TB is available without the limitation on resources, 
infected individuals start decreasing. Figure 8b shows that the uninfected class of 
population increases to a higher level when treatment is provided without any limi-
tation on resources. Whereas they start decreasing either if there is no treatment or if 

(a) (b)

Fig. 8   Effect of the treatment and resource limitation on infected and uninfected classes
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the treatment is available with limitation on resources for infected individuals. This 
happened because more and more individuals became infected and entered into the 
infected class in this case.

(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 9   Effect of � on the population
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In Fig. 9, the effect of a non-linear treatment rate by changing the amount of 
limitation on resources ( � ) can be observed by taking the remaining parameter 
values from Table (2) and initial conditions as described in the beginning of the 
section to obtain RH = 1.20251 and RT = 0.03012 . We have plotted the graphs 

(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 10   Effect of � on the population
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of the population against time for four different values of the resource limitation 
term: � = 0 , � = 0.01 , � = 0.07 and � = 5 . From Fig. 9a, b it can be noticed that 
the number of infected individuals reduces to zero with respect to time if there is 
no limitation on resources for treatment. However, for 𝜔 > 0 , the population in 
each class LT and IT initially rises and then each starts diminishing and reduces 
to a fixed value for each 𝜔 > 0 . It can also be seen that increase in population is 
proportional to the increase in � , that is, higher limitation on resources causes 
more infectives. From Fig. 9c it can be observed that if � = 0 , that is, if there is 
no limitation on resources for the treatment of TB, then the population recovered 
from TB rises initially and then approaches zero as individuals become suscep-
tible again. As the limitation on resources becomes large, improvement in the 
recovered population reduces significantly. The population in class RT approaches 
zero for � = 5 . The dynamics of the population in each of the class LTH and LAT

 
is slightly different, which can be seen in Fig. 9d, f. If the limitation on resources 
for treatment is zero, then the population in the classes LTH and LAT

 diminishes 
to zero with respect to time. If � rises, then initially the infected population 
increases proportional to the limitation on resources and then starts diminish-
ing inversely proportional to the limitation on resources with respect to time, 
because of transfer of individuals infected with latent TB to the class of individu-
als actively infected with TB. Now from Fig. 9e, g it can be seen that if there is 
no resource limitation, that is, � = 0 , then the population numbers in the classes 
ITH and ATH

 approach zero. On the other hand, if � increases, then the number of 
individuals in the classes ITH and ATH

 also start increasing. Hence, to eradicate the 
disease from the population, proper treatment without limitation on resources has 
to be provided.

The impact of the initial per capita treatment rate for TB infectives over the popu-
lation can be visualized in Fig. 10 by keeping the remaining parameter values same 
as given in Table (2). We have plotted graphs for four different values of the initial 
per capita treatment rate: � = 6 , � = 4 , � = 2 and � = 0 (see Fig. 10). Correspond-
ing to them RH = 1.20251 and the reproduction numbers for TB are obtained as 
RT = 0.0206601 , RT = 0.0451893 , RT = 0.166478 and RT = 28.1867 , respec-
tively. From Fig.  10a, b it can be seen, as � increases, then the population in the 
classes LT and IT also increase initially, but with a rate which is inversely propor-
tional to � . This means that a higher initial per capita treatment rate implies a lower 
rate of increase for these classes. After some time interval, population in the class IT 
starts decreasing proportionally to � as a result of treatment, whereas population in 
the class LT diminishes inversely proportional to � as its individuals are entering into 
the class of active TB infected individuals more rapidly for a lower value of � . From 
Fig. 10c it can be observed that the population in class RT increases proportional to 
� , that is, for a higher initial per capita treatment rate more individuals are recover-
ing from TB. Now Fig. 10d, f show the behaviour of individuals in the classes LTH 
and LAT

 . Population in the classes LTH and LAT
 start rising as � decreases and after 

some interval of time the number of individuals in both classes start diminishing 
inversely proportional to � because of the progression of latently infected individu-
als into the active class of TB infection. Also, from Fig. 10e, g it can be observed 
that the population in the classes ITH and ATH

 start increasing as � decreases.
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Our numerical results suggest that to reduce the prevalence of HIV-TB co-
infection, improvement in TB treatment programs are required. Although, this 
may not be easy due to the lack of effective medication facilities. However, sig-
nificant reductions may be obtained by increasing resources for treatment.

7 � Conclusion

In this paper, a HIV-TB co-infection model which incorporates a non-linear treat-
ment rate for TB has been discussed, by taking into consideration the Holling 
type-II function as a treatment rate for TB infected classes, with the inhibition 
effect 1

1+�I
 . The term � which indicates the limitation of resources for the treat-

ment of TB negatively influences the initial per capita treatment rate � . The HIV 
sub-model has been shown to exhibit a supercritical transcritical bifurcation, with 
bifurcation parameter �H = �∗ . When �H = �∗ , the globally stable disease-free 
equilibrium point changes its stability from stable to unstable and an endemic 
equilibrium point comes into existence. On the other hand, for the TB sub-model, 
the disease-free equilibrium point is locally asymptotically stable when its corre-
sponding reproduction number is less than unity. It is determined that the disease-
free equilibrium point for the TB sub-model is globally asymptotically stable 
only when there is no limitation on the resources for TB treatment. The endemic 
equilibrium point for the TB sub-model, if it exists, is locally asymptotically sta-
ble under certain conditions on the parameters. The full HIV-TB co-infection 
model has been shown to have a locally asymptotically stable disease-free equi-
librium point. In literature, some authors have introduced a mathematical model 
with linear treatment rate on infected individuals, which signifies that the disease 
can not remain forever, if there is no restriction on the availability of resources. 
However, in this paper we justify that the disease may remain in the community 
due to the limitation on resources.

Numerical simulations have provided many interesting insights about the dynam-
ical interactions between HIV and TB and have shown the impact of TB on the prev-
alence of HIV. The existence and stability of the equilibrium points with a linear 
treatment rate as well as under resource limitation conditions have been verified. 
We derived the existence of a HIV-TB co-endemic equilibrium point even if RT < 1 
under resource limitation conditions, which shows that reducing the basic reproduc-
tion number below one is not sufficient enough to eradicate the disease from the 
community. Thus, investing more in increasing the treatment rate for TB can be con-
sidered as a better approach to control HIV-TB co-infection prevalence. The effects 
of the resource limitation term ( � ) and the initial per capita treatment rate for TB 
( � ) on infected individuals have also been investigated, which justify the fact that 
efforts toward increasing the treatment rate and diminishing the factors that cause 
limitation on the availability of resources for the treatment are required to control 
the disease. Hence, it has been concluded that controlling the TB infection can be an 
asset in controlling the HIV-TB co-infection.
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