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Abstract
Provision of additional food supplements for the purpose of biological conserva-
tion has been widely researched both theoretically and experimentally. The study 
of these biosystems is usually done using predator–prey models. In this paper, we 
consider an additional food provided predator–prey system in the presence of the 
inhibitory effect of the prey. This model is analyzed in the control parameter space 
using the control parameters, quality and quantity of additional food. The findings 
suggest that with appropriate choice of additional food to predators, the biosystem 
can be controlled and steered to a desirable state. It is also possible to eliminate 
either of the interacting species. The vital role of the quality and quantity of the 
additional food in the system dynamics cautions the eco manager on the choice of 
the additional food for realizing the goal in the biological conservation programme.

Keywords  Biological conservation · Additional food · Inhibitory effect · Optimal 
control

1  Introduction

Ecological and biological conservation of living systems over the years has been 
a serious concern and has been intensely researched by agriculturalists, biolo-
gists and mathematicians. One of the studies involves provision of additional food 
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supplements as a method for reducing depredation of certain species in ecosystems. 
The idea is to reduce the predation of one type of species called as predators on the 
other living species called as the target prey by providing the predators with alter-
nate food supplements in addition to the available target prey. Due to this, the preda-
tor tends to get distracted and also get supplemented with additional food thereby 
relieving the predation pressure on the target prey (Redpath 2001). Care must be 
taken in the supplements provided as under nutritious additional food can be coun-
terproductive resulting in the opposite. Also from the field studies it can be observed 
that this kind of diversionary feeding may need not always achieve the goal of bio-
logical conservation (Putman and Staines 2004).

Further, in the ecological studies (Glaser 1983; Elkinton 2004; Putman and 
Staines 2004) it has been observed that the quality and quantity of additional food 
supplements provided play a crucial role in the growth of the predators and thereby 
influence the eventual state of the ecosystem. Other observations in these experi-
mental studies include non optimal foraging by the predators in the presence of 
additional food (David 1995; Putman and Staines 2004). Also, in nature, we see 
that there are situations wherein predators catchability towards the prey decreases 
at sufficiently high prey density, either due to prey interference or prey toxicity. This 
behaviour of the prey at high density is known as inhibitory effect of the prey and 
the predators functional response is coined as Holling type IV functional response 
(Kot 2001). Some examples include the following: Musk ox are more successful 
at fending off wolves when in herds than when alone (Freedman and Wolkowicz 
1986), Spider mites, at high densities, produce webbing interferes with its predators 
response (Collings 1997).

Several theoretical and mathematical studies have been done to assess the preda-
tion pressure on the prey in the presence of inhibitory effect and when the predators 
are provided with additional food. Some of these works can be found in the papers 
(Sahoo and Poria 2014, 2015; Holt 1984; Zhu 2002; Huang and Xiao 2004; Huang 
et al. 2014; Kar 2012; Srinivasu 2007) and also in the thesis of Harmon (2003).

Motivated by the above experimental findings and theoretical studies, we have 
done initial studies on additional food provided predator–prey systems in the pres-
ence of inhibitory effect of the prey which led to the publication (Srinivasu et  al. 
2018). Continuing in these lines, a modified version of Rosenzweig–MacArthur’s 
model has been considered to represent the dynamics of additional food provided 
predator–prey system where in it is assumed that the predators are non optimal for-
agers and that the functional response of the predators towards the target prey is of 
Holling type IV incorporating the inhibitory effect.

In this work, we initially establish the boundedness and uniform persistence of 
the system. We later study the local and global dynamics of this system along with 
bifurcation studies. Finally, to overcome the limitations of asymptotics, we do the 
time optimal control studies. From this study, we conclude the following. Provision 
of high quality additional food will help the predators to overcome the inhibitory 
effect of the target prey. Stable coexistence of the predator and the prey can also be 
obtained. Further increase of supply of additional food can even eliminate the prey 
from the ecosystem. On the other hand, provision of low quality of additional food 
ensures the sustenance of the inhibitory effect of the prey and the system continues 
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to be prey dominated. The existence of optimal solution for the time optimal con-
trol problem is established using Fillipov’s theorem and it is shown that the optimal 
controls depend on prey population alone. The results of this work reiterates the eco-
logical experimental findings and the outcomes of this study offers insights into the 
possible strategies to the eco managers for biological conservation.

The section-wise division of this article is as follows. In Sect. 2, for the sake of 
clarity to the reader, the initial model and the additional food provided predator–prey 
system from the earlier work is discussed briefly. In Sect. 3, we discuss the bound-
edness and persistence of the system followed by bifurcation studies in Sect. 4. The 
local and global dynamics of the additional food provided predator–prey system is 
discussed in Sect. 5. In Sect. 6, the consequences of providing additional food to the 
predator on the predator–prey dynamics are presented. In Sect.  7, we do the time 
optimal control studies. Finally, Sect. 8 presents the discussion and conclusions.

2 � Predator–Prey Systems

We request the reader to refer (Srinivasu et al. 2018) for detailed information on the 
derivations and observations of the developed model. For the sake of brevity, we 
will briefly discuss the initial findings of this additional food provided predator–prey 
system.

2.1 � The Initial System

Let us consider the following predator–prey model involving type IV functional 
response for the predators, given by,

Here r, K represent the intrinsic growth rate and carrying capacity of the prey. m 
represents the death rate or starvation rate of the predators in the absence of the 
prey. Here b represents the inhibitory effect or the group defense of the prey. We 
have the parameters c and a, standing for the maximum rate of predation and half 
saturation value of the predators in the absence of inhibitory effect, to be 1

h1
 and 1

e1h1
. 

Also, if �1 stands for the nutritive value of the prey item, then the maximum growth 
rate of predators due to consuming the prey is given by e = �1

h1
 with 0 < 𝜖1 < 1 . �1 is 

also referred to as conversion factor that represents the rate at which the prey bio-
mass gets converted into predator biomass.

We now non-dimensionalize the system (2.1)–(2.2) so as to decrease the number 
of parameters, in order to reduce the complexity involved in the analysis.

(2.1)Ṅ = rN

(
1 −

N

K

)
−

cNP

a(bN2 + 1) + N
,

(2.2)Ṗ =
eNP

a(bN2 + 1) + N
− mP.
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Let N = ax; t = rT; P = y
ra

c
 ; which implies, dN = adx; dt

r
= dT ; dP = dy

ra

c
 and 

also let

Now, dN
dT

= rN

(
1 −

N

K

)
−

cN

a(bN2+1)+N
P , becomes,

Also, dP
dT

=
eN

a(bN2+1)+N
p − mP , becomes,

So, the system (2.1)–(2.2 ) reduces to

Letting

system (2.1)–(2.2) takes the form

Here, the behavior of the system’s carrying capacity (K) can be understood by the 
behavior of the parameter � . Similarly, the inhibitory effect (b) of the prey can be 
understood by the change of the parameter � (refer (2.3)).

We see that the system (2.6)–(2.7) has E0 = (0, 0) and E1 = (� , 0) as its axial 
equilibrium points. Depending on the choice of the parameters of the system, we 
have the emergence of the interior equilibria

E2 = (x1, y1) =

�
(𝛽−𝛿)−

√
(𝛽−𝛿)2−4𝛿2𝜔

2𝛿𝜔
, ḡ(x1)

�
,

E3 = (x2, y2) =

�
(𝛽−𝛿)+

√
(𝛽−𝛿)2−4𝛿2𝜔

2𝛿𝜔
, ḡ(x2)

�
,

(2.3)� =
K

a
, � = ba2, � =

e

r
, � =

m

r
.

dx

dt
= x

(
1 −

x

�

)
−

[
xy

�x2 + x + 1

]

dy

dt
= �

[
xy

(�x2 + 1) + x

]
− �y.

ẋ =x

(
1 −

x

𝛾

)
−

[
xy

𝜔x2 + x + 1

]
,

ẏ =𝛽

[
xy

𝜔x2 + x + 1

]
− 𝛿y.

(2.4)f̄ (x) =
x

𝜔x2 + x + 1
,

(2.5)ḡ(x) =

(
𝜔x2 + x + 1

)(
1 −

x

𝛾

)
,

(2.6)ẋ =(ḡ(x) − y)f̄ (x),

(2.7)ẏ =(𝛽 f̄ (x) − 𝛿)y.
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The equilibrium point E2 exists for 𝛾 > x1 and both equilibria E2 andE3 exist for 
𝛾 > x2.

We see that the system (2.6)–(2.7) has E0 = (0, 0) and E1 = (� , 0) as its axial equi-
librium points. Depending on the choice of the parameters of the system, we have the 
emergence of the interior equilibria

E2 = (x1, y1) =

�
(𝛽−𝛿)−

√
(𝛽−𝛿)2−4𝛿2𝜔

2𝛿𝜔
, ḡ(x1)

�
,

E3 = (x2, y2) =

�
(𝛽−𝛿)+

√
(𝛽−𝛿)2−4𝛿2𝜔

2𝛿𝜔
, ḡ(x2)

�
,

The equilibrium point E2 exists for 𝛾 > x1 and both equilibria E2 andE3 exist for 
𝛾 > x2.

The local and global dynamics of the system (2.6)–(2.7) can be summarized as 
follows.

•	 We observe that the system (2.6)–(2.7) admits only the axial equilibria (0, 0), (� , 0) 
and does not even admit the predator isoclines x1 and x2, whenever, w >

(𝛽−𝛿)2

4𝛿2
.

•	 Whenever w <
(𝛽−𝛿)2

4𝛿2
 and 𝛾 < x1, the system (2.6)–(2.7) admits axial equilibria and 

the predator isoclines but does not admit any interior equilibrium.
•	 If, w <

(𝛽−𝛿)2

4𝛿2
, x1 < 𝛾 < x2, the system (2.6)–(2.7) admits axial equilibria as well 

as the interior equilibrium E2 = (x1, y1). If ḡ�

(x1) < 0, the interior equilibrium 
E2 = (x1, y1) is stable. If ḡ�

(x1) > 0, the interior equilibrium E2 = (x1, y1) is unsta-
ble. Thus the interior equilibrium E2 = (x1, y1) undergoes Hopf bifurcation when 
ḡ
�

(x1) = 0, that is, whenever, 

 where x1 =
(�−�)−

√
(�−�)2−4�2w

2�w
.

•	 If w <
(𝛽−𝛿)2

4𝛿2
, 𝛾 > x2, the system (2.6)–(2.7) admits axial equilibria and the interior 

equilibrium E2 = (x1, y1) and the saddle interior equilibrium E3 = (x2, y2).

Hence, we consider the following curves in the positive quadrant of the (�, �) space:

Transcritical bifurcation curve (TBC1) at x1 = �

Transcritical bifurcation curve (TBC2) at x2 = �

3wx2
1
+ (2 − 2w�)x1 + (1 − �) = 0,

(2.8)� −
(� − �) −

√
(� − �)2 − 4�2�

2��
= 0

(2.9)� −
(� − �) +

√
(� − �)2 − 4�2�

2��
= 0
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Hopf bifurcation curve (HBC) at (x1, y1)

Saddle Node bifurcation/Discriminant curve (DISC)
We see that each of the curves (2.8)–(2.11) divide the positive quadrant of (�, �) 

space into two regions which characterize the nature of the associated equilibrium 
point of (2.6)–(2.7).

From the discussions presented above, it can be seen that the global dynam-
ics of the considered system can be understood under the following six natural 
conditions((Con-I)–(Con-VI)) pertaining to the existence, stability nature and occur-
rence of Hopf bifurcation associated with the interior equilibrium points of the sys-
tem (2.6)–(2.7). These conditions can further be subdivided into sub conditions, 
depending on the behavior of the prey isocline and the location of the interior equi-
librium in the positive quadrant. These 15 sub conditions along with the six main 
conditions are summarized in Table 1.

The bifurcation analysis of the system (2.6)–(2.7) can be seen in Fig. 1. In this 
bifurcation diagram we consider the bifurcation curves (2.8)–(2.11) along with the 
15 sub conditions mentioned in Table 1. The different regions in this diagram cor-
respond to the different sub conditions discussed in Table 1.

The global dynamics of the initial system are summarized in Table 2 dealing with 
the nature of the equilibria in each of the regions in the (�, �) space.

2.2 � Additional Food Provided Predator–Prey System

Let us now consider the following additional food provided predator–prey model 
involving type IV functional response for the predators, given by,

(2.10)

3�

�
(� − �) −

√
(� − �)2 − 4�2�

2��

�2

+ (2 − 2��)

�
(� − �) −

√
(� − �)2 − 4�2�

2��

�

+ (1 − �) = 0

(2.11)� −

(
(� − �)2

4�2

)
= 0

(2.12)Ṅ =rN

(
1 −

N

K

)
−

cNP

(A
e2h2

e1h1
+ a)bN2 + N + (A

e2h2

e1h1
+ a)

,

(2.13)Ṗ =

(
𝜖1cN + 𝜖2A

e2

e1
c(bN2 + 1)

)
P

(A
e2h2

e1h1
+ a)bN2 + N + (A

e2h2

e1h1
+ a)

− mP.
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Table 1   Stability conditions for the system (2.6)–(2.7)

Region Conditions Equation

w −
(�−�)2

4�2
Position of � ḡ

�

(x) (1 − ��)2 − 3�(1 − �)1 − � 1 − ��

I > 0 – – Con-I
I-1 > 0 – – > 0 < 0 – Con-I1
I-2 > 0 – – > 0 > 0 < 0 Con-I2
I-3 > 0 – – < 0 – – Con-I3
II < 0 𝛾 < x

1
< x

2
– Con-II

II-1 < 0 𝛾 < x
1
< x

2
– < 0 – – Con-II1

II-2 < 0 𝛾 < x
1
< x

2
> 0 > 0 > 0 – Con-II2

III < 0 x
1
< 𝛾 < x

2
Con-III

III-1 < 0 x
1
< 𝛾 < x

2
< 0 > 0 > 0 > 0 Con-III1

III-2 < 0 x
1
< 𝛾 < x

2
< 0 < 0 > 0 – Con-III2

III-3 < 0 x
1
< 𝛾 < x

2
< 0 > 0 > 0 < 0 Con-III3

III-4 < 0 x
1
< 𝛾 < x

2
< 0 > 0 < 0 – Con-III4

IV < 0 x
1
< 𝛾 < x

2
Con-IV

IV-1 < 0 x
1
< 𝛾 < x

2
> 0 > 0 < 0 – Con-IV1

IV-2 < 0 x
1
< 𝛾 < x

2
> 0 > 0 > 0 < 0 Con-IV2

V < 0 x
1
< x

2
< 𝛾 Con-V

V-1 < 0 x
1
< x

2
< 𝛾 > 0 > 0 < 0 – Con-V1

V-2 < 0 x
1
< x

2
< 𝛾 > 0 > 0 > 0 < 0 Con-V2

VI < 0 x
1
< x

2
< 𝛾 Con-VI

VI-1 < 0 x
1
< x

2
< 𝛾 < 0 > 0 > 0 < 0 Con-VI1

VI-2 < 0 x
1
< x

2
< 𝛾 < 0 < 0 > 0 < 0 Con-VI2

Fig. 1   Bifurcation diagram for the system (2.6)–(2.7) with � = 2.2 & � = 0.4
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Let �2 stand for the nutritive value of the additional food. We let � =
e2�2

e1�1
, � =

h2�1

h1�2
 

and e = �1c . Here the term � A2

N
= A(

e2A

e1N
)∕(

�1

�2
) denotes the quantity of additional 

food perceptible to the predator with respect to the prey relative to the nutritional 
value of prey to the additional food. Let � =

�1

h1
∕
�2

h2
. The term � =

�1

h1
∕
�2

h2
, which is the 

ratio between the maximum growth rates of the predator when it consumes the prey 
and additional food respectively, indicates the relative efficiency of the predator to 
convert either of the available food into predator biomass. Thus, given the prey with 
specific conversion factor, � is inversely related to the conversion factor of the addi-
tional food into predator biomass and directly related to the handling time of the 
additional food. Observe that the above system reduces to the system (2.1)–(2.2) 
when A = 0. Here also the parameters c and a, stand for the maximum rate of preda-
tion and half saturation value of the predators in the absence of inhibitory effect, 
which equals 1

h1
 and 1

e1h1
 respectively.

With the above definitions of � and �, the system (2.12)–(2.13) becomes

We now non-dimensionalize the system (2.14)–(2.15) so as to decrease the number 
of parameters, in order to reduce the complexity involved in the analysis.

Let N = ax ; t = rT  ; P = y
ra

c
 ; which implies, dN = adx; dt

r
 = dT; dP = dy ra

c
 and let 

� =
K

a
 ; � = �

A

a
 ; � = ba2 ; � =

e

r
; � =

m

r
; so, dN

dT
= rN

(
1 −

N

K

)
−

(
cN

(A��+a)[bN2+1]+N

)
P , 

becomes

and dP
dT

= e

(
N+�A(bN2+1)

(A��+a)[bN2+1]+N

)
P − mP , becomes,

So, the system (2.14)–(2.15) reduces to

(2.14)Ṅ =rN

(
1 −

N

K

)
−

(
cN

(A𝜂𝛼 + a)[bN2 + 1] + N

)
P,

(2.15)Ṗ =e

(
N + 𝜂A(bN2 + 1)

(A𝜂𝛼 + a)[bN2 + 1] + N

)
P − mP.

dx

dt
= x

(
1 −

x

�

)
−

[
xy

(1 + ��)(�x2 + 1) + x

]

dy

dt
= �

[
x + �(�x2 + 1)

(1 + ��)(�x2 + 1) + x

]
y − �y.

ẋ =x

(
1 −

x

𝛾

)
−

[
xy

(1 + 𝛼𝜉)(𝜔x2 + 1) + x

]

ẏ =𝛽

[
x + 𝜉(𝜔x2 + 1)

(1 + 𝛼𝜉)(𝜔x2 + 1) + x

]
y − 𝛿y.
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Letting

system (2.14)–(2.15) takes the form

Here, the behavior of the system’s carrying capacity (K) can be understood by the 
behavior of the parameter � . Similarly, the inhibitory effect (b) of the prey can be 
understood by the change of the parameter �. Also, from the construction of the 
model, we see that the parameters �, � and � can be treated to be ecosystem charac-
teristic parameters while � (quantity of additional food) and � (quality of additional 
food) can be considered to be control parameters.

We see that the systems (2.6)–(2.7) and (2.18)–(2.19) have E0 = E∗
0
= (0, 0) and 

E1 = E∗
1
= (� , 0) as their common equilibrium points. Depending on the choice of 

parameters of the system, we have the emergence of the interior equilibria

E∗
2
= (x∗

1
, y∗

1
) =

�
(�−�)−

√
(�−�)2−4�[�(1+��)−��]2

2�[�(1+��)−��]
, g(x∗

1
)

�
,

E∗
3
= (x∗

2
, y∗

2
) =

�
(�−�)+

√
(�−�)2−4�[�(1+��)−��]2

2�[�(1+��)−��]
, g(x∗

2
)

�
.

The equilibria appear when 𝛾 > x∗
1
, 𝛾 > x∗

2
 respectively.

3 � Positivity, Boundedness and Uniform Persistence

3.1 � Positivity and Boundedness

Let w(t) = x +
y

�
. Then

Substituting system (2.18)–(2.19), we get,

(2.16)f (x) =
x

(1 + ��)(�x2 + 1) + x
,

(2.17)g(x) =
(
(1 + ��)(�x2 + 1) + x

)(
1 −

x

�

)
,

(2.18)ẋ =(g(x) − y)f (x)

(2.19)ẏ =
(
𝛽f (x)

[
1 +

𝜉

x
(𝜔x2 + 1)

]
− 𝛿

)
y

dw

dt
+ 𝜂w(t) =

dx

dt
+

1

𝛽

dy

dt
+ 𝜂

(
x +

y

𝛽

)
, for 𝜂 > 0
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Since, x < 𝛾 the maximum value of x(� − x + ��) is �
(

1+�

2

)
, we have,

Since we know that x > 0, we get,

Choosing sufficiently small 𝜂(<< 𝛿) and in view of the condition 𝛼 >
𝛽𝜉−𝛿

𝛿𝜉

we obtain,

From the comparison theorem for differential equations (Birkhoff and Rota 1989), 
we obtain,

Thus as t ⟶ ∞ we have 0 < w(t) ≤
M

𝜂
 implying that solutions of the system 

(2.18)–(2.19) are positive and bounded.

3.2 � Uniform Persistence

From J(0,0), J(� ,0) and J(x∗
1
,y∗
1
)(refer Srinivasu et al. 2018), we infer that the nature of the 

equilibrium points (0, 0), (� , 0) and (x∗
1
, y∗

1
) depends on the signs of the expressions 

��

1+��
− � (an eigen value of J(0,0) ), �

(
�+�(w�2+1)

(1+��)(w�2+1)+�

)
− � (an eigen value of J(� ,0) ) 

and g�(x∗
1
) = 0 (Hopf bifurcation indicator). The second interior equilibrium (x∗

2
, y∗

2
) 

dw

dt
+ �w(t) =x

(
1 −

x

�

)
−

[
xy

(1 + ��)(�x2 + 1) + x

]

+

[
xy + �(�x2 + 1)y

(1 + ��)(�x2 + 1) + x

]

−
�

�
y + �x +

�

�
y

=x

(
1 −

x

�
+ �

)
+

[
�(�x2 + 1)y

(1 + ��)(�x2 + 1) + x

]
+

� − �

�
y

=x

(
1 −

x

�
+ �

)
+

[
�y

(1 + ��) +
x

(�x2+1)

]
+

� − �

�
y

dw

dt
+ �w(t) ≤ �

(
1 + �

4

)2

+

(
�y

(1 + ��) +
x

(�x2+1)

)
+

� − �

�
y

dw

dt
+ �w(t) ≤ �

(
1 + �

4

)2

+

(
�

(1 + ��)
+

� − �

�

)
y

dw

dt
+ �w(t) ≤ �

(
1 + �

4

)2

0 < w(t) ≤
M

𝜂
(1 − exp(−𝜂t)) + w(0) exp(−𝜂t)
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continues to remain saddle throughout its existence. We also see that the necessary 
condition for the interior equilibria to exist is (𝛽 − 𝛿)2 − 4w(−𝛽𝜉 + 𝛿(1 + 𝛼𝜉))2 > 0.

Hence, we consider the following four conditions for discussing the persis-
tence of the solution.

Theorem 3.1  Let conditions (A1)–(A4) hold. Then the system (2.18)–(2.19) is uni-
formly persistent.

Lemma 3.2  (Butler et  al. 1986) Let M be an isolated invariant set, Ω(x) be an 
omega limit set of an orbit O(x) and M ⊂ Ω. Then either Ω(x) = M or there exists 
Q+,Q− ∈ Ω(x) with Q+ ∈ M+ and Q− ∈ M+.

Proof  Let O(x) be the orbit through the point X = (x, y) with x > 0, y > 0. Let Ω(x) 
denote the omega limit set of the orbit O(x). As the solutions of the system (2.18)–
(2.19) are bounded, we have the omega limit set Ω(x) to be bounded. Now a solution 
with the initial conditions in the positive cone will persist if there are no �—limit 
points on the boundary of the positive cone (i.e., on the coordinate axes). Now we’ll 
show that neither the trivial equilibrium (E∗

0
) nor the axial equilibrium E∗

1
= (� , 0) 

belong to the Omega limit set Ω(x) . The Jacobian with respect to E∗
0
= (0, 0) is given 

by JE0
∗ =

Therefore, E∗
0
 is unstable in x direction and asymptotically stable in y direction 

[by (A1)] implying that M+(E∗
0
), the stable manifold of E∗

0
 is along the y-axis and 

M−(E∗
0
), the unstable manifold of E∗

0
 is along the x-axis.

We will first show that E∗
0
∉ Ω(x). Assume that E∗

0
∈ Ω(x). Since E∗

0
 is a saddle 

point (by (A1)), by the above Lemma there exists at least one point Q ∈ Ω(x) ∩M+(E∗
0
). 

We also have Q ∈ Ω(x), therefore the closure of the orbit through Q is in Ω(x) and 
this orbit is nothing but the y-axis, which is unbounded. This contradicts that Ω(x) is 
bounded. Hence we conclude that E∗

0
∉ Ω(x) . Now let E∗

1
∈ Ω(x). Again since E∗

1
 is a 

saddle point (by (A2)), there is a point Q1 ∈ Ω(x) ∩M+(E∗
1
) , where M+(E∗

1
) is the sta-

ble manifold of E1. The Jacobian with respect to E∗
1
= (� , 0) is given by 

(A1) ∶ 𝛿(1 + 𝛼𝜉) − 𝛽𝜉 > 0

(A2) ∶ 𝛽(𝛾 + 𝜉(𝜔𝛾2 + 1)) > 𝛿[(1 + 𝛼𝜉)(𝜔𝛾2 + 1) + 𝛾]

(A3) ∶ (𝛽 − 𝛿)2 − 4𝜔(−𝛽𝜉 + 𝛿(1 + 𝛼𝜉)2)2 > 0

(A4) ∶ f , g ∈ C1

[
1 0

0
��

(1+��)
− �

]

JE∗
1
=

⎡⎢⎢⎣

−1 0

0 �

�
�+�(w�2+1)

(1+��)(w�2+1)+�

�
− �

⎤⎥⎥⎦
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Therefore E∗
1
 is unstable in y direction and asymptotically stable in x direction. 

Moreover, M+(E1) = (x, y) ∶ y = 0, (0 < x < 𝛾) ∪ (𝛾 < x). Now if Q1 > 𝛾 , the orbit 
through Q1 belongs to Ω(x), implying that the unbounded orbit O(Q1) lies in Ω(x) . 
This contradicts Ω(x) is bounded. On the other hand if Q1 < 𝛾 then E∗

0
∈ Ω(x) which 

is a contradiction, as E∗
0
∉ Ω(x) . Hence both E∗

0
 and E∗

1
 does not belong to Ω(x).

These same arguments with the boundedness of the omega limit set, shows that 
no point p of a coordinate plane is in Ω(x) . Hence Ω(x) lies in the interior of posi-
tive cone proving that the system (2.18)–(2.19) is persistent. Since this system is 
bounded by a theorem of Butler et al. (1986), we conclude that the system (2.18)–
(2.19) is uniformly Persistent. 	�  ◻

4 � Hopf Bifurcation

The appearance or the disappearance of a periodic orbit through a local change 
in the stability properties of a steady point is known as the Hopf bifurcation. The 
following theorem deals with the Hopf bifurcation w.r.t E∗

2
. It gives the conditions 

under which this bifurcation phenomenon occurs.

Theorem 4.1  Let

 Then the necessary and sufficient condition for occurrence of Hopf bifurcation at 
� = �0 are the following

Proof  From Srinivasu et al. (2018), we see that the characteristic equation for the 
Jacobian matrix evaluated at E∗

2
 is given by

Hence

A11 =g
�

(x∗
1
)f (x∗

1
)

A12 =g(x
∗
1
)f (x∗

1
)

[
�f

�

(x∗
1
)

(
1 +

�

x∗
1

(�x∗2
1
+ 1)

)
+ �f (x∗

1
)
�

x∗2
1

(�x∗2
1
− 1)

]

(i)A
�

11
(�0)g(�0) ≠ A11(�0)g

�

(�0)

(ii)Re

[
d

d�
�

]||||�=�0
≠ 0

�2 − g
�

(x∗
1
)f (x∗

1
)� + y∗

1
f (x∗

1
)

[
�f

�

(x∗
1
)

(
1 +

�

x∗
1

(�x∗2
1
+ 1)

)

+ �f (x∗
1
)
�

x∗2
1

(�x∗2
1
− 1)

]
= 0

(4.1)�(�) = A11 ± i

√
A2
11
− 4A12
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are the roots of the characteristic equation.

We now verify the transversality condition Re
[

d

d�
�

]||||�=�0
≠ 0.

Let �0 be such that A11|�0 = 0. Then g�

(x∗
1
) = 0 as f (x∗

1
) > 0.

Now, substituting for � from (4.1) in the characteristic equation, we get,

On further simplification, we get,

and

Considering the real parts of the above equations, we define,

Differentiation P(�) w.r.t � at � = �0, we get,

Let H(x∗
1
) = �f

�

(x∗
1
)

(
1 +

�

x∗
1

(�x∗2
1
+ 1)

)
+ �f

�

(x∗
1
)

�

x∗2
1

(�x∗2
1
− 1).

We then have A12 = g(x∗
1
)f (x∗

1
)H(x∗

1
). Hence,

(
A11 ± i

√
A2
11
− 4A12

)2

− A11

(
A11 ± i

√
A2
11
− 4A12

)
+ A12 = 0

5A12 − A2
11
+ A11i

√
A2
11
− 4A12 = 0

5A12 − A2
11
− A11i

√
A2
11
− 4A12 = 0

P(�) = 5A12 − A2
11

dp(�)

d�

||||�=�0
= − 2A11

dA11(�)

d�

||||�=�0
+ 5

dA12(�)

d�

||||�=�0
=5

dA12(�)

d�

||||�=�0
(since A11(�0) = 0)

dA12(�)

d�

||||�=�0
=

d

d�
[g(�)f (�)H(�)]

||||�=�0
=

d

d�

[
f (�)g(�

]
H(�) + [f (�)g(�)]

d

d�
H(�)

||||�=�0
=H(�)[f

�

(�)g(�) + f (�)g
�

(�)]
||||�=�0

+ [f (�)g(�)]
d

d�
H(�)

||||�=�0
=H(�)f

�

(�)g(�) + f (�)g(�)H
�

(�)]
||||�=�0

=g(�)

[
f
�

(�)H(�) + f (�)H
�

(�)

]||||�=�0
=g(�0)

d

d�
(f (�)H(�))

||||�=�0
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As A11 = f (�)g(�)H(�), we have, H(�)f (�) =
A11

g(�)
. Therefore,

From the assumption (i) and with the fact that g(�0) ≠ 0, we have,

Hence, Re
[

d

d�
�

]||||�=�0
≠ 0 which establishes the transversality condition and occur-

rence of Hopf bifurcation at � = �0. 	�  ◻

5 � Local and Global Dynamics of Additional Food Provided Predator–
Prey System

Based on the conditions (A1) − (A3) and the Hopf bifurcation indicator g�

(x∗
1
) = 0 

discussed in Sect. 3.2, we consider the following curves (related to the expressions in 
(A1) − (A3) and g�

(x∗
1
) = 0 ) in the positive quadrant of the (�, �) space:

Prey elimination curve (PEC) at (0, 0)

Transcritical bifurcation curve (TBC) at (� , 0)

Hopf bifurcation curve (HBC) at (x∗
1
, y∗

1
)

Discriminant curve (DISC)

dA12

d�

||||�=�0
=g(�0)

d

d�

(
A11

g(�)

)||||�=�0
=g(�0)

[
A

�

11
g(�) − A11g

�

(�)

(g(�)2

]|||||�=�0

dA12

d�)

||||�=�0
≠ 0

(5.1)�� − �(1 + ��) = 0

(5.2)�(� + �(w�2 + 1)) − �((1 + ��)(w�2 + 1) + �) = 0

(5.3)

3w(1 + ��)

[ (� − �) −

√
(� − �)2 − 4�[�(1 + ��) − ��]2

2�[�(1 + ��) − ��]

]2

+ (2 − 2w�(1 + ��))

[ (� − �) −

√
(� − �)2 − 4�[�(1 + ��) − ��]2

2�[�(1 + ��) − ��]

]

+ (1 + ��) − � = 0

(5.4)(� − �)2 − 4w(−�� + �(1 + ��))2 = 0
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We see that each of the curves (5.1)–(5.4) divide the positive quadrant of (�, �) 
space into two regions which characterize the nature of the associated equilib-
rium point of (2.18)–(2.19). Equation (5.4) gives the region of existence of the 
predator isoclines (possible region of existence of interior equilibria). It can be 
observed that � =

�

�
 is an asymptote for the curves (5.1), (5.2) and (5.4).

In the initial work (Srinivasu et al. 2018), the consequences of providing addi-
tional food to the region I (comprising of regions I-1, I-2 and I-3) of the initial 
system (2.6)–(2.7) were studied and appropriate conclusions were drawn.

In this work, we do a detailed study of the dynamics of the additional food 
provided system (2.18)–(2.19) through the curves (5.1)–(5.4) under the condi-
tions II−VI(II-1, II-2, III-1, III-2, III-3, III-4, IV-1, IV-2, V-1, V-2, VI-1, VI-2) in 
Table 1 and discuss the consequences.

•	 Region—II(II-1, II-2): Initially the system admits predator isoclines without the 
existence of interior equilibria. In these regions all the solutions of the system 
tend to the axial equilibrium (� , 0) (refer regions A1, A6, B1, B7 in Fig. 2). For a 
fixed 𝛼 < (

𝛽

𝛿
) as � increases from zero, we enter regions A2 or B2 of Fig. 2. In the 

process the interior equilibrium E∗
2
 is born by undergoing transcritical bifurcation 

with (� , 0), at � =
�(w�2+1)−�(�−�)

(w�2+1)(�−��)
, which remains stable and after the bifurcation 

(� , 0) turns saddle. In these regions the equilibrium (0, 0) coexists with saddle 
nature. On continuous supply of additional food in these regions we touch the 
prey elimination curve ( i.e., when � =

�

�−��
 ) and the prey goes to zero and we 

move into regions A3 or B3. In regions A3 and B3, we have very interesting 
dynamics happening. We observe that the system does not admit a positive inte-
rior equilibrium and also there is an unbounded growth for the predators in these 
regions. The predators in these region survive only on the additional food pro-
vided. Withdrawal of additional food drives the predator population to zero. In 
these regions the equilibrium (0, 0) exhibits unstable nature. For a fixed 𝛼 > (

𝛽

𝛿
) 

in regions A6 or B7 all the solutions tend to the axial equilibrium (� , 0). Here the 
equilibrium (0, 0) coexists with saddle nature. We move to the regions A4, A5, 
B5, B6 from the regions A3, A6, B3, B7 respectively, crossing the discriminant 
curve on supply of additional food for 𝜉 > ±

1

2
√
𝜔(𝛿𝛼−𝛽)

[(𝛽 − 𝛿) ∓ 2
√
𝜔𝛿]. The 

dynamics of the regions A4, A5, B5, B6 will be similar to that of A3, A6, B3, 
B7, the only difference being that the predator isoclines does not even exist in 
these regions. When we move from B3 to B5 there is a possibility of double 
Hopf bifurcation occurrence while moving across region B4. This can happen in 
mathematical sense but biologically it is not meaningful. A summary of the 
global dynamics of additional food provided system (2.18)–(2.19) under the 
Condition II can be found in Table 3.

•	 Region—III(III-1, III-2, III-3, III-4): Initially the system admits the stable inte-
rior equilibrium E∗

2
(refer regions A1, A7, B1, B6, C1, C8, D1, D7 of Figs. 3 and 

4). The equilibria (0, 0), (� , 0) coexist with saddle nature. For a fixed 𝛼 < (
𝛽

𝛿
) 

as � increases from zero the system touches the prey elimination curve and we 
enter the regions A2, B2, C4, D3. In these regions (0, 0) turns unstable and (� , 0) 
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continues to remain saddle. It can also happen that the system undergoes Hopf 
bifurcation for � satisfying the Eq. (5.3) and we enter the regions C2 or D2. In 
these regions E∗

2
 turns unstable and a globally asymptotically stable limit cycle 

is formed. The equilibria (0, 0), (� , 0) coexist with saddle nature. On further pro-
vision of additional food in C2, the system undergoes the double Hopf bifur-
cation and we move to C3 which is qualitatively same as C1. In this region E∗

2
 

again turns stable. On increase of quantity of additional food further in D2, we 

Fig. 2   Additional food provided system (2.18)–(2.19) for � = 2.2, � = 0.4, � = 3.1797, 0.21198, &

� = 0.12688, 0.13557. The parameters chosen satisfy the condition II-1, II-2 in Table 1. This figure rep-
resents the division of control parameter space by the discriminant curve (DISC) (5.4), the prey elimina-
tion curve (PEC) (5.1), the Hopf bifurcation curve (HBC) (5.3), the transcritical bifurcation curve (TBC) 
(5.2) and the curve � =

�

�
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touch the prey elimination curve and move to the region D3. In both these sce-
narios (refer frames III-3, III-4 of Fig. 4), it can be seen that there exists a critical 
value �′ such that for 0 < 𝛼 < 𝛼

′ , the system undergoes Hopf bifurcation and for 
𝛼 > 𝛼

′ the system continues to exhibit the same dynamics within the region. For 
a fixed 𝛼 > (

𝛽

𝛿
) as � increases from zero, we move from regions A7, B6, D7 to 

the regions A6, B5, D6 respectively. In the process the interior equilibrium E∗
2
 

undergoes transcritical bifurcation with (� , 0) and vanishes. In the regions A6, 
B5, D6, (� , 0) remains stable and (0, 0) remains saddle. Similarly we move from 
C8 to C7. The region C7 exhibits interesting dynamics. In this region after the 
transcritical bifurcation E∗

2
 turns stable and the birth of the second interior equi-

librium E∗
3
 happens. This E∗

3
 remains saddle throughout its existence. Now, the 

stable manifold of the saddle point E∗
3
 separates the phase plane into two domains 

of attraction. The solution trajectories that lie above this manifold converge to E∗
2
 

and the trajectories which lie below converge to E∗
1
. We move to the regions A4, 

A5, B3, B4, C5, C6, D4, D5 from the regions A2/A3, A6, B2, B5, C4, C7, D3, 
D6 respectively, crossing the discriminant curve. The dynamics of the regions 
A4, A5, B3, B4, C5, C6, D4, D5 will be similar to that of A2/A3, A6, B2, B5, 
C4, D6, D3, D6, the only difference being that the predator isoclines does not 
even exist in these regions. There is a possibility of Hopf bifurcation occurrence 
while moving across regions A3 and D3. This can happen in mathematical sense 
but biologically it is not meaningful. A summary of the global dynamics of addi-
tional food provided system (2.18)–(2.19) under the Condition III can be found 
in Table 4. 

•	 Region—IV(IV-1, IV-2): Initially the system admits the stable limit cycle around 
the interior equilibrium E∗

2
(refer regions A1, A7, B1, B7 of Fig.  5). The equi-

libria (0, 0), (� , 0) coexist with saddle nature. For a fixed 𝛼 < (
𝛽

𝛿
) as � increases 

from zero the system undergoes Hopf bifurcation and we enter regions A2 or B2. 
In these regions E∗

2
 turns stable. On further provision we touch the elimination 

curve and move to regions A31 or B31. In these regions (0, 0) exhibits unsta-
ble nature. For a fixed 𝛼 > (

𝛽

𝛿
) as � increases from zero the system undergoes 

Hopf bifurcation and we enter regions A8 or B6. In these regions E∗
2
 turns stable. 

There is also a possibility that the system can undergo transcritical bifurcation 
with (� , 0) and we move to region A6. We have very interesting dynamics hap-

Table 3   Global dynamics of the 
additional food provided system 
under Condition-II

Regions Nature of the equilibria

II-1 II-2 E
∗
0

E
∗
1

E
∗
2

E
∗
3

A1 B1 Saddle Stable – –
A2 B2 Saddle Saddle Stable –
A3 B3 Unstable Saddle – –
– B4 Unstable Saddle – –
A4 B5 Unstable Saddle – –
A5 B6 Saddle Stable – –
A6 B7 Saddle Stable – –
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pening in A6. In this region the second interior equilibrium E∗
3
 is born which 

continues to remain as saddle throughout its existence. There exists a separatrix 
such that the solution trajectories that lie above this manifold converge to the 
stable limit cycle surrounding E∗

2
 and the trajectories which lie below converge to 

stable equilibrium E∗
1
. On further increase of � the limit cycle runs into the saddle 

point E∗
3
 and forms a homoclinic orbit. After the disappearance of the limit cycle 

all the solutions tend toward E∗
1
. On further provision of additional food in B6, 

Fig. 3   Additional food provided system (2.18)–(2.19) for � = 2.2, � = 0.4, � = 0.15668, 1.9816, &

� = 0.62536, 0.50292. The parameters chosen satisfy the condition III-1, III-2 in Table 1. This figure rep-
resents the division of control parameter space by the discriminant curve (DISC) (5.4), the prey elimina-
tion curve (PEC) (5.1), the Hopf bifurcation curve (HBC) (5.3), the transcritical bifurcation curve (TBC) 
(5.2) and the curve � =

�

�
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the system undergoes Hopf bifurcation and we move to region A5 and E∗
2
 turns 

stable in this region. Now, the stable manifold of the saddle point E∗
3
 separates 

the phase plane into two domains of attraction. The solution trajectories that lie 
above this manifold converge to E∗

2
 and the trajectories which lie below converge 

to E∗
1
. Similarly provision of additional food in B6 leads to a tarnscritical bifurca-

tion and we move to region B5 which is qualitatively same as region A5. Finally 
on provision of additional food in regions A31, A5, B31, B5 we move to regions 
A32, A33, B32, B4 crossing the discriminant curve. In A32 and B32 (0, 0) turns 

Fig. 4   Additional food provided system (2.18)–(2.19) for � = 2.2, � = 0.4, � = 3.9724, 0.35945, &

� = 0.75656, 1.1239. The parameters chosen satisfy the condition III-3, III-4 in Table 1. This figure rep-
resents the division of control parameter space by the discriminant curve (DISC) (5.4), the prey elimina-
tion curve (PEC) (5.1), the Hopf bifurcation curve (HBC) (5.3), the transcritical bifurcation curve (TBC) 
(5.2) and the curve � =

�

�
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unstable while in A33 and B4 (0, 0) continues to remain saddle. Correspondingly 
in the regions A32 and B32 (� , 0) exhibits saddle nature and in the regions A33 
and B4 (� , 0) exhibits stable nature. The predator isoclines does not even exist in 
these regions. A summary of the global dynamics of additional food provided 
system (2.18)–(2.19) under the Condition IV can be found in Table 5.

•	 Region—V(V-1, V-2): The dynamics in this region V will be qualitatively simi-
lar to that of dynamics discussed in regions II, III and IV. A summary of the 
global dynamics of additional food provided system (2.18)–(2.19) under the 
Condition V can be found in Table 6 (Fig. 6).

•	 Region—VI(VI-1, VI-2): The dynamics in this region VI will be qualitatively 
similar to that of dynamics discussed in regions II, III and IV. A summary of 
the global dynamics of additional food provided system (2.18)–(2.19) under the 
Condition VI can be found in Table 7 (Fig. 7).

The analysis presented above helps us to study some of the controllability aspects 
pertaining to the system (2.18)–(2.19) with respect to the control parameters � and � . 
The analysis suggests that, for an appropriate choice of additional food, the system 
can either be driven to a desired equilibrium level or to a limit cycle surrounding the 
desired equilibrium. If (x̃, ỹ) is the desired equilibrium state for the system, then (x̃, ỹ) 
can become an equilibrium point of the system (2.18)–(2.19), provided 𝛼 > 0 and 𝜉 > 0 
are chosen to satisfy

(5.5)x̃ =
(𝛽 − 𝛿) −

√
(𝛽 − 𝛿)2 − 4𝜔[𝛿(1 + 𝛼𝜉) − 𝛽𝜉]2

2𝜔[𝛿(1 + 𝛼𝜉) − 𝛽𝜉]
,

(5.6)ỹ =

(
(1 + 𝛼𝜉)(𝜔x̃2 + 1) + x̃

)(
1 −

x̃

𝛾

)
.

Table 4   Global dynamics of the additional food provided system under Condition-III

Regions Nature of the equilibria

III-1 III-2 III-3 III-4 E
∗
0

E
∗
1

E
∗
2

E
∗
3

A1 B1 C1 D1 Saddle Saddle Stable –
– – C2 D2 Saddle Saddle GAS Limit Cycle –
– – C3 – Saddle Saddle Stable –
A2 B2 C4 D3 Unstable Saddle – –
A3 – – – Unstable Saddle – –
A4 B3 C5 D4 Unstable Saddle – –
A5 B4 C6 D5 Saddle Stable – –
– – C7 – Saddle Stable Stable Saddle
A6 B5 – D6 Saddle Stable – –
A7 B6 C8 D7 Saddle Saddle Stable –
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Let G(x) =
(
3�x2(1 + ��) + 2x(1 − ��(1 + ��)) + (1 + ��) − �

)
.

If G(x̃) < 0 then this equilibrium (x̃, ỹ) can be reached asymptotically. On the 
other hand, if G(x̃) > 0 then the equilibrium would be unstable, as a result, solu-
tions in the vicinity of this equilibrium approach a limit cycle surrounding (x̃, ỹ) . 
For the given system parameters �, � and � and the desired equilibrium (x̃, ỹ) , the 

Fig. 5   Additional food provided system (2.18)–(2.19) for � = 2.2, � = 0.4, � = 1.4654, 3.235, &

� = 1.4388, 0.9052. The parameters chosen satisfy the condition IV-1, IV-2 in Table 1. This figure rep-
resents the division of control parameter space by the discriminant curve (DISC) (5.4), the prey elimina-
tion curve (PEC) (5.1), the Hopf bifurcation curve (HBC) (5.3), the transcritical bifurcation curve (TBC) 
(5.2) and the curve � =

�

�
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components of intersection of these two curves (5.5)–(5.6) give us the values of � 
and � for which the considered system admits (x̃, ỹ) as its equilibrium.

The analysis also suggests that, for an appropriate choice of additional food, 
the equilibrium (x̃, ỹ) will remain as a saddle throughout its existence, provided, 
the values of � and � are chosen to satisfy the following equations (for a given 
choice of �, �, � and (x̃, ỹ),

(5.7)x̃ =
(𝛽 − 𝛿) +

√
(𝛽 − 𝛿)2 − 4𝜔[𝛿(1 + 𝛼𝜉) − 𝛽𝜉]2

2𝜔[𝛿(1 + 𝛼𝜉) − 𝛽𝜉]
,

(5.8)ỹ =

(
(1 + 𝛼𝜉)(𝜔x̃2 + 1) + x̃

)(
1 −

x̃

𝛾

)
.

Table 5   Global dynamics of the 
additional food provided system 
under Condition-IV

Regions Nature of the equilibria

IV-1 IV-2 E
∗
0

E
∗
1

E
∗
2

E
∗
3

A1 B1 Saddle Saddle GAS Limit Cycle −
A2 B2 Saddle Saddle Stable −
A31 B31 Unstable Saddle − −
A32 B32 Unstable Saddle − −
A33 B4 Saddle Stable − −
A5 B5 Saddle Stable Stable Saddle
− B6 Saddle Saddle Stable −
A6 − Saddle Stable GAS Limit Cycle Saddle

Homoclinic Orbit
A7 B7 Saddle Saddle GAS Limit Cycle −
A8 − Saddle Saddle Stable −

Table 6   Global dynamics of the 
additional food provided system 
under Condition-V

Regions Nature of the equilibria

V-1 V-2 E
∗
0

E
∗
1

E
∗
2

E
∗
3

A1 B1 Saddle Stable – –
A2 B2 Saddle Stable GAS Limit Cycle Saddle

Homoclinic Orbit
A3 B3 Saddle Stable GAS Limit Cycle Saddle

Homoclinic Orbit
A4 B4 Saddle Saddle GAS Limit Cycle –
A5 B5 Saddle Saddle Stable –
A6 B6 Unstable Saddle – –
A7 B7 Unstable Saddle – –
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6 � Consequences of Providing Additional Food to Predators

It can be seen from the above discussions that the quality of additional food � and 
its relation with respect to �

�
 plays a crucial role in determining the dynamics of the 

biosystem. As in Srinivasu et al. (2018), we characterize the additional food to be of 
high quality if 𝛼 <

𝛽

𝛿
 and it is of low quality if 𝛼 >

𝛽

𝛿
.

Fig. 6   Additional food provided system (2.18)–(2.19) for � = 2.2, � = 0.4, � = 3.8618, 4.6912 &

� = 1.6399, 0.94023. The parameters chosen satisfy the condition V-1, V-2 in Table 3. This figure rep-
resents the division of control parameter space by the discriminant curve (DISC) (5.4), the prey elimina-
tion curve (PEC) (5.1), the Hopf bifurcation curve (HBC) (5.3), the transcritical bifurcation curve (TBC) 
(5.2) and the curve � =

�

�
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If the system (2.6)–(2.7) does not support the predator–prey coexistence initially 
(i.e.,  the system does not admit an interior equilibrium in the absence of additional 
food), then coexistence cannot be achieved by providing low quality additional food 
to predators. Whereas provision of additional food of high quality with supply level 
satisfying 𝛿(w𝛾2+1)−𝛾(𝛽−𝛿)

(w𝛾2+1)(𝛽−𝛼𝛿)
< 𝜉 <

𝛿

𝛽−𝛿𝛼
 brings coexistence into the system (refer 

Table 3).
On the other hand, if the system supports the stable coexistence of predator–prey, 

then on provision of additional food of high quality with supply level satisfying 
𝜉 >

𝛿

𝛽−𝛿𝛼
 eradicates the prey from the ecosystem. Also it possible to get in oscilla-

tions in the system for � satisfying the Hopf bifurcation Eq. (5.3) which can be 
removed on further increase of supply of additional food. In this scenario on provi-
sion of low quality additional food the second interior equilibrium E∗

3
 can be got into 

existence for supply of food for 𝜉 >
𝛿(w𝛾2+1)−𝛾(𝛽−𝛿)

(w𝛾2+1)(𝛽−𝛼𝛿)
 and also the stable coexistence 

can be removed for the same supply level (refer Table 4).
If the system (2.6)–(2.7) is initially oscillatory then on provision of high qual-

ity additional food with supply level of � above the Hopf bifurcation curve (5.3) 
the system can be stabilized. In this case on provision of low quality additional 
food we have multiple things happening. For supply level of � above the Hopf 
bifurcation curve (5.3) the system can be stabilized. For 𝜉 >

𝛿(w𝛾2+1)−𝛾(𝛽−𝛿)

(w𝛾2+1)(𝛽−𝛼𝛿)
, the 

axial equilibrium E∗
1
 can be made stable and a homoclinic orbit can be got into 

existence. Also the second interior equilibrium E∗
3
 can be got into existence (refer 

Table 5).
Now let us consider the case where initially the axial equilibrium E∗

1
 is stable and 

there are oscillations in the system. Then on provision of low quality additional food 
for supply level 𝜉 >

−𝛽+(1+2
√
w)𝛿

2
√
w(𝛽−𝛿𝛼)

, the interior equilibria vanish. While on the other 
hand provision of additional food of high quality leads to very interesting scenarios. 
For supply level 𝜉 >

𝛿(w𝛾2+1)−𝛾(𝛽−𝛿)

(w𝛾2+1)(𝛽−𝛼𝛿)
, the axial equilibrium E∗

1
 can be made to loose its 

stable nature and the second interior equilibria E∗
3
 can be made to vanish. Also, for 

supply level � above the Hopf bifurcation curve (5.3) the oscillations can be removed 
and stable coexistence can be got in (refer Table 6).

Table 7   Global dynamics of the 
Additional food provided system 
under Condition-VI

Regions Nature of the equilibria

VI-1 VI-2 E
∗
0

E
∗
1

E
∗
2

E
∗
3

A1 B1 Saddle Stable – –
A2 B2 Saddle Stable Stable Saddle
A3 B3 Saddle Stable Stable Saddle
A4 – Saddle Saddle GAS Limit Cycle –
A5 B4 Saddle Saddle Stable –
A6 – Saddle Saddle Stable –
A7 B5 Unstable Saddle – –
A8 B6 Unstable Saddle – –
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Finally let us consider the case where initially the axial equilibrium E∗
1
 is stable 

and there is stable coexistence of predator–prey. Then on provision of low quality 
additional food for supply level 𝜉 >

−𝛽+(1+2
√
w)𝛿

2
√
w(𝛽−𝛿𝛼)

, the interior equilibria vanish. In 
this case on provision of high quality additional food we have interesting things hap-
pening. For supply level 𝜉 >

𝛿(w𝛾2+1)−𝛾(𝛽−𝛿)

(w𝛾2+1)(𝛽−𝛼𝛿)
, the axial equilibrium E∗

1
 can be made to 

loose its stable nature and the second interior equilibria E∗
3
 can be made to vanish. 

Fig. 7   Additional food provided system (2.18)–(2.19) for � = 2.2, � = 0.4, � = 4.894, 4.967 &

� = 0.7216, 0.6166. The parameters chosen satisfy the condition VI-1, VI-2 in Table 3. This figure repre-
sents the division of control parameter space by the discriminant curve (DISC) (5.4), the prey elimination 
curve (PEC) (5.1), the Hopf bifurcation curve (HBC) (5.3), the transcritical bifurcation curve (TBC) (5.2) 
and the curve � =

�

�
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Also, for supply level � above the Hopf bifurcation curve (5.3) oscillations can be 
got into the system and after the second Hopf bifurcation stable coexistence can be 
got in (refer Table 7).

7 � Time Optimal Control Studies

To overcome the limitations of asymptotics, we do the time optimal control studies 
in this section.

7.1 � Existence of Optimal Solution

In this subsection we establish the existence of optimal solution.
Let the initial state and the desired terminal state of the system (2.18)–(2.19) be 

(x0, y0) and (x̄, ȳ). Our goal is to drive the system (x0, y0) to (x̄, ȳ) in minimum time. 
Here the control parameters � and � can vary in [�min, �max] and [�min, �max] respec-
tively. Thus the problem can be considered as a time optimal control problem with 
(�(t), �(t)) as control variables which can be stated as follows:

Clearly, the above problem (7.1) is a Mayer problem of minimum time (Cesari 
1983). We now establish the existence of an optimal solution for (7.1) using Fillipov 
existence theorem for Mayer problem (Cesari 1983). Comparing the above optimal 
control problem with that of General form of Mayer time optimal control problem 
(Cesari 1983), we have n = 2,m = 2 and X(t) = (x(t), y(t)), u(t) = (�(t), �(t)) with 
f (t,X(t), u(t)) = (f1(t, x, y, �, �), f1(t, x, y, �, �)) where

The boundary conditions are e[x] = (0, x0, y0, T , x, y).

Here, Ω =

(
(x, u = (�, �))|(x, u) is an admissible pair of the system (2.18)–(2.19)

)
.

(7.1)

����

�min ≤ �(t) ≤ �max

�min ≤ �(t) ≤ �max

Subject to:

dx

dt
= x

(
1 −

x

�

)
−

[
xy

(1 + ��)(�x2 + 1) + x

]

dy

dt
= �

[
x + �(�x2 + 1)

(1 + ��)(�x2 + 1) + x

]
y − �y

(x(0), y(0)) = (x0, y0), (x(T), y(T)) = (x, y)

f1 =x

(
1 −

x

�

)
−

[
xy

(1 + ��)(�x2 + 1) + x

]
,

f2 =�

[
x + �(�x2 + 1)

(1 + ��)(�x2 + 1) + x

]
y − �y.
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Theorem 7.1  If Ω is non-empty then the time optimal control problem (7.1) has an 
absolute minimum.

Proof  We prove this result by showing that all the conditions of Fillipov Existence 
theorem are satisfied. We see that for 𝛼 <

𝛽𝜉−𝛿

𝛿𝜉
 any solution initiating in the positive 

quadrant reaches y-axis in a finite time. Hence, we can assume that the set A(the set 
of admissible equilibria of (7.1)) subset of ℝ1+2 to be compact. To justify the exist-
ence of optimal solution it is sufficient to show that for (t, x, y) ∈ A the sets

Q(t, x, y) =

(
(J

1
, J

2
)|J

1
= f

1
(t, x, y, �, �), J

2
= f

2
(t, x, y, �, �), � ∈ [�min, �max], � ∈ [�min, �max]

)
 

are convex, where

For, Let us consider

This implies that

Hence, we have,

The above linear relation between J1 and J2 imply that Q(t, x, y) are segments that 
are convex. Thus if Ω is a non empty then the time optima control problem (7.1) has 
an absolute minimum. 	�  ◻

f1 =x

(
1 −

x

�

)
−

[
xy

(1 + ��)(�x2 + 1) + x

]
,

f2 =�

[
x + �(�x2 + 1)

(1 + ��)(�x2 + 1) + x

]
y − �y.

z1 =f1(t, x, y, �, �)

=x

(
1 −

x

�

)
−

[
xy

(1 + ��)(�x2 + 1) + x

]

[
y

(1 + ��)(�x2 + 1) + x

]
=

[
1 −

x

�

]
−

z1

x

z2 =f2(t, x, y, �, �)

=

[
�xy

(1 + ��)(�x2 + 1) + x

]
+

[
��(�x2 + 1)

(1 + ��)(�x2 + 1) + x

]
y − �y

= − �

[
1 +

�

x
(�x2 + 1)

]
z1 +

[
�(1 −

x

�
)(x + �(�x2 + 1))

]
− �y
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7.2 � Characterizations of Optimal Control Functions

In this subsection we characterize the optimal control functions using the Pontry-
agins maximum principle (Liberzon 2012).

We first define Hamiltonian for the system (7.1) as,

Here � = (�1, �2) is the adjoint variable.

Theorem 7.2  Let �∗ and �∗ be optimal control functions and x∗ and y∗ be corre-
sponding sate variables of the control problem (7.1). Then there exists adjoint vari-
able � = (�1, �2) ∈ ℝ

2 which satisfy the following canonical equations.

 With transversality conditions �1(T) = 0 = �2(T).
The corresponding optimal controls �∗ and �∗ are given as

Proof  Let �∗ and �∗ be the given optimal controls and x∗ , y∗ be corresponding state 
variables of system (7.1) that minimizes cost functional in (7.1). Then by Pontry-
agins maximum principle, there exists adjoint variables �1 and �2 (costate vector) 
which satisfy the canonical equations, d�1

dt
= −

�H

��
 and d�2

dt
= −

�H

��
 with transversality 

conditions �1(T) = 0 = �2(T). Here Hamiltonian H is given as in (7.2).
Hence,

(7.2)H(x, y, �, �, �) = (�1, �2) = �1
dx

dt
+ �2

dy

dt

d�1

dt
= − �1

(
1 −

2x

�
+

x(1 + 2�x(1 + ��))y

(x + (1 + �x2)(1 + ��))2
−

y

(x + (1 + �x2)(1 + ��))

)

+ �2

(
�(x + (1 + �x2)�)(1 + 2�x(1 + ��))y

(x + (1 + �x2)(1 + ��))2
−

�(1 + 2�x�)y

x + (1 + �x2)(1 + ��)

)

d�2

dt
=�1

x

x + (1 + �x2)(1 + ��)
− �2

[
− � +

�(x + (1 + �x2)�)

x + (1 + �x2)(1 + ��)

]

(7.3)�∗ =min

{
max

{
0,

�2�(x + (1 + �x2))

�2�x − �1x

}
, �max

}

(7.4)�∗ =min

{
max

{
0,

�1x − �2�x

�2�(x + (1 + �x2))

}
, �max

}
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which imply that

Now from optimality condition, we have,
�H

�ui
= 0 at u1 = �∗ and u2 = �∗

d�1

dt
= −

�

�x

[
�1

[
(x(1 −

x

�
) −

xy

x + (1 + wx2)(1 + ��)

]

+ �2

[
− �y +

�(x + (1 + �x2)�)y

x + (1 + �x2)(1 + ��)

]]

d�2

dt
= −

�

�y

[
�1

[
(x(1 −

x

�
) −

xy

x + (1 + wx2)(1 + ��)

]

+ �2

[
− �y +

�(x + (1 + �x2)�)y

x + (1 + �x2)(1 + ��)

]]

d�1

dt
= − �1

(
1 −

2x

�
+

x(1 + 2�x(1 + ��))y

(x + (1 + �x2)(1 + ��))2
−

y

(x + (1 + �x2)(1 + ��))

)

+ �2

(
�(x + (1 + �x2)�)(1 + 2�x(1 + ��))y

(x + (1 + �x2)(1 + ��))2
−

�(1 + 2�x�)y

x + (1 + �x2)(1 + ��)

)

d�2

dt
=�1

x

x + (1 + �x2)(1 + ��)
− �2

[
− � +

�(x + (1 + �x2)�)

x + (1 + �x2)(1 + ��)

]

�H

�u1

||||(u1=�∗)
=

�

��

[
�1

[
(x(1 −

x

�
) −

xy

x + (1 + �x2)(1 + ��)

]

+ �2

[
− �y +

�(x + (1 + �x2)�)y

x + (1 + �x2)(1 + ��)

]]

=
�1x(1 + �x2)�y

(x + (1 + �x2)(1 + ��))2

+
�2�(1 + �x2)�(x + (1 + �x2)�)y

(x + (1 + �x2)(1 + ��))2
= 0

�H

�u2

||||(u2=�∗)
=

�

��

[
�1

[
(x(1 −

x

�
) −

xy

x + (1 + �x2)(1 + ��)

]

+ �2

[
− �y +

�(x + (1 + �x2)�)y

x + (1 + �x2)(1 + ��)

]]

=�1
�x(1 + �x2)y

(x + (1 + �x2)(1 + ��))2

+ �2

[
−

��(1 + �x2)y(x + (1 + �x2)�)

(x + (1 + �x2)(1 + ��))2

+
�(1 + �x2)y

x + (1 + �x2)(1 + ��)

]
= 0
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Thus we get �∗ =
�2�(x+(1+�x

2))

�2�x−�1x
 and �∗ = �1x−�2�x

�2�(x+(1+�x
2))
.

Using Characteristics of Control space U and above discussion the optimal con-
trols �∗ and �∗ are given as in (7.3) and (7.4). It is observed that the optimal controls 
depend on prey population alone. 	�  ◻

8 � Discussion and Conclusions

In this article we study the additional food provided predator–prey systems where 
Holling type IV functional response has been assumed for the predators (incor-
porating the inhibitory effect of the prey) and also predators are assumed to be 
non optimal foragers. Initially we discuss the positivity, boundedness and uni-
form persistence of the system (2.6)–(2.7). We later discuss the local and global 
dynamics. The quality of the additional food is characterized by its nutritive value 
and handling time. It is termed as low quality if the maximum growth rate of the 
predator due to consumption of additional food is less than the natural death rate 
of the predator and it is of high quality if the above mentioned relation reverses. 
The system analysis bifurcates the qualitative study into two significant cases that 
depend on the quality of the additional food as presented below.

Case 1  (low quality additional food) In this case, we clearly have either the handling 
time for the predator of the additional food to be higher or the nutritive value of the 
additional food to be lower than that of the target prey.

In this case we find that, if initially the predators are unable to survive due to the 
group defense (inhibitory effect) of the prey, then providing any amount of addi-
tional food of low quality to predators can not bring in coexistence between the prey 
and the predator. This is due to the fact that, if in the absence of additional food 
itself the predators are not able to predate on the prey, then providing additional food 
of lower quality will not improve the sustenance of the predators. Moreover the pres-
ence of additional food distracts the predators (from the target prey) which are time 
limited. So in this situation controlling the prey using biological means cannot be 
achieved.

On the other hand if the system supports the stable coexistence of predator–prey, 
then on provision of additional food the stable coexistence can be removed which 
can be attributed to the low quality nature of the additional food supplied. If initially 
the system is oscillatory then by providing additional food with relatively higher 
handling time it is possible to compress these oscillations and even eliminate them 
bringing in the stable coexistence. In the case wherein the system is initially prey 
dominated and there are oscillations, then on the supply of low quality additional 
food the oscillations can be made to die out but stable coexistence of predator–prey 
cannot be brought in. The system continues to remain prey dominated because of 
the inhibitory effect of the prey. Finally we consider the case where the system is 
initially prey dominated in one part and there is stable coexistence of the preda-
tor–prey in the other remaining part of the system. Then on provision of low qual-
ity additional food the stable coexistence can be removed and the biosystem can be 
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made prey dominated. Again this can be attributed to the low quality nature of the 
additional food.

These results supports the inferences in Putman and Staines (2004) which states 
that “the red deer Cervus elaphus may develop a reliance on the food supplement 
provided, reducing intake of natural forages to near zero; where feed provided is less 
than 100 percent of daily requirement, these animals may regularly lose, rather than 
gain condition. Also, it is stated that provision of low quality food supplements such 
as grain, root crops which are deficient in fiber may adversely affect the water bal-
ance of predators. It has been observed that winter feeding did not produce calves 
with greater birth weights than those reported for animals which are not given sup-
plementary feed.” Also in Glaser (1983) it has been mentioned that “Weight of sup-
plementally fed stags in contrast showed significant decrease, with mean weights of 
adult stags, male calves coming down.”

Case 2  (high quality additional food) If the system does not support coexistence 
between the prey and predator in the absence of additional food due to the inhibi-
tory effect of the prey, then coexistence can be brought into the system by provid-
ing additional food of high quality. This coexistence can continue to remain with 
increased additional food level till the prey vanishes from the system.

On the other hand if the system supports the stable coexistence of predator–prey, 
then on provision of additional food, the stable coexistence can continue to remain 
till the prey vanishes from the system or this stable coexistence can depend on the 
quality and quantity of the additional food. If the quality of additional food is greater 
than a critical �′ then the stable coexistence will continue to remain with increased 
additional food level till the prey vanishes from the system.

In case if the quality of the additional food is less than the said critical value 
�

′

, provision of additional food, induces oscillations into the system. With further 
increase in the quantity of additional food, the system once again stabilizes at low 
prey equilibrium density. While retaining the stability, this low equilibrium value of 
the prey continues to decrease with increase in the additional food quantity and the 
prey goes to extinction for a specific level of additional food supply. This behavior 
may be attributed to the fact that provision of additional food of very high qual-
ity increases the fecundity of the predators which in turn increases the predation 
pressure on the prey. Also, the abundance of predators in the environment and their 
dependence on both additional food as well as prey brings in oscillations into the 
system. Beyond a certain level of food supply, the system gets stabilized again. Fur-
ther increase in the quantity of additional food increases the predators which in turn 
leads to the extinction of the prey population. Thus the prey can be controlled bio-
logically in this case.

In the other case if the system admits an unstable interior equilibrium initially, 
then on supply of additional food, on increase in the quantity the oscillations in the 
system can be subdued and stable coexistence can be achieved. Continuous supply 
of additional food further, will extinct the prey, thereby achieving the biological 
control. The initial oscillations in the system can be attributed to the relatively high 
carrying capacity of the system with respect to the earlier cases. Due to the continu-
ous supply of high quality additional food from hereon, the predators fecundity and 
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ferocity increases thereby getting the stable coexistence. As in the earlier situation 
further increase in the quantity of additional food leads to the extinction of the prey 
population.

We now consider the case when the system is initially prey dominated in one part 
and admits oscillations in the other remaining part. Then on supply of additional 
food the system can be made non prey dominated and on further provision even the 
oscillations can be removed getting in the stable coexistence of the predator–prey. 
Continuous supply of additional food further, will extinct the prey. Thus the system 
can be biologically conserved in this case which can be attributed to the high quality 
additional food. Finally in the case wherein the system is initially prey dominated in 
one part and admits stable coexistence of predator–prey in the other remaining part, 
we observe that on provision of additional food the system can be made non prey 
dominated. On further provision of additional food, this stable coexistence continues 
to remain till the prey gets extinct or oscillations can get induced into the system. 
With further increase in the quantity of additional food, the system once again stabi-
lizes at low prey equilibrium density. Continuous supply of additional food further, 
will extinct the prey. This behaviours can be attributed to the high quality nature of 
additional food.

These results supports the inferences in Putman and Staines (2004) which states 
that “good quality of additional food supplements such as hay if provided ad libi-
tum will be sufficient to maintain its body condition over winter.” In Kozak (1994, 
1995) it is stated that “In experimental conditions, food supplemented wapitit hinds 
maintained body condition and body mass overwinter better than unsupplemented 
animals. Food supplementation over winter could increase milk production of lact-
ing hinds thus increasing calf growth rates.”

We finally study time optimal control problems to overcome the limitations of 
asymptotics. It is proved that the optimal controls depend on prey population alone. 
We conclude that with provision of additional food as a tool, a predator–prey system 
(with inhibitory effect of the prey towards predator) can be controlled and steered to 
a desirable state. With appropriate choice on the quality and quantity of additional 
food, the predator–prey system can be stabilized at a state with low prey and high 
predator densities or high prey and low predator densities. It is also possible to elim-
inate either of the interacting species through provision of suitable additional food 
to predators. This analysis offers eco friendly strategies to manage a predator–prey 
system. The vital role of the quality and quantity of the additional food in the system 
dynamics cautions the manager on the choice of the additional food for realizing the 
goal in the biological conservation programme. An arbitrary choice of the additional 
food can result in completely opposite results to the desired ones.
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