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Abstract
In this paper, we revisit a host–parasite system with multiple parasite strains and 
superinfection proposed by Nowak and May (Proc R Soc Lond B 255(1342):81–
89, 1994), and study its global dynamics when we relax the two strict conditions 
assumed therein. As for system with two parasite strains, we derive that the basic 
reproduction number R0 is the threshold condition for parasite extinction and the 
invasion reproduction number Rj

i
(i, j = 1, 2, i ≠ j) is the subthreshold condition for 

coexistence of two parasite strains. As for system with three parasite strains, we 
are surprised to discover the global stability of parasite-free and coexistence equi-
librium, which is distinct from the previous result. Furthermore, for system with n 
strains, we obtain the global asymptotical stability of the parasite-free equilibrium, 
conjecture a general result on the global stability of coexistence equilibrium and 
provide two numerical examples to testify our conjecture.
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1  Introduction

It is well known that humans, animals and plants can be multiply infected by dif-
ferent genotypes of the same parasite species due to parasite interactions (Read 
and Taylor 2001; Hood 2003; Stunzenas 2001; Futuyma 2013). Such interactions 
between multiple parasite strains within the host are complex and may directly 
affect the transmission success of parasites, implying that these interactions have 
important effects on epidemiology, such as predicting the persistence and spread 
of diseases in natural systems. Because of this, mathematical models have been 
developed to explore the infection dynamics (May and Anderson 1990; Frank 
1992).

During the past three decades, many experts have dedicated to understanding 
multiple infections for their potential effects on the evolution of parasite viru-
lence [which has been defined as the parasite-induced mortality of the host (Bull 
1994)], and numerous mathematical models have been proposed to emphasize 
this point (May and Anderson 1990; Frank 1992; Bremermann and Thieme 1989; 
Antia et  al. 1994). It is argued that a parasite strain with higher virulence may 
have a competitive advantage over less virulent strains within the host. How-
ever, those models in general ignore the possibility of coinfection (implying that 
hosts may be infected by multiple parasite strains at one time) and superinfec-
tion (implying that the second strain can infect hosts already infected by the first 
strain). Models considering coinfection or superinfection have emerged more 
complex phenomena than those parasite strains occurring independently (Mos-
quera and Adler 1998; Pugliese 2002; Martcheva and Thieme 2003; Iannelli et al. 
2005; Huijben et al. 2010; Choisy and de Roode 2010; Xu et al. 2012; Denysiuk 
et al. 2017). For example, Pugliese (2002) found that parasite strains with super-
infection can coexist when hosts are density-dependent.

Nowak and May in (1994) discussed the important effects of superinfection on 
the evolution of parasite virulence by proposing the following multi-strain model.

where x and yi denote the uninfected and infected hosts, respectively. All parameters 
k, u, �i, vi, s are positive. k is the constant immigration rate of uninfected hosts, u is 
their natural mortality, �i shows the infectivity of parasite strain i and vi defines the 
virulence of strain i, implying the parasite-induced mortality. The parameter s stands 
for the superinfection rate. In particular, if s > 1 then superinfection is more likely to 
occur than the regular infection while if 0 < s < 1 then superinfection is less likely 
to occur than the regular infection. If s = 0 there is no superinfection. The author 
provided the simple mathematical analysis based on the following assumptions.

(1)

⎧⎪⎪⎨⎪⎪⎩

x� = k − ux −
n∑
j=1

�jxyj,

y�
i
= �ixyi − (u + vi)yi + s�iyi

i−1∑
j=1

yj − syi

n∑
j=i+1

�jyj, i = 1, 2,… , n,
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	 (i)	 Assuming that the immigration of uninfected hosts exactly balances the death 
of uninfected or infected hosts, that is, k = ux + uy +

n∑
i=1

viyi . Without loss of 

generality, set x + y = 1 , where y =
n∑
i=1

yi.

	 (ii)	 Assuming that all parasite strains have the same infectivity � and differ only 
in their virulence, vi.

Under the above assumptions, Nowak and May in (1994) constructed a specific 
equilibrium in a recursive “bottom-up” way. Furthermore, they showed the complex 
dynamics for cases of n = 2 and n = 3 via simulations, rather than mathematical 
analysis.

Note that above assumptions are quite restrictive and even unreasonable. For nat-
ural system, the immigration of uninfected hosts does not always exactly balances 
the death of uninfected or infected hosts. Furthermore, parasite strains with different 
infectivity are widely found in the natural world and ecosystem. Many papers have 
pointed out this, see Pugliese (2002), Alizon (2013), Boldin and Diekmann (2008) 
and Zhang et al. (2007). It is of interest to investigate the model relaxing those strict 
assumptions (i)–(ii), i.e., k is a positive constant, the total proportion or number of 
hosts is variable and the infectivity of parasite strains are different. What will hap-
pen to the dynamical behaviors of systems with two parasite strains and three para-
site strains, respectively?

Motivated by the above ideas, firstly, we analyze the global dynamical behaviors 
of system (1) with two parasite strains which takes the form as follows.

And then, we investigate the global dynamical behaviors of system (1) with three 
parasite strains which can be written as

Furthermore, we make some comparisons with the previous phenomena observed 
in Nowak and May (1994). To the best of our knowledge, no work has been done for 
system (2) or system (3) without the strict assumptions (i)–(ii).

Lastly, we study the global dynamical behaviors of the full system (1) concerning 
on the parasite-free and coexistence of n parasite strains equilibria.

This paper proceeds as follows. We introduce the basic and invasion reproduction 
numbers, and make a fully mathematical analysis on the global stability of system 
(2), and present some numerical simulations showing the effects of superinfection 

(2)

⎧⎪⎨⎪⎩

x� = k − ux − �1xy1 − �2xy2,

y�
1
= �1xy1 − (u + v1)y1 − s�2y1y2,

y�
2
= �2xy2 − (u + v2)y2 + s�2y1y2.

(3)

⎧⎪⎨⎪⎩

x� = k − ux − �1xy1 − �2xy2 − �3xy3,

y�
1
= �1xy1 − (u + v1)y1 − s�2y1y2 − s�3y1y3,

y�
2
= �2xy2 − (u + v2)y2 + s�2y1y2 − s�3y2y3,

y�
3
= �3xy3 − (u + v3)y3 + s�3y1y3 + s�3y2y3.
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on the dynamics in the next section. In Sect.  3, we are surprised to discover the 
global stability of parasite-free and coexistence equilibrium for system (3), which 
is distinct from the previous result. As for the general system (1), in Sect.  4, we 
show the global stability of parasite-free equilibrium and the existence of coexist-
ence equilibrium, and propose a conjecture on the global stability of coexistence 
equilibrium, which is illustrated by two numerical examples. Finally, we end this 
paper with discussions and conclusions in Sect. 5.

2 � Dynamical Behaviors of System (2)

We set the initial conditions as x(0) > 0 and yi(0) ≥ 0 for i = 1, 2. Obviously, solu-
tions of system (2) are defined on t ∈ [0,∞) and remain nonnegative for all t ≥ 0. 
Let n = x + y1 + y2 denote the total population size of the hosts. Thus we obtain that

It is easy to check that solutions of system (2) are nonnegative and bounded in the 
following invariant set

For convenience, we introduce an equivalent Routh-Hurwitz criterion for 3 × 3 
real matrix. Let J be a 3 × 3 real matrix and have the following form

Its second additive compound matrix (Li and Wang 1998; Li et al. 1999) is

We state the following equivalent Routh-Hurwitz theorem.

Lemma 1  (Liu et al. 2011) J is stable (i.e. each eigenvalue of J has negative real 
part) if and only if tr(J) < 0, det(J) < 0 , and det(J[2]) < 0.

2.1 � The Basic Reproduction Number and Existence of Equilibria

In this subsection, we introduce the basic reproduction number and two invasion 
reproduction number, and show the existence of equilibria for system (2).

n� ≤ k − un − (v1y1 + v2y2) ≤ k − un.

� =
{
(x, y1, y2) ∶ 0 ≤ x + y1 + y2 ≤

k

u

}
.

J =

⎡⎢⎢⎣

a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤⎥⎥⎦
.

J[2] =

⎡⎢⎢⎣

a11 + a22 a23 −a13
a32 a11 + a33 a12
−a31 a21 a22 + a33

⎤⎥⎥⎦
.
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It is easy to obtain that system (2) always exists a parasite-free equilibrium 
E0(x0, 0, 0) , where x0 = k∕u . According to the concept of next generation matrix 
(Diekmann et  al. 1990) and reproduction number presented in van den Driessche 
and Watmough (2002), it is easy to obtain the basic reproduction number for system 
(2)

Here, Ri is the basic reproduction number for strain i, i = 1, 2 . �ik∕u denotes the 
number of susceptible hosts that will become infected per unit of time. Note that the 
mean life span of strain i within a host is 1∕(u + vi) . Thus, Ri denotes the number of 
secondary infections produced by an infected parasite during its lifespan.

From system (2), we can obtain that, besides E0 , the following exclusive equilib-
ria are feasible under the conditions on Ri, (i = 1, 2) . Namely, we have

	 (i)	 The strain one exclusive equilibrium Ē1(x̄1, ȳ1, 0) exists if and only if R1 > 1 , 
where x̄1 = k∕(uR1) and ȳ1 = u(R1 − 1)∕𝛽1.

	 (ii)	 The strain two exclusive equilibrium Ē2(x̄2, 0, ȳ2) exists if and only if R2 > 1 , 
where x̄2 = k∕(uR2) and ȳ2 = u(R2 − 1)∕𝛽2.

Now, we show that system (2) has a unique coexistence equilibrium E∗(x∗, y∗
1
, y∗

2
) 

under some suitable conditions. Two other reproduction numbers, namely, the inva-
sion reproduction numbers R1

2
 and R2

1
 , are introduced. The invasion reproduction 

number of strain one in our case is given by

Obviously, R2

1
 is a decreasing function of s. Thus, superinfection decreases the 

invasion capability of strain one. R2

1
 has a clear biological interpretation. Consider 

the case when one infected host with strain one is introduced into a population in 
which hosts with strain two have sizes x̄2 and ȳ2 . We note that 𝛽1x̄2∕(u + v1) is the 
number of secondary infections produced by the uninfected hosts with strain two, 
and s𝛽2ȳ2∕(u + v1) denotes the number that one infected host with strain one can be 
superinfected into the infected hosts with strain two. Thus, R2

1
 denotes the number of 

secondary infections that one infected individual with strain one will produce in a 
population in which hosts with strain two is at equilibrium Ē2(x̄2, 0, ȳ2).

Analogously, we obtain the invasion reproduction number of strain two as

Obviously, R1

2
 is an increasing function of s. Therefore, superinfection increases 

the invasion capability of strain two. R1

2
 has a clear biological interpretation and it 

gives the number of secondary infections that one infected individual with strain 
two will produce in a population in which hosts with strain one is at equilibrium 
Ē1(x̄1, ȳ1, 0).

R0 = max{R1,R2}, Ri =
1

u + vi
⋅

�ik

u
, i = 1, 2.

(4)R2

1
=

𝛽1

u + v1
⋅ x̄2 −

s𝛽2

u + v1
⋅ ȳ2.

(5)R1

2
=

𝛽2

u + v2
⋅ x̄1 +

s𝛽2

u + v2
⋅ ȳ1.
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For convenience, the invasion reproduction numbers can be rewritten as

Now, we show that those two invasion reproduction numbers determine the exist-
ence of coexistence equilibrium E∗ . In fact, solving system (2) for non-trivial x∗ and 
y∗
1
, y∗

2
 , we obtain that E∗(x∗, y∗

1
, y∗

2
) , where

The coexistence equilibrium E∗ is feasible if and only if x∗ > 0 , 
(u + v2) − 𝛽2x

∗ > 0 and 𝛽1x∗ − (u + v1) > 0 are satisfied. That is,

Actually, we can check that x∗ > (u + v1)∕𝛽1 is equivalent to the inequality R1

2
> 1 

while x∗ < (u + v2)∕𝛽2 is equivalent to the inequality R2

1
> 1 , which are shown in 

Appendix A. Also, one can see the another method to show the existence of E∗ , 
please refer to Appendix D. From the above discussions, we summarize them in the 
following theorem.

Theorem 1  For system (2),

	 (i)	 there always exists a parasite-free equilibrium E0;
	 (ii)	 the strain one exclusive equilibrium Ē1 exists if and only if R1 > 1;
	 (iii)	 the strain two exclusive equilibrium Ē2 exists if and only if R2 > 1;
	 (iv)	 the unique coexistence equilibrium E∗ exists if and only if R2

1
> 1 and R1

2
> 1.

Remark 1  Nowak and May in (1994) only analyzed the existence of parasite-free 
equilibrium and two boundary equilibria. Here, we introduced two invasion repro-
duction numbers and pointed out the existence of coexistence equilibrium.

2.2 � Stability of Equilibria

In this subsection, we concern on the local and global stability of all possible equi-
libria by employing more modern matrix stability and Lyapunov functions.

Concerning on the local stability of all possible equilibria, we have the following 
results.

Theorem  2  The parasite-free equilibrium E0 is locally asymptotically stable if 
R0 < 1 , and it is unstable if R0 > 1.

For the proof of Theorem 2, please see Appendix B.

(6)R2

1
=

R1

R2

−
s�2

u + v1
⋅

u

�2
(R2 − 1), R1

2
=

R2

R1

+
s�2

u + v2
⋅

u

�1
(R1 − 1).

x∗ =
ks�2

u

k
(u + v2)(u + v1)(R1 − R2) + us�2

, y∗
1
=

(u + v2) − �2x
∗

s�2
, y∗

2
=

�1x
∗ − (u + v1)

s�2
.

(7)
u + v1

𝛽1
< x∗ <

u + v2

𝛽2
.
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Theorem 3  Assume that R1 > 1 . Then Ē1 is locally asymptotically stable if R1

2
< 1 , 

and it is unstable if R1

2
> 1 , where R1

2
 is defined in (5).

For the proof of Theorem 3, please see Appendix C. Similarly, we have the con-
clusion on the local stability of Ē2.

Theorem 4  Assume that R2 > 1 . Then Ē2 is locally asymptotically stable if R2

1
< 1 , 

and it is unstable if R2

1
> 1 , where R2

1
 is defined in (4).

Theorem 5  Assume that R2

1
> 1 and R1

2
> 1 . Then the coexistence equilibrium E∗ is 

locally asymptotically stable.

Proof  The Jacobian matrix at E∗ for the right hand side of system (2) is given by

and its second additive compound matrix is

Then, we have

which imply that J(E∗) is stable according to Lemma 2.1. Thus, E∗ is locally asymp-
totically stable whenever it exists. This completes the proof of Theorem 5. 	�  ◻

Concerning on the global stability of all possible equilibria, we have the follow-
ing results.

Theorem  6  The parasite-free equilibrium E0 is globally asymptotically stable if 
R0 < 1.

J(E∗) =

⎡
⎢⎢⎣

−(u + �1y
∗
1
+ �2y

∗
2
) −�1x

∗ −�2x
∗

�1y
∗
1

0 −s�2y
∗
1

�2y
∗
2

s�2y
∗
2

0

⎤
⎥⎥⎦

J[2](E∗) =

⎡⎢⎢⎣

−(u + �1y
∗
1
+ �2y

∗
2
) −s�2y

∗
1

�2x
∗

s�2y
∗
2

−(u + �1y
∗
1
+ �2y

∗
2
) −�1x

∗

−�2y
∗
2

�1y
∗
1

0

⎤⎥⎥⎦
.

tr(J(E∗)) = −(u + 𝛽1y
∗
1
+ 𝛽2y

∗
2
) < 0,

det(J(E∗)) = 𝛽2y2
∗
⋅ 𝛽1x

∗
⋅ s𝛽2y

∗
1
− s𝛽2y

∗
2
⋅ [(u + 𝛽1y

∗
1
+ 𝛽2y

∗
2
) ⋅ s𝛽2y

∗
1
+ 𝛽2x

∗
⋅ 𝛽1y

∗
1
]

= −s(u + 𝛽1y
∗
1
+ 𝛽2y

∗
2
) ⋅ 𝛽2y2

∗
⋅ s𝛽2y

∗
1
< 0,

det(J[2](E∗)) = −𝛽2y
∗
2
[s𝛽2y

∗
1
⋅ 𝛽1x

∗ + 𝛽2x
∗(u + 𝛽1y

∗
1
+ 𝛽2y

∗
2
)]

− 𝛽1y
∗
1
[𝛽1x

∗
⋅ (u + 𝛽1y

∗
1
+ 𝛽2y

∗
2
) − 𝛽2x

∗
⋅ s𝛽2y

∗
2
]

= −x∗(u + 𝛽1y
∗
1
+ 𝛽2y

∗
2
)(𝛽2

1
y∗
1
+ 𝛽2

2
y∗
2
) < 0,
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By considering the Lyapunov function as V0 = y1 + y2 and using Lyapu-
nov–LaSalle theorem, Theorem 6 follows.

Theorem 7  Assume that R1 > 1 . Then Ē1 is globally asymptotically stable if R1

2
< 1.

Theorem  7 is proved by defining the Lyapunov function as 
V1 = (x − x̄1 − x̄1 ln x) + (y1 − ȳ1 − ȳ1 ln y1) + y2 and using Lyapunov–LaSalle theo-
rem. Similarly, we have the conclusion concerning on the global stability of Ē2.

Theorem 8  Assume that R2 > 1 . Then Ē2 is globally asymptotically stable if R2

1
< 1.

Theorem 9  Assume that R2

1
> 1 and R1

2
> 1 . Then the coexistence equilibrium E∗ is 

globally asymptotically stable.

Proof  Since E∗ is the solution of system (2) and then satisfies the following 
equations.

Then system (2) can be rewritten as

Now, we define a Lyapunov function as follows.

Its derivative along the solutions of system (8) is

⎧⎪⎨⎪⎩

k = ux∗ + �1x
∗y∗

1
+ �2x

∗y∗
2
,

u + v1 = �1x
∗ − s�2y

∗
2
,

u + v2 = �2x
∗ + s�2y

∗
1
.

(8)

⎧⎪⎨⎪⎩

x� = −[u(x − x∗) + �1(xy1 − x∗y∗
1
) + �2(xy2 − x∗y∗

2
)],

y�
1
= y1[�1(x − x∗) − s�2(y2 − y∗

2
)],

y�
2
= y2[�2(x − x∗) + s�2(y1 − y∗

1
)].

V =
1

2x∗
(x − x∗)2 +

2∑
i=1

(
yi − y∗

i
− y∗

i
ln

yi

y∗
i

)
.

V � =
x − x∗

x∗
x� +

y1 − y∗
1

y1
y�
1
+

y2 − y∗
2

y2
y�
2

= −
x − x∗

x∗
[u(x − x∗) + �1x

∗(y1 − y∗
1
) + �1y1(x − x∗) + �2x

∗(y2 − y∗
2
) + �2y2(x − x∗)]

+ (y1 − y∗
1
)[�1(x − x∗) − s�2(y2 − y∗

2
)] + (y2 − y∗

2
)[�2(x − x∗) + s�2(y1 − y∗

1
)]

= −
(x − x∗)2

x∗
(u + �1y1 + �2y2)

≤ 0.
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Furthermore, V � = 0 holds if and only if x = x∗ . We set

Next, it would like to show the largest positively invariant subset of L. The set L 
is a two dimensional plane whose projection on y1-y2 plane is the straight line

or in this form

Obviously, we observe that

Restricting system (8) on the set L, we obtain the following two-dimensional 
system

Following the relation (9), system (10) has the following form.

Thus, the derivative of Q0 along with the solutions of system (11) is

which holds if and only if y1 = y∗
1
 . When x = x∗ and y1 = y∗

1
 , we have y2 = y∗

2
 . Thus, 

M = {E∗} is the largest positively invariant subset of {(x, y1, y2) ∶ V � = 0} . By Lya-
punov–LaSalle theorem, solutions with positive initial conditions will approach to 
E∗ . Thus, E∗ is globally asymptotically stable whenever it exists. This finishes the 
proof of Theorem 9. 	�  ◻

Remark 2  Nowak and May in (1994) only proposed the stability of parasite-free and 
two boundary equilibria. Here, we investigated the effects of the invasion reproduc-
tion numbers on the local and global stability of coexistence equilibrium.

The dynamics of system (2) are summarized, based on R1 and R2 , in Fig.  1, 
where stability regions corresponding to different equilibria are shown in R1-
R2 plane. We divide the R1-R2 plane into four regions. In region I, R1 < 1 and 
R2 < 1 , the parasite-free equilibrium, E0 , is the only equilibrium which is glob-
ally asymptotically stable. In regions II and III, two exclusive equilibria, Ē1 and 

L = {(x, y1, y2) ∶ x = x∗, k − ux∗ − �1x
∗y1 − �2x

∗y2 = 0}.

k − ux∗ = �1x
∗y1 + �2x

∗y2

(9)�1(y1 − y∗
1
) + �2(y2 − y∗

2
) = 0.

Q0 ∶= �1y1 + �2y2 = �1y
∗
1
+ �2y

∗
2
.

(10)
{

y�
1
= −s�2y1(y2 − y∗

2
),

y�
2
= s�2y2(y1 − y∗

1
).

(11)
{

y�
1
= s�1y1(y1 − y∗

1
),

y�
2
= s�2y2(y1 − y∗

1
).

Q�
0
= �1y

�
1
+ �2y

�
2

= �1[s�1y1(y1 − y∗
1
)] + �2 ⋅ s�2y2(y1 − y∗

1
)

= s(�2
1
y1 + �2

2
y2)(y1 − y∗

1
) ≡ 0,
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Ē2 , are globally asymptotically stable, respectively. The unique coexistence equi-
librium, E∗ , exists in the region IV and is globally asymptotically stable in this 
region.

2.3 � Numerical Simulations

In this subsection, we devote to investigating the effects of superinfection on the 
dynamical behaviors of two parasite strains.

Firstly, we study the effect of superinfection on the existence of coexistence for 
two parasite strains. If we set the superinfection rate to be zero, that is, s = 0 , then it 
follows from (6) that the invasion reproduction numbers R1

2
 and R2

1
 are

Therefore, the strain one exclusive equilibrium Ē1 ( ̄E1 exists when R1 > 1 ) is sta-
ble if R2 < R1 and unstable if R2 > R1 . A symmetric result holds for the strain two 
exclusive equilibrium Ē2 . Thus, the coexistence of two parasite strains is impossible. 
Fig. 2 shows this point clearly. Thus, superinfection ensures the coexistence of two 
parasite strains.

Furthermore, we consider how superinfection influences the basic reproduction 
number and invasion reproduction numbers. Obviously, system (2) has a unique 
coexistence equilibrium for two parasite strains when R2

1
> 1,R1

2
> 1 . It is interest-

ing to study whether the unique coexistence equilibrium exists or not when R2 < 1 . 
The answer is definitively true. It follows from (6) that R2

1
> 1 always holds when 

R2 < 1 and R1 > 1 , while R1

2
> 1 can hold according to larger superinfection. Fig-

ure 3 implies that superinfection increases the competitive ability of parasite strain 
two.

Finally, we examine how the invasion reproduction numbers and coexistence 
regions depend on the superinfection rate. In Fig. 4, we plot R2

1
 and R1

2
 as a func-

tion of v1 and v2 . Compared Fig. 4b and c, it is obvious that the coexistence region 
is wider for the case of larger superinfection rate and coexistence is more likely to 
occur when the virulence of parasite strains are large.

(12)R1

2
=

R2

R1

, R2

1
=

R1

R2

.

Fig. 1   Schematic illustrations 
of the global stability regions 
for equilibria of system (3). 
The parasite-free equilibrium 
exists in the whole R1–R2 plane 
and is global asymptotically 
stable in region I. Two exclusive 
equilibria Ē1 and Ē2 are global 
asymptotically stable, respec-
tively, in region II and III. The 
unique coexistence equilibrium 
exists and is globally asymptoti-
cally stable in region IV
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Fig. 2   Time plots and their corresponding phase portraits of the infected hosts y1 and y2 show-
ing that strain i with a larger value of Ri excludes strain j(i ≠ j) . It shows that strain one excludes 
strain two (see a1, b1) for R2 < R1 and strain two excludes strain one (see a2, b2) for R2 > R1 . Here, 
k = 10, u = 0.5, v1 = 0.4, v2 = 0.9 and different �i, i = 1, 2 . In a1, b1, �1 = 0.1 and �2 = 0.12 , corre-
sponding to R2 = 1.71 < 2.22 = R1 while �1 = 0.1 and �2 = 0.18 in a2, b2, R2 = 2.57 > 2.22 = R1
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Fig. 3   Time plots of the infected hosts y1 and y2 for the case when R2 < 1 . It shows that coexistence is 
impossible when R1

2
= 0.93 < 1 for s = 0.3 (see a), while it turns out possible when R1

2
= 1.14 > 1 for 

s = 0.7 (see b). Here, k = 10, u = 0.5, v1 = 0.4, v2 = 0.9, �1 = 0.1, �2 = 0.12
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3 � Dynamical Behaviors of System (3)

In this section, we investigate the global stability of system (3). Based on the 
analysis in Sect. 2, it is obvious that all possible equilibria are globally asymptoti-
cally stable if they are locally asymptotically stable for system (2). Here, we only 
focus our attention on the global stability of parasite-free equilibrium and coex-
istence equilibrium of three parasite strains.

The basic reproduction number of system (3), denoted by R̃0 , can be written as

where Ri = �ik∕(u + vi)u denotes the basic reproduction number of parasite strain 
i. It is easy to check that system (3) always exists a parasite-free equilibrium 
Ẽ0(̃x0, 0, 0, 0) , where x̃0 = k∕u , and admits a unique coexistence equilibrium (posi-
tive solution) Ẽ∗ denoted by Ẽ∗ = (̃x∗, ỹ∗

1
, ỹ∗

2
, ỹ∗

3
) . The existence of Ẽ∗ is shown in 

Appendix E, we omit it here.
For the global stability of Ẽ0 , we have the following result.

R̃0 = max{Ri, i = 1, 2, 3},
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Fig. 4   Plots of R2

1
 and R1

2
 as the functions of (v1, v2) . It shows that there is no coexistence region when 

s = 0 (see a). The coexistence region appears and expands when s increases (compared b, c). The 
shadow region of R2

1
> 1 and R1

2
> 1 provides the coexistence region for two parasite strains. Here, 

k = 10, u = 0.5, v1 = 0.4, v2 = 0.9, �1 = 0.1, �2 = 0.12 and different s 
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Theorem 10  The parasite-free equilibrium Ẽ0 of system (3) is globally asymptoti-
cally stable if �R0 < 1.

By considering Lyapunov function Ṽ0 = y1 + y2 + y3 , Theorem 10 follows.
Now, we are in the position to prove the global stability of Ẽ∗ when it exists.

Theorem  11  The coexistence equilibrium Ẽ∗ of system (3) is globally asymptoti-
cally stable when it exists.

Proof  Since Ẽ∗ is the solution of system (3) and hence satisfies the following 
equations

Then, system (3) can be rewritten as

Consider a Lyapunov function

⎧
⎪⎪⎨⎪⎪⎩

k = ux∗ +
3∑
i=1

�ix̃
∗ỹ∗

i
,

u + v1 = �1x̃
∗ − s�2ỹ

∗
2
− s�3ỹ

∗
3
,

u + v2 = �2x̃
∗ + s�2ỹ

∗
1
− s�3ỹ

∗
3
,

u + v3 = �3x̃
∗ + s�3ỹ

∗
1
+ s�3ỹ

∗
2
.

(13)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

x� = −

�
u(x − x∗) +

3∑
i=1

�i(xyi − x̃∗ỹ∗
i
)

�
,

y�
1
= y1

�
�1(x − x̃∗) − s�2(y2 − ỹ∗

2
) − s�3(y3 − ỹ∗

3
)
�
,

y�
2
= y2

�
�2(x − x̃∗) + s�2(y1 − ỹ∗

1
) − s�3(y3 − ỹ∗

3
)
�
,

y�
3
= y3

�
�3(x − x̃∗) + s�3(y1 − ỹ∗

1
) + s�3(y2 − ỹ∗

2
)
�
.

Ṽ =
1

2x̃∗
(x − x̃∗)2 +

3∑
i=1

(
yi − ỹ∗

i
− ỹ∗

i
ln

yi

ỹ∗
i

)
.
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Its derivative along the solutions of system (13) yields

Moreover, Ṽ � = 0 holds if and only if x = x̃∗ . We set

We would like to check the largest positively invariant subset of L̃ . The set L̃ is a 
three dimensional hyperplane as the form

or in this form

Restricting system (13) on the set L̃ , we obtain the following three-dimensional 
system.

Ṽ � =
x − x̃∗

x̃∗
x� +

3∑
i=1

yi − ỹ∗
i

ỹ∗
i

y�
i

= −
x − x̃∗

x̃∗

[
u(x − x̃∗) +

3∑
i=1

�i(xyi − x̃∗ỹ∗
i
)

]

+

3∑
i=1

(yi − ỹ∗
i
)

[
�i(x − x̃∗) + s�i

i−1∑
j=1

(yj − y∗
j
) − s

3∑
j=i+1

�j(yj − y∗
j
)

]

= −
x − x̃∗

x̃∗

{
u(x − x̃∗) +

3∑
i=1

�i [̃x
∗(yi − ỹ∗

i
) + yi(x − x̃∗)]

}

+

3∑
i=1

(yi − ỹ∗
i
)

[
�i(x − x̃∗) + s�i

i−1∑
j=1

(yj − y∗
j
) − s

3∑
j=i+1

�j(yj − y∗
j
)

]

= −
(x − x̃∗)2

x̃∗

(
u +

3∑
i=1

�iyi

)

≤ 0.

L̃ = {(x, y1, y2, y3) ∶ x = x∗, k − ux̃∗ − �1x̃
∗y1 − �2x̃

∗y2 − �3x̃
∗y3 = 0}.

k − ux̃∗ =

3∑
i=1

�ix̃
∗yi

(14)Q(t) = �1(y1 − ỹ∗
1
) + �2(y2 − ỹ∗

2
) + �3(y3 − ỹ∗

3
) = 0.

⎧⎪⎨⎪⎩

y�
1
= −sy1

�
�2(y2 − ỹ∗

2
) + �3(y3 − ỹ∗

3
)
�
,

y�
2
= sy2

�
�2(y1 − ỹ∗

1
) − �3(y3 − ỹ∗

3
)
�
,

y�
3
= sy3

�
�3(y1 − ỹ∗

1
) + �3(y2 − ỹ∗

2
)
�
.
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Furthermore, using the relation of (14), one has

Now, we show that {Ẽ∗} is the largest positively invariant subset of L̃ based on sys-
tem (15). Denote L̃0 be the positively invariant subset of L̃ . For any (y0

1
, y0

2
, y0

3
) ∈ L̃0 , 

the orbit through (y0
1
, y0

2
, y0

3
) is denoted as (y1, y2, y3) ∈ L̃0.

In the following, we will show that y0
1
= ỹ∗

1
 by the way of finding contradiction if 

not so. Assuming that y0
1
≠ ỹ∗

1
 holds, then we can make the following discussions. 

Solving the first equation of (15) yields

If y0
1
> y∗

1
 , then there exists a finite time tc

1
= 1∕(s𝛽1�y

∗
1
) ln y0

1
∕(y0

1
−�y∗

1
) > 0 such 

that y1 is unbounded as t approaches tc
1
.

If y0
1
< �y∗

1
 , then y1 → 0 as t → ∞ . Thus, the limiting system of (15) is

Define

Thus, the first equation of (16) can be rewritten as

which, together with the initial condition y0
2
 , yields

If y0
2
> yc

2
 , then there exists a finite time tc

2
= 1∕(s𝛽2y

c
2
) ln y0

2
∕(y0

2
− yc

2
) > 0 such 

that y2 bursts at t = tc
2
 . If y0

2
< yc

2
 , then y2 → 0 as t → ∞ . Thus, the limiting system 

of (16) is

Obviously, y3 → 0 as t → ∞ . Thus, one has

(15)

⎧
⎪⎨⎪⎩

y�
1
= sy1�1(y1 − ỹ∗

1
),

y�
2
= sy2

�
(�1 + �2)(y1 − ỹ∗

1
) + �2(y2 − ỹ∗

2
)
�
,

y�
3
= sy3�3[(y1 − ỹ∗

1
) + (y2 − ỹ∗

2
)].

y1 =
ỹ∗
1

1 +
(

ỹ∗
1

y0
1

− 1

)
es�1 ỹ

∗
1
t

.

(16)
{

y�
2
= sy2

[
−(�1 + �2)̃y

∗
1
+ �2(y2 − ỹ∗

2
)
]
,

y�
3
= sy3�3[−ỹ

∗
1
+ (y2 − ỹ∗

2
)].

yc
2
≐ ỹ∗

2
+

�1 + �2

�2
ỹ∗
1
.

y�
2
= sy2�2(y2 − yc

2
),

y2 =
yc
2

1 +
(

y∗
2

y0
2

− 1

)
es�2y

c
2
t

.

(17)y�
3
= −sy3�3(̃y

∗
1
+ ỹ∗

2
).

Q(t) → −(�1ỹ
∗
1
+ �2ỹ

∗
2
+ �3ỹ

∗
3
),
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which contradicts to Q(t) ≡ 0 . If y0
2
= yc

2
 , then system (16) can be rewritten as

If y0
3
≠ 0 , then y3 → ∞ as t → ∞ . If y0

3
= 0 , then it follows from (18) that y3 ≡ 0 . 

Thus, one has

which contradicts to Q(t) ≡ 0.
Summarizing the above discussions, we have y0

1
= ỹ∗

1
 , then y1 ≡ ỹ∗

1
 . Furthermore, 

we get a subsystem of (15) as

Similar to the discussions on (16)–(18), one has y2 = ỹ∗
2
 . Then we have y3 = ỹ∗

3
 

from the relation of (14). That is, L̃0 = {Ẽ∗} . Thus, M = {Ẽ∗} is the largest posi-
tively invariant subset of {(x, y1, y2, y3) ∶ Ṽ � = 0} . By Lyapunov–LaSalle theorem, 
solutions of system (3) with positive initial conditions will approach to Ẽ∗ , thus, 
Ẽ∗ is globally asymptotically stable when it exists. This finishes the proof of Theo-
rem 11. 	� ◻

Example 1  Fixing the parameter values of system (3), we can verify that solutions of 
system (3) ultimately tend towards a global steady state (see Fig. 5).

(18)y�
3
= sy3�3(−ỹ

∗
1
+ yc

2
− ỹ∗

2
) = sy3�3

�1

�2
ỹ∗
1
.

Q(t) → −(�1ỹ
∗
1
+ �2ỹ

∗
2
+ �3ỹ

∗
3
),

(19)
{

y�
2
= sy2�2(y2 − ỹ∗

2
),

y�
3
= sy3�3(y2 − ỹ∗

2
).
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Fig. 5   Plots of the infected hosts y1 , y2 and y3 for system (3). It shows that there exists 
a unique coexistence equilibrium. a Implies that time plots of the infected hosts y1 , y2 
and y3 tend towards a steady state. b The phase portrait of three parasite strains. Here, 
k = 10, u = 0.5, v1 = 0.2, v2 = 0.6, v3 = 0.9, �1 = 0.1, �2 = 0.12, �3 = 0.13 and s = 0.4
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4 � Dynamical Behaviors of System (1)

In this section, based on the analysis of Sects. 2 and 3, we investigate the global dynam-
ical behaviors of system (1) and concern on the parasite-free and coexistence of n para-
site strains equilibria.

Similar to system (2), we can define the basic reproduction number of system (1), 
denoted by R0n , which can be written as

where Ri = �ik∕(u + vi)u represents the basic reproduction number of parasite 
strain i. It is easy to check that system (1) always exists a parasite-free equilibrium 
En
0
(x0n, 0,… , 0) , where x0n = k∕u , and admits a unique coexistence equilibrium En

0
 

under suitable conditions.
The global stability of En

0
 can be verified via the following theorem.

Theorem 12  The parasite-free equilibrium En
0
 of system (1) is globally asymptoti-

cally stable when R0n < 1.

In fact, we can consider a Lyapunov function

and show the global stability of En
0
 via the Lyapunov–LaSalle theorem. Here, we 

omit the proof for brevity.
Let us investigate the existence of coexistence equilibrium (positive equilibrium) for 

system (1), denoted by E∗
n
(x∗, y∗

1
,… , y∗

n
) . Setting the right hands of all equations for 

system (1) be zero and summing them, one gets

Here, y∗ =
∑n

j=1
y∗
j
 . That is

Then, the second equation of system (1) can be rewritten as

R0n = max{Ri, i = 1, 2,… , n},

V0n =

n∑
i=1

yi

(20)x∗ =
1

u

[
k −

n∑
j=1

(u + vj)y
∗
j

]
=

k

u
− y∗ −

1

u

n∑
j=1

vjy
∗
j
.

y∗ =

i−1∑
j=1

y∗
j
+ y∗

i
+

n∑
j=i+1

y∗
j
.

y∗
i

[
�ix

∗ − (u + vi) + s�iy
∗ − s

(
�i

n∑
j=i+1

y∗
j
+

n∑
j=i+1

�jy
∗
j

)
− s�iy

∗
i

]
= 0, i = 1,… , n,



218	 L. Liu et al.

1 3

which has the following form

where

Thus, we have a specific positive solution of system (1)

if fi > 0 . Note that the value of each y∗
i
 depends on x∗ , y∗ and y∗

j
(j > i) . According 

to a recursive ‘top-down’ way, we get each y∗
i
 in terms of x∗ and y∗ , and then substi-

tute each y∗
i
 into (20), and finally get the first relation of x∗ and y∗ . If the other rela-

tion of x∗ and y∗ can be derived, then there is possible to obtain such a specific posi-
tive equilibrium of system (1). It should be noticed that this method is somewhat 
similar to that in Nowak and May (1994), but vary in the condition for the existence 
of positive equilibrium. To be specific, the existence of positive equilibrium depends 
on the another relation of x∗ and y∗ , rather than directly assuming that y∗ is known.

The unique coexistence equilibrium E∗ for system (2) and Ẽ∗ for system (3) can be 
solved via (20)–(22). For the proof of existence of E∗ and Ẽ∗ , one can see Appendices 
D and E. Note that the other relation of x∗ and y∗ can be obtained, i.e., (25) in Appen-
dix D and (29) in Appendix E. Hence, the existence of E∗

n
 depends on not only fi > 0 

defined in (21), but also the other relation of x∗ and y∗.
Now, we analyze the global stability of E∗

n
 of system (1). Since E∗

n
 is the solution of 

system (1) and then satisfies the following equations

Consider a Lyapunov function

y∗
i
(fi − s�iy

∗
i
) = 0,

(21)fi = �ix
∗ − (u + vi) + s�iy

∗ − s

n∑
j=i+1

(�i + �j)y
∗
j
.

(22)

y∗
i
=

fi

s𝛽i
=

1

s

[
x∗ −

u + vi

𝛽i
+ sy∗ − s

n∑
j=i+1

(
1 +

𝛽j

𝛽i

)
y∗
j

]
> 0, i = 1,… , n

⎧⎪⎪⎨⎪⎪⎩

k = ux∗ +
n∑
i=1

�ix
∗y∗

i
,

u + vi = �ix
∗ + s�i

i−1∑
j=1

y∗
j
− s

n∑
j=i+1

�jy
∗
j
.

Vn =
1

2x∗
(x − x∗)2 +

n∑
i=1

(
yi − y∗

i
− y∗

i
ln

yi

y∗
i

)
.



219

1 3

A Host–Parasite System with Multiple Parasite Strains and…

Its derivative along the solutions of system (1) gets

Moreover, V �
n
= 0 holds if and only if x = x∗ . We set

We would like to show the largest positively invariant subset of Ln . According 
to the analysis of Theorems 9 and 11, if we can show that {E∗

n
} is the largest posi-

tively invariant subset of Ln , then the global stability of E∗
n
 can be determined, 

however, it is not as easy as those for system (2) and system (3).
Combining the above discussions, we guess that

Conjecture 1  The coexistence equilibrium E∗
n
 of system (1) is globally asymptoti-

cally stable whenever it exists.

Now, we give two numerical examples to testify Conjecture 1. Concerning sys-
tem (1) with n = 4 and n = 5 , respectively, we fix the parameter values of two 
systems. Numerical results show that solutions of two systems ultimately tend 
towards a global steady state (see Fig. 6).

5 � Discussions and Conclusions

In this paper, we analyzed the global stability of system (2) in details, gave some 
numerical simulations to reveal the important effects of superinfection on the 
dynamical behaviors of two parasite strains, furthermore, investigated the global 

V �
n
=

x − x∗

x∗
x� +

n∑
i=1

yi − y∗
i

y∗
i

y�
i

= −
x − x∗

x∗

[
u(x − x∗) +

n∑
i=1

�i(xyi − x∗y∗
i
)

]

+

n∑
i=1

(yi − y∗
i
)

[
�i(x − x∗) + s�i

i−1∑
j=1

(yi − y∗
j
) − s

n∑
j=i+1

�j(yj − y∗
j
)

]

= −
x − x∗

x∗

{
u(x − x∗) +

n∑
i=1

�i[x
∗(yi − y∗

i
) + yi(x − x∗)]

}

+

n∑
i=1

(yi − y∗
i
)

[
�i(x − x∗) + s�i

i−1∑
j=1

(yj − y∗
j
) − s

n∑
j=i+1

�j(yj − y∗
j
)

]

= −
(x − x∗)2

x∗

(
u +

n∑
i=1

�iyi

)
≤ 0.

Ln =

{
(x, y1,… , yn) ∶ x = x∗, k − ux∗ −

n∑
i=1

�ix
∗yi = 0

}
.
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stability of system (3) and system (1), and made some comparisons with the results 
in Nowak and May (1994). Then, the existence and global stability of system (3) 
were shown and the corresponding numerical simulation was provided. Finally, we 
explored the general results on the existence and stability for system (1).

The results concerning system (2) show that the basic reproduction number R0 
and the invasion reproduction numbers R2

1
,R1

2
 can be considered as the threshold 

condition for parasite extinction and the subthreshold condition for coexistence of 
two parasite strains, respectively. According to Theorems 2–9, all possible equilibria 
of system (2) are globally asymptotically stable when they are locally asymptotically 
stable. These results are consistent with those in Nowak and May (1994). Further-
more, we provide the fully mathematical analysis which are not shown in the previ-
ous paper. Remarks 2.1–2.2 show that some comparisons between our results and 
those in Nowak and May (1994) for two parasite strains. We introduce two invasion 
reproduction numbers which further help us understand the global dynamical behav-
iors for system (2). Furthermore, numerical simulations reveal the significant effects 
of superinfection on the coexistence and coexistence region of two parasite strains.

The results concerning on system (3) show that the basic reproduction number 
R̃0 determines whether the parasite strains can be eradicated or not. It follows 
from Theorem 11 that the coexistence equilibrium of three parasite strains must 
be globally asymptotically stable if it exists. This result is distinct from the previ-
ous phenomenon observed in Nowak and May (1994). Nowak and May in (1994) 
points out that for three or more parasite strains, there exists oscillations with 
increasing amplitude and period and forms a heterocyclic cycle. Furthermore, for 
small values of s, one observes that system with three parasite strains can exclude 
chaos. However, in our present paper, when we relax all the strict assumptions on 
system (3), those complex phenomena such as the heterocyclic cycle and chaos 
disappear and system ultimately tends towards a global steady state so long as it 
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Fig. 6   Plots of the infected hosts for system (1) with n = 4 and n = 5 . a The case for system (1) with 
n = 4 . Here, k = 10, u = 0.5, v1 = 0.1, v2 = 0.27, v3 = 0.54, v4 = 0.8, �1 = 0.11, �2 = 0.12, �3 = 0.13, �4 = 0.14 
and s = 0.4 ; b The case for system (1) with n = 5 . Here, v5 = 1.1, �5 = 0.17 and the other parameters are 
the same with (a)
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exists (see Theorem 11). Figure 4 exactly reflects this fact. For example, we see 
that the complex dynamics, like cycles, could come from the fact that Nowak 
and May make assumption (i) in order to reduce the dimensionality of the system 
which then gives a Lotka–Volterra system of equations, and these are known to 
give limit cycles (and chaos in higher dimensions). A more thorough analysis of 
why these two systems exhibit different dynamic behaviours would be our future 
work.
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Appendix A: Equivalency of Inequality (7)

Proof  Firstly, we show that R2

1
> 1 implies that x∗ > 0 . Note that R2

1
> 1 can be 

rewritten as 
[
R1

R2

> 1 +
su(R2−1)

u+v1

]
 , which yields that 

[
R1 − R2 >

su(R2−1)

u+v1
⋅

𝛽2k

u(u+v2)

]
 . Thus, 

we have 
[
u

k
(u + v1)(u + v2)(R1 − R2) + us𝛽2 > su𝛽2R2 > 0

]
 , which can guarantee 

that x∗ > 0.
Next, we show the conclusion holds under the condition x∗ > 0 . We now 

show that x∗ > (u + v1)∕𝛽1 is equivalent to the inequality R1

2
> 1 . It follows from 

x∗ > (u + v1)∕𝛽1 that we have

which can be rewritten as

That is,

Thus, one has

ks𝛽2
u

k
(u + v2)(u + v1)(R1 − R2) + us𝛽2

>
u + v1

𝛽1
,

R1 > 1 +
(u + v2)(u + v1)

ks𝛽2
(R1 − R2).

R1 > 1 +
u + v2

s𝛽2
⋅

𝛽1

u

(
1 −

R2

R1

)
.
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Therefore, we have

Similarly, x∗ < (u + v2)∕𝛽2 is equivalent to R2

1
> 1 . 	�  ◻

Appendix B: Proof of Theorem 2

Proof  The Jacobian matrix at E0 for the right hand side of system (2) is given by

It is easy to see that the eigenvalues of J(E0) are 
�1 = −u, �2 = (u + v1)(R1 − 1), �3 = (u + v2)(R2 − 1) . Noting that R0 < 1 , we can 
conclude that all eigenvalues of J(E0) are negative. When R0 > 1 , J(E0) has at least 
one positive eigenvalue. Hence, the parasite-free equilibrium E0 is locally asymp-
totically stable if R0 < 1 and is unstable if R0 > 1 . This completes the proof. 	�  ◻

Appendix C: Proof of Theorem 3

Proof  The Jacobian matrix at Ē1 for the right hand side of system (2) is given by

and its second additive compound matrix is

(R1 − 1) ⋅
s𝛽2

u + v2
⋅

u

𝛽1
> 1 −

R2

R1

.

R1

2
=

R2

R1

+
s𝛽2

u + v2
⋅

u

𝛽1
(R1 − 1) > 1.

J(E0) =

⎡⎢⎢⎣

−u −�1x0 −�2x0
0 (u + v1)(R1 − 1) 0

0 0 (u + v2)(R2 − 1)

⎤⎥⎥⎦
.

J(Ē1) =

⎡⎢⎢⎣

−uR1 −𝛽1x̄1 −𝛽2x̄1
𝛽1ȳ1 0 −s𝛽2ȳ1
0 0 (u + v2)(R

1

2
− 1)

⎤⎥⎥⎦

J[2](Ē1) =

⎡⎢⎢⎣

−uR1 −s𝛽2ȳ1 𝛽2x̄1
0 −uR1 + (u + v2)(R

1

2
− 1) −𝛽1x̄1

0 𝛽1ȳ1 (u + v2)(R
1

2
− 1)

⎤⎥⎥⎦
.
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Then, one has

hold if R1

2
< 1 . Thus, it follows from Lemma 2.1 that J(Ē1) is stable when R1

2
< 1 . 

When R1

2
> 1 , J(Ē1) has at least one positive eigenvalue. Thus, Ē1 is locally asymp-

totically stable if R1

2
< 1 and it is unstable if R1

2
> 1 . This finishes the proof of Theo-

rem 3. 	�  ◻

Appendix D: Proof of Existence of E∗

Proof  By using (22), one has

if h2 > 0 . Furthermore, we have

if h1 > 0 . Substituting (23) and (24) into (20) yields the first relation of x∗ and y∗.
It follows from system (2) that we obtain

which is derived according to the subtracting between the second and third equa-
tions. Thus, we have the other relation of x∗ and y∗ . Combining those two relations, 
we can solve the positive solution E∗ of system (2) in this specific way.

Appendix E: Proof of Existence of Ẽ∗

Proof  It follows from (22) that we have

tr(J(Ē1)) = −uR1 + (u + v2)(R
1

2
− 1) < 0,

det(J(Ē1)) = (u + v2)(R
1

2
− 1) ⋅ 𝛽2

1
x̄1ȳ1 < 0,

det(J[2](Ē1)) = −uR1[(u + v2)
2(R1

2
− 1)2 + 𝛽2

1
x̄1ȳ1] < 0

(23)y∗
2
=

1

s

(
x∗ + sy∗ −

u + v2

�2

)
∶= h2

(24)
y∗
1
=

1

s

[
x∗ + sy∗ −

u + v1

�1
− s

(
1 +

�2

�1

)
y∗
2

]

=
1

s

[
−
�2

�1
(x∗ + sy∗) +

u + v2

�2
+

v2 − v1

�1

]
∶= h1

(25)y∗ = y∗
1
+ y∗

2
=

1

s�2

[
(v2 − v1) − (�2 − �1)x

∗
]
,

(26)ỹ∗
3
=

1

s

(
x̃∗ + sỹ∗ −

u + v3

�3

)
∶= H3
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if H3 > 0 . Furthermore, we have

if H2 > 0 and

if H1 > 0 . Substituting (26)–(28) into (20) yields the first relation of x̃∗ and ỹ∗.
It is easy to derive that

Here, the second equation is derived from the subtracting between the fourth and 
third equations. Combining the above two equations, we can solve

if H0 > 0 . Substituting (29) into the first relation of x̃∗ and ỹ∗ yields that

where

(27)
ỹ∗
2
=

1

s

[
x̃∗ + sỹ∗ −

u + v2

�2
− s

(
1 +

�3

�2

)
ỹ∗
3

]

=
1

s

[
−
�3

�2
(̃x∗ + sỹ∗) +

u + v3

�3
+

v3 − v2

�2

]
∶= H2

(28)
ỹ∗
1
=

1

s

[
x̃∗ + sỹ∗ −

u + v1

�1
− s

(
1 +

�3

�2

)
ỹ∗
3
− s

(
1 +

�2

�1

)
ỹ∗
2

]

=
1

s

[
�3

�1
(̃x∗ + sỹ∗) −

u + v1

�1
+

u + v2

�2
−

v3 − v2

�1
−

�2

�1
⋅

u + v3

�3

]
∶= H1

ỹ∗
1
+ ỹ∗

2
=

1

s�3

[
(u + v3) − �3x̃

∗
]
,

ỹ∗
1
+ ỹ∗

2
=

1

s�2

[
(v2 − v1) − (�2 − �1)̃x

∗
]
.

(29)x̃∗ =
�2

�1

(
u + v3

�3
−

v2 − v1

�2

)
∶= H0.

Aỹ∗ = B,

A = s

(
1 +

�3

�1
v1 −

�3

�2
v2 + v3

)
,

B =
ks

u
− s

(
�2

�1
⋅

u + v3

�3
−

v2 − v1

�1

)
+ v3

(
u + v3

�3
+

v2 − v1

�1
−

�2

�1
⋅

u + v3

�3

)

+ v2

(
u + v3

�1
−

u + v3

�3
−

v3 − v2

�2
−

�3

�2
⋅

v2 − v1

�1

)

+ v1

(
�3

�1
⋅

v2 − v1

�1
−

u + v2

�2
−

v2 − v1

�1
+

�2

�1
⋅

u + v3

�3

)
.
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Thus, there exists a unique positive ỹ∗ if and only if A ≠ 0 , AB > 0 and 
Hi > 0, i = 0, 1, 2, 3, 4 . 	�  ◻
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