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Abstract  Darwin described biological species as groups of morphologically similar 
individuals. These groups of individuals can split into several subgroups due to natu-
ral selection, resulting in the emergence of new species. Some species can stay stable 
without the appearance of a new species, some others can disappear or evolve. Some of 
these evolutionary patterns were described in our previous works independently of each 
other. In this work we have developed a single model which allows us to reproduce the 
principal patterns in Darwin’s diagram. Some more complex evolutionary patterns are 
also observed. The relation between Darwin’s definition of species, stated above, and 
Mayr’s definition of species (group of individuals that can reproduce) is also discussed.
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1 � Evolution of Species and Darwin’s Diagram

Emergence and evolution of biological species continue to attract attention from 
both the biological point of view and from the modelling point of view. Modern 
theory distinguishes three main mechanisms of speciation. Allopatric speciation 
implies the existence of geographic or genetic isolation where there is no gene 
exchange between different taxa; parapatric speciation admits partial exchange; 
and sympatric speciation occurs without geographic or genetic barriers (Coyne 
and Orr 2004; Gavrilets 2004). It is generally accepted that allopatric speciation 
is biologically realistic, though the mechanism which leads to the appearance of 
isolating barriers may sometimes be unclear [Coyne and Orr 2004 (Chapter 2)]. 
Sympatric speciation continues to instigate intensive discussions. In spite of the 
big body of experimental data, observations in nature, and theoretical models, 
this question remains controversial [(Coyne and Orr 2004 (Chapter 4)]. Various 
models of sympatric speciation are developed in Desvillettes et al. (2008), Dieck-
mann and Doebeli (1999), Doebeli and Dieckmann (2000), Genieys et al. (2008), 
Genieys et al. (2006a, b) and Méléard (2011).

Competition for resources and selection of the most successful in this com-
petition are among the fundamental properties of biological systems. Once the 
elements of such a system begin to compete, they try to get as many resources as 
possible. For this purpose they consume resources not only at the spatial location, 
where they are located, but also in some areas around it. This results in nonlocal 
consumption of resources and intraspecific competition. Nonlocal consumption 
of resources, reproduction, and variation of functional traits (diffusion) determine 
the process of speciation (Genieys et al. 2006a).

In this work we will address the question about the emergence and evolution of 
biological species from the point of view of Darwin’s diagram. It is the only fig-
ure featured in his famous book “The origin of species” (Darwin 2004), and it is 
the quintessence of his theory, which corresponds, in the modern terminology, to 
sympatric speciation. We will attempt to give a more precise mathematical inter-
pretation of his theory and to point out the assumptions which are necessary in 
order to reproduce Darwin’s diagram. He described this figure as follows. “Let A 
to L represent the species of a genus large in its own country; these species are 
supposed to resemble each other in unequal degrees, as is so generally the case 
in nature, and is represented in the diagram by the letters standing at unequal 
distance ... The little fan of diverging dotted lines of unequal length proceeding 
from (A), may represent its varying offspring. The variations are supposed to 
be extremely slight, but of the most diversified nature, they are not supposed all 
to appear simultaneously, but often after long intervals of time; not are they all 
supposed to endure for equal periods. Only those variations which are in some 
way profitable will be preserved or naturally selected. And here the importance 
of principle of benefit being derived from divergence of character comes in; for 
this will generally lead to the most different or divergent variations (represented 
by the outer dotted lines) being preserved and accumulated by natural selection. 
... After a thousand generations, species (A) is supposed to have produced two 



335

1 3

The Origin of Species by Means of Mathematical Modelling﻿	

fairly well-marked varieties, namely a1 and m1 . These two varieties will generally 
continue to be exposed to the same conditions which made their parents variable, 
and the tendency to variability is in itself hereditary, consequently they will tend 
to vary, and generally to vary in nearly the same manner as their parents varied. 
Moreover, these two varieties, being only slightly modified forms, will tend to 
inherit those advantages which made their common parent (A) more numerous 
than most of the other inhabitants of the same country” (Darwin 2004, p. 104).

Thus, each line corresponds to one species or subspecies. The horizontal axis 
measures their resemblance; that is, some morphological characteristics or phe-
notype. The vertical axis is time. Different species are represented as lines (tra-
jectories) in the (x, t)-space.

The appearance of new species is shown as several lines starting from the same 
point. In the beginning, these are small variations inside the same species. After 
some time they can become different species. Among many possible variations, only 
favorable ones are chosen and reinforced by natural selection. The others will dis-
appear. One more important feature of the diagram is that the lines (species) can 
disappear when two of them approach each other. We can suppose that this happens 
because the corresponding species begin to compete for the same resources.

We will model the main elements of Darwin’s diagram: existence of species 
as localized groups of individuals, their evolution (motion in the morphologi-
cal space), emergence of new species, preservation of the most fitted species and 
disappearance of others due to natural selection, and competition of species for 
resources. We will introduce the model in the next section and will analyze it in 
Sect. 3. We will then discuss the results in Sect. 4.

2 � Model

We consider the diagram in Fig. 1 (left) from the bottom upwards (in the direc-
tion of growing time). It begins with 11 lines noted by the letters A, B, ..., L. We 
will mainly consider the left part of the diagram (A, B, ..., F), though some other 
parts will also be mentioned when it is appropriate.

Following Darwin’s definition, we understand biological species as groups of 
morphologically similar individuals. A typical population density distribution for 
one species is shown in Fig.  1 (right). The variable x here is a morphological 
characteristic or a functional trait of the population (height, weight, beak size, 
and so on) and the function u(x, t) describes the density distribution with respect 
to this characteristic at some given moment of time t. The species are character-
ized by narrow distributions, such that they can be described by the coordinate 
xm of the maximum of the function u(x,  t). This coordinate xm(t) , considered as 
a function of time, represents a line on the (x, t) plane. Darwin’s diagram corre-
sponds to the ensemble of such lines for different species.

Thus, our aim is to develop a model such that a) it has solutions in the form 
of pulses (or peaks), which describe population density distributions, and b) the 
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coordinates of the maxima of these pulses on the (x,  t)-plane form the patterns 
qualitatively similar to those in the diagram.

In Bessonov et al. (2014) we reproduced some parts of the diagram independently of 
each other. In this work we will develop a new model which will allow us to describe 
these different parts together and to reproduce the left half of the diagram. We consider 
6 species in accordance with the letters A, B,  ..., F and introduce the corresponding 
population densities ui(x, t) , i = 1, 2, ..., 6 . In order to describe the desired behavior of 
solutions, we consider the integro-differential system of equations:

Here, the space variable x corresponds to some morphological characteristics of the 
populations, t is time, and di , i = 1, ..., 6 are the diffusion coefficients, ai and � are 
some positive constants. The first terms in the right-hand side of these equations 
describe small variations of the morphology due to random mutations, the second 
terms describe the reproduction of the population and the last terms species’ mor-
tality. Let us note that the reproduction terms are proportional to the square of the 
population density (Supplementary materials) and to available resources Wi , consid-
ered in the following general form:

where

(1)
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Fig. 1   Left: Darwin’s diagram explaining the emergence and evolution of biological species (adapted 
from Darwin 2004). Right: A typical population density distribution with respect to a morphological 
characteristics. The coordinates of the peaks of such distributions on the (x, t)-plane corresponds to the 
line in Darwin’s diagram
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Here, bij are non-negative numbers. The coefficients sij ≥ 0 depend, in general, on 
the space variable x, though we will begin below with the simpler case of constant 
coefficients. The kernel �(x) of the integral determines the efficacy of this consump-
tion as a function of the distance x − y . We take it as a piece-wise constant function,

In the limit of small N, we get the case of local consumption. In the case of global 
consumption, the consumption of resources is proportional to the total population 
density (integrals I0

i
 ) (Bessonov et al. 2014, Volpert (2014)).

In conventional models of population dynamics, available resources are con-
sidered in the form (1 − ui(x, t)∕K) , where K is carrying capacity. Consumption of 
resources is proportional to the population density ui(x, t) taken at the space point x. 
In the case of nonlocal consumption of resources, it is replaced by the integral Ji(u) 
(Genieys et al. 2006a). This implies that the individuals of the population consume 
resources in some areas around their average location. If there are several species, 
then all of them (or only some of them) can contribute to the consumption of some 
particular resources.

The model considered in this work contains two resources: one with nonlocal 
consumption and another with global consumption. We will see below that both are 
necessary in order to describe the patterns shown in the diagram. It is a generic 
model of the interaction of 6 species. It generalizes the previously considered mod-
els with local and nonlocal consumption of resources (see Supplementary materials).

3 � Modelling of the Diagram

Darwin’s diagram illustrates different evolution patterns, such as speciation, sur-
vival of the better adapted, competition of species, among others. In the model pre-
sented above, we set b11 = b1, b1j = 0, j = 2, ..., 6 , bij = b2, i = 2, ..., 6, j = 1, ..., 6 , 
s11 = s1, sii = s2, i = 2, ..., 6 , sij = 0 for i ≠ j . These assumptions on the parameters 
signify that the first equation for the variable u1(x, t) is independent of the other 
equations but it does influence the other variables. Other values of parameters will 
be specified below.

Speciation The main issue of Darwin’s theory is the emergence of new spe-
cies. This is shown in the diagram on many occasions: points A, a1, a2, ...,m1 , 
m2, ..., I, z1, z2, ... For each point, there are several lines starting from a single point. 
These lines do not correspond to fully formed species, but only to small variations in 
the existing species, which can lead to new species in the future.

Among the species A, B,  ..., F, only the first one manifests speciation and leads 
to the appearance of new species. The corresponding function u1(x, t) satisfies the 
equation

𝜙(x) =
1

2N

{
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0, |x| ≥ N
.
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In order to simplify the model and the analysis of the results, we chose this equation 
to be independent of other variables. Clearly, similar results can be obtained if the 
dependence on other variables is weak enough.

As discussed above, we characterized solutions of this equation by the positions 
of their maxima at the (x,  t)-plane. They correspond to the lines (species) in Dar-
win’s diagram. A typical branching pattern obtained in numerical simulations of 
Eq. (2) is shown in Fig. 2 (the left part of the graph). The initial condition for the 
first species, u1(x, 0) , is a piece-wise constant function different from zero in a nar-
row interval at the center of the computation domain. This initial population splits 
into two sub-populations (Fig. 2, right), then again and again, expanding in space as 
a periodic travelling wave and leaving stationary localized peaks behind it. These 
peaks correspond to the new species.

Speciation can be described by the model with nonlocal consumption of resources 
(see Supplementary materials) and by the model with two resources: nonlocal and 
global. The question about the possibility of sympatric speciation was intensively 
debated in the literature, and various mathematical models were developed (Atamas 
1996; Desvillettes et  al. 2008; Dieckmann and Doebeli 1999; Doebeli and Dieck-
mann 2000; Genieys et al. 2006a, b).

Survival of the better adapted We observe in the diagram that among several new 
sub-species only one or two survive, while the others disappear after a relatively 
short time. The model of speciation with nonlocal consumption does not describe 
this effect: once a species appears, it persists. This contradicts Darwin’s description 
that only better adapted species survive. Usually, the outer lines (species) persist, 
while the species located inside become extinct (cf. Sect. 1).

If we accept the assumption that some species (or sub-species) are better adapted 
than the others, then their natality and mortality rates depend on the phenotype, that 
is on the space variable x. Hence the coefficients of the equations depend on the 
space variable. This approach was suggested in Bessonov et al. (2014). We will use 
it here in a more complete model.

Fig. 2   Left: Numerical simulations of system (1) with di = 0.01, ai = 1, b1 = 1, b2 = 20, s1 = 0.01,

s2 = 0.1, � = 0.01,N = 5 . The lines show positions of maxima of each component of the solution on the 
(x,  t)-plane. The first species (variable u1(x, t) ) shows a typical branching pattern, while the other spe-
cies do not change until they meet the descendants of the first species and then become extinct. Different 
colors correspond to different components ui(x, t) of the solution. Right: Initially the population density 
had unimodal distribution. After some time, it split into two subpopulations (reprinted with permission 
from Genieys et al. 2006a). (Color figure online)
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We illustrate modelling with space-dependent coefficients for another part of 
the diagram starting with z6 Bessonov et al. (2014). Figure 3 shows an example of 
numerical simulations of equation (2) with a space dependent function s1(x) . The 
initial condition is a narrow pulse located at the center of the interval. Due to spe-
ciation, it gives six pulses. The outer two of these pulses reach the points where the 
function s1(x) decreases (step-wise constant function in the same figure). As a con-
sequence, these two outer pulses begin to grow while the others disappear. A similar 
behavior repeats several times at each step of the function s1(x) . We obtain a specific 
V-pattern, which is one of the main repeating patterns in the diagram. Similar pat-
terns start at the points A, a3, a5,m4, z4, z6.

Let us emphasize the total size of the population is limited due to global con-
sumption. Therefore, if one of the species grows in size, then the others will decline. 
This is the mechanism which ensures development of the most adapted to the preju-
dice of the others. If we consider for example only nonlocal consumption, where the 
size of the population is not limited, then this mechanism does not work.

The absence of speciation Species B,  E,  ...,  F persist without speciation. Such 
behavior is observed in the case of global consumption (see Supplementary materi-
als). Hence, the behavior of the variables u2, ..., u6 is primarily determined by global 
consumption while nonlocal consumption takes into account competition with other 
species (the next paragraph).

Competition of species Another repeating pattern in the diagram is extinction of 
one of the species when two of them approach each other. Among them, species 
B, C and D disappear when they meet the line m descendant from A. It also happens 
for G and u and in several other cases. Thus, we need to describe the situation where 
two species coexist if they consume different resources and one of them disappears 
when they begin to compete for the same resources. Since we associate species to 

Fig. 3   Modelling of the part of the diagram which begins at the point z6 with equation (2). The 
green lines show the trajectories of the maxima of the function u(x,  t), the red curve is a snapshot 
of solution, and the violet line shows the function s1(x) . The values of parameters are as follows: 
d1 = 0.1, a1 = 20, b1 = 0.5, s1 = 0.018 (lowest value of the function s1(x) ), � = 0.1,N = 3 . (Color figure 
online)
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the coordinates of the maxima of the corresponding density distributions, two spe-
cies do not compete if these coordinates are different, and they begin to compete 
when they are close to each other.

Thus we need to describe (a) the displacement of species in the morphological 
space, (b) their competition when two species (coordinates of the maxima) are close 
and the absence of competition when they are far from each other in this space, (c) 
the disappearance of some of the species due to this competition. Clearly, these 
properties are not described by the conventional model of competition of species 
which does not take into account their location in the space of phenotypes.

Let us begin with the case where the coefficients si are constant. The first compo-
nent u1 of the solution expands in space and begins to influence other components 
of the solution (Fig. 2). First, it meets the second component u2 , which is bounded 
from the other side by the third species and is rapidly going to extinction. Similarly, 
the third, fourth and fifth species disappear one after another when pushed from one 
side by the expanding first species and from the other side by the remaining species. 
The last, sixth species persists during the time interval shown in the diagram.

The introduction of space dependent coefficients allows us to take into account 
the survival of the better adapted discussed above. Fig. 4 (upper left) shows the ini-
tial conditions and the function s1(x) . The results of the numerical simulation are 
shown in Fig. 4 (upper right).

Fig. 4   Numerical simulations of system (1) with d1 = 0.2, d2 = ... = d6 = 0.01, a1 = 20,

a2 = ... = a6 = 1, s2 = ... = s6 = 0.1, b1 = 0.5, b2 = 20, � = 0.1,N = 3 . The function s1(x) (magenta) 
changes in time and is shown for each time interval. The upper left image shows the initial conditions 
for all components of a solution and the initial form of the function s1(x) . The result of this simulation at 
t = 167 is shown in the upper right image. The snapshots of solutions for t = 265 and t = 375 are shown 
in the lower figures. Each of the figures shows the form of the function s1(x) used at the next stage of the 
simulation
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Time-dependent coefficients In order to finish modelling Darwin’s diagram, we 
need to introduce time dependent coefficients. Let us explain why it is necessary. 
The pulse moves in such a way that it tends to improve living conditions of the 
population: decrease the mortality rate, increase natality and the total size of the 
population. These conditions determine the direction of its motion, and it cannot 
move in the opposite direction because it would be unfavorable for the popula-
tion. These observations are in agreement with the biological meaning of the con-
sidered models, and they are confirmed by all obtained results.

Consider the line from the point A to a5 of the diagram which moves to the 
left. However, the line f, which starts at the point a5 , turns to the opposite direc-
tion. If the parameters of the model remain the same, this should not happen 
because either the line a or the line f would deteriorate the life conditions of the 
corresponding species. Similar behavior is shown in other parts of the diagram 
( m4, z4, z6 ). Hence we need to conclude that at the moment when the curve a 
reaches the point a5 , the coefficients of the equation change. Biologically, this 
means that the new species possess new properties which are reflected through 
the corresponding changes in the coefficients of the model.

Figure  4 shows the results of numerical simulations of system (1). The initial 
functions ui(x, 0) and the initial function s1(x) are shown in the upper left image. The 
result of this first stage of the simulation is shown in the upper right image together 
with the function s1(x) , which is used in the next stage. Further results and the func-
tion s1(x) are shown in the other images. The final result is shown in Fig. 5 (left). It 
qualitatively repeats the main features of this part of the diagram (Fig. 5, right).

4 � Discussion

Darwin’s diagram represents the essence of his theory, and it contains several dif-
ferent evolutionary patterns. First of all, the emergence of new species, the ques-
tion largely discussed in the modelling literature, and also several other models 

Fig. 5   Darwin’s diagram (right) and the numerical simulations (left) show its main patterns: coexistence 
of several species, V-pattern, extinction of species due to competition, time dependent coefficients allow-
ing the species f to return back in the space of phenotypes
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including survival of the most adapted, existence of species without speciation, 
and competition of species. Even the question of existence of species, which 
might seem obvious, appears to be quite involved as far as mathematical models 
are concerned. All these questions stimulated the development of the new models 
that were brought together in this work. We discuss some of these below as well 
as some further possible developments of these models.

Existence of species Biological species correspond to localized population 
density distributions in the form of pulses. Reaction-diffusion equation (1) (Sup-
plementary materials) with a bistable nonlinearity has such stationary solutions. 
However, they are unstable. They become stable in the case of global consump-
tion of resources (3). The bistable case corresponds to sexual reproduction where 
the reproduction rate is proportional to the square of the population density u2 . 
The existence of such solutions is also proved for the system of two equations 
with different densities of males and females (Volpert et  al. 2015). In the mon-
ostable case, where the reproduction rate is proportional to the first power of u, 
single stationary pulses do not exist. However, there are periodic travelling waves 
which can leave multiple pulses after propagation. Thus, the existence of biologi-
cal species, considered as particular types of solutions, imposes certain condi-
tions on the model and on the parameters.

Emergence of species and survival of most adapted One of the main issues of 
Darwin’s theory concerns sympatric speciation. In our previous work (Genieys 
et  al. 2006a) we have developed a minimal reaction-diffusion model that 
describes this process. It includes nonlocal consumption of resources, which 
leads to intraspecific competition, reproduction, and small random mutations. In 
the case of sexual reproduction, the phenotypes, or the functional traits, related 
to consumption of resources of males and females are supposed to be the same. 
Their difference can influence the emergence of species (see the next paragraph).

The minimal model of the emergence of species is not sufficient to describe 
some properties of this process stressed by Darwin; namely, survival of the most 
adapted subspecies and disappearance of the others. In order to describe this 
effect, we introduce a model with two resources: nonlocal and global. It is inter-
esting that, similar to Darwin’s description, we observed that “the most different 
or divergent variations” survive while the others go to extinction.

Darwin versus Mayr Darwin considered biological species as groups of mor-
phologically similar individuals. According to Mayr, these are groups of indi-
viduals that can reproduce among themselves and have fertile offspring. We will 
briefly discuss here how these two definitions are related to each other from the 
point of view of the modelling presented in this work.

The reproduction terms in Eq. (1) are proportional to the second power of the 
population density. This term appears in the case of sexual reproduction where 
the reproduction rate depends on male and female densities which are supposed 
to be equal to each other (see Supplementary materials). Therefore, it is implic-
itly assumed that males and females having offspring possess the same functional 
trait that is responsible for consumption of resources.

Suppose now that males and females having common offspring can pos-
sess different phenotypes. Then, instead of u2 , we have the nonlocal term 
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u(x, t) ∫ ∞

−∞
�(x − y)u(y, t)dy , where the kernel �(x − y) shows the probability of 

phenotypes x and y to have common offspring. This model was studied in Baner-
jee et al. (2017), and it was shown that the new species will appear if the support 
of � is small enough, such that the phenotypes x and y with common offspring 
belong to the same localized solution (species). If we allow inter-breeding, that 
is, the support of � is larger than the distance between the species in the space of 
phenotypes, then new species do not appear.

Hence, Mayr’s condition is necessary for the emergence of species that are 
understood in the sense of groups of morphologically similar individuals. Indeed, 
if individuals from different species can have common offspring, then the groups 
of morphologically similar individuals will not emerge.

Multi-level speciation Darwin’s diagram contains many important elements of 
his theory. However, it is only an illustration, and many other cases and generali-
zations are possible. We will present here one of them in order to show an exam-
ple of multi-level speciation.

Biological species are organized in genera, families, and so on. In the model-
ling presented above, we considered only species and not higher levels of this 
hierarchy. In order to introduce two levels of speciation, we need to consider dou-
ble nonlocal consumption of resources with two different kernels. In this case, the 
modified model is as follows:

where

Figure 6 shows an example of numerical simulations of equation (3). The maxima 
of solutions, which correspond to different species, are organized in groups that cor-
respond to genera. Genera have a larger range of consumption of resources than spe-
cies because of a greater variation of the total phenotype.

Nonlocal prey-predator models Competition of species leads to a quite sim-
ple dynamic where one of the species disappears or the two species coexist. It 
is interesting to note that the coexistence of species is not shown in Darwin’s 

(3)�u

�t
= d

�2u

�x2
+ au2(b1 − c1J1(u))(b2 − c2J2(u)) − �u,

Ji(u) = �
∞

−∞

𝜙i(x − y)u(y, t)dy, 𝜙i(x) =

{
1∕(2Ni), |x| ≤ Ni

0, |x| > Ni

, i = 1, 2.

Fig. 6   Numerical simulations 
of Eq. (3) with double nonlo-
cal consumption. The values 
of parameters are as follows: 
d = 0.2, a = 1, b1 = 2, b2 = 10,

c1 = 1, c2 = 15,N1 = 3,N2 = 20,

� = 0.1 . The red curve shows a 
snapshot of the solution and the 
green curve shows the positions 
of maxima at the (x, t)-plane. 
(Color figure online)
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diagram. The situation is quite different if the interaction of species is deter-
mined by prey-predator dynamics with nonlocal consumption of prey by predator 
(Banerjee and Volpert 2016) or with nonlocal consumption of resources by prey 
(Banerjee and Volpert 2017). In these cases, numerous stationary, time periodic, 
or aperiodic regimes are observed.
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