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Abstract  Computational drug repositioning has been proven as a promising and 
efficient strategy for discovering new uses from existing drugs. To achieve this goal, 
a number of computational methods have been proposed, which are based on differ-
ent data sources of drugs and diseases. These methods approach the problem using 
either machine learning- or network-based models with an assumption that similar 
drugs can be used for similar diseases to identify new indications of drugs. There-
fore, similarities between drugs and between diseases are usually used as inputs. 
In addition, known drug-disease associations are also needed for the methods as 
prior information. It should be noted that those associations are still not well estab-
lished due to the fact that many of marketed drugs have been withdrawn and this 
could affect the outcome of the methods. In this study, we propose a novel method 
named RLSDR (Regularized Least Square for Drug Repositioning) to find new uses 
of drugs. More specifically, it relies on a semi-supervised learning model, Regu-
larized Least Square, thus it does not require definition of non-drug-disease asso-
ciations as previously proposed machine learning-based methods. In addition, the 
similarity between drugs measured by chemical structures of drug compounds and 
the similarity between diseases which share phenotypes can be represented in a form 
of either similarity network or similarity matrix as inputs of the method. Moreover, 
instead of using a gold-standard set of known drug-disease associations, we con-
struct an artificial set of the associations based on known disease-gene and drug-
target associations. Experiment results demonstrate that RLSDR achieves better pre-
diction performance on the artificial set of drug-disease associations than that on 
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the gold-standard ones in terms of area under the Receiver Operating Characteristic 
(ROC) curve (AUC). In addition, it outperforms two representative network-based 
methods irrespective of the prior information of drug-disease associations. Novel 
indications for a number of drugs are also identified and validated by evidences from 
a different data resource.

Keywords  Drug repositioning · Regularized least square · Artificial drug-disease 
association · Known drug-target interactions · Known disease-gene associations

1  Introduction

De novo drug discovery is a costly and time-consuming task due to failures spread-
ing throughout the drug development pipeline. Indeed, it takes billions of dollars of 
investment and an average of 9–12 years to bring a new drug to the market (Dickson 
and Gagnon 2009; Ashburn and Thor 2004; Hughes et  al. 2011). Therefore, drug 
repositioning is an emerging approach to detect new clinical indications for existing 
drugs, or for those that are in the development pipeline (Ashburn and Thor 2004; 
Hurle et al. 2013). For example, the monoclonal antibody bevacizumab, originally 
developed for metastatic colon cancer and non-small cell lung cancer by inhibit-
ing angiogenesis, is now being used to slow or reverse abnormal vascularization of 
the retina in exudative macular degeneration (Rich et al. 2006). In addition, it was 
reported the new uses of sildenafil for erectile dysfunction and pulmonary hyperten-
sion, thalidomide for severe erythema nodosum leprosum, and retinoic acid for acute 
promyelocytic leukemia (Aronson 2007; Sirota et al. 2011). Other examples of drug 
repositioning can be found in the study of Ashburn and Thor (2004) and Sardana 
et al. (2011). However, most of the successful examples are from clinical observa-
tions. In addition, the underlying molecular mechanisms are often not clear for many 
cases. Therefore, computational methods are developed to effectively find new uses 
of drugs against various diseases and to understand the underlying mechanisms.

Two main approaches have been proposed for drug repositioning including: (i) 
machine learning-based and (ii) network-based. It was shown that integration of 
data of drugs and diseases has been proven to be an effective method in drug repo-
sitioning (Zhang et  al. 2014). Therefore, both of the approaches usually integrate 
various drug- and disease-related data in machine learning/network-based models to 
infer new drug-disease associations. For instance, Gottlieb et al. (2011) integrated 
various disease-related features including phenotypic and genetic features. Then, a 
logistic regression classifier is used to predict novel drug indications. Rather than 
disease-related features, drug-related features built from drug chemical structure 
similarity, drug molecular target similarity and drug gene expression similarity, 
were used to predict drug therapeutic class (Napolitano et al. 2013). These features 
were then merged into a single drug similarity matrix and used as a kernel for Sup-
port Vector Machines classifier. In addition, Menden et al. developed the machine 
learning-based models, a feed-forward perceptron neural network and a random for-
est regression, to predict the response of cancer cell lines to drug treatment using 
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cancer genomic features of the cell lines and chemical properties of drugs (Menden 
et al. 2013). Instead of feature-based data integration as in those studies, Wang et al. 
(2013) integrated molecular structure, molecular activity, and phenotype data using 
kernel-based data integration via a multiple kernel learning technique. A common 
limitation of those machine learning-based methods is that the definition of non-
drug-disease associations are considered as a negative training set used in binary 
classification models. This is because of the fact in biomedicine that the not yet 
observed association does not mean that the association does not exist.

Network-based analysis is another widely used strategy for computational drug 
repositioning (Wu et  al. 2013). Based on the same assumption that similar drugs 
can be used to treat similar diseases, network-based methods also rely on similar-
ity between drugs and diseases. However, the similarities are presented in similar-
ity networks rather than similarity matrices (i.e., kernel matrices). In addition, prior 
information such as known drug-target interactions, known disease-gene associa-
tions and known drug indications are also integrated. For example, a causal network 
was recently built (Li and Lu 2013), which is a multilayered pathway of gene, dis-
ease and drug target, to identify new therapeutic uses of existing drugs. In the causal 
network, the transition likelihood of each chain was estimated on the basis of known 
drug-disease treatment association. However, most studies first built a heterogene-
ous network including a drug similarity network and a disease similarity network, 
which are connected to each other by known drug-disease associations, and then 
a network-based algorithm was used to infer novel associations between drugs and 
diseases. For instance, Wu et al. applied network clustering to a drug-disease het-
erogeneous network to identify closely connected modules of disease and drugs, 
which can be used for extracting possible drug-disease pairs for drug repositioning 
(Wu et al. 2013). A random walk with restart (RWRH) model was used to infer new 
indications for approved drugs on drug-disease heterogeneous networks (Liu et al. 
2016). In addition, other heterogeneous graph-based inference (HGBI) methods, 
which were successfully used for prediction of drug-target interactions (Wang et al. 
2013), can be used for drug repositioning.

It is obvious that the prediction performances of both machine learning- and net-
work-based methods are dependent on similarity matrices/networks. Besides, prior 
information represented in known drug-disease associations in a form of an adja-
cency matrix/a bipartite network for machine learning- and network-based, respec-
tively, also affect the prediction performance. However, those associations are still 
not well established due to the fact that many of marketed drugs have been with-
drawn. In this study, we propose to use a novel method named RLSDR, which rely 
on a semi-supervised learning method, i.e., Regularized Least Square, to overcome 
a limitation of supervised classification methods since it does not require to clearly 
define the negative training set. In addition, it can make the use of the heterogeneous 
network of drugs and diseases as input matrices. Indeed, drug and disease similar-
ity networks can be represented as similarity matrices and a bipartite network of 
known drug-disease associations can be used as a manner of an adjacency matrix. 
Due to the limitation of available known drug-disease associations as gold-standard 
sets, instead of using these associations, we built an artificial set of the associations 
based on the shared proteins which are targets of a drug and known to be associated 
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with a disease. This approach is based on an assumption that the shared proteins can 
be deemed as the molecular origin of diseases and drugs development, which are 
taking part in common biological processes perturbed under disease state or under 
drug administration. Therefore, these shared proteins may imply potential drug 
repositioning.

To assess the overall prediction performance of RLSDR, we first compared itself 
when using the constructed artificial set and a gold-standard set collected from Got-
tlieb et al. (2011) of drug-disease associations. The experiment result demonstrated 
that RLSDR performed better on the artificial set. After that, we compared RLSDR 
with two representative network-based methods, one working solely on the disease 
similarity network and one applied to the heterogeneous network of drugs and dis-
eases. Experiment results also indicated that RLSDR outperformed both of them. To 
assess the prediction ability of novel drug-disease associations of RLSDR, we used 
the gold-standard (which was collected from Gottlieb et al. (2011)) set as training 
set and another gold-standard dataset of drug-disease associations from Martínez 
et al. (2015) for the validation. As a result, a total of 19 out of 75 drugs, which are 
common between the two gold-standard databases, has found as novel indications.

2 � Materials and Methods

2.1 � Drug Similarity

It is generally accepted that drugs with similar chemical structures would have simi-
lar therapeutic functions and can be used to treat similar diseases. Therefore, we 
calculate similarity between 7838 drugs from KEGG database (Kanehisa et  al. 
2009) using SIMCOMP tool (Hattori et  al. 2010), which calculates the similarity 
between drugs based on their chemical structures. More specifically, SIMCOMP has 
been originally developed as a graph-based method for comparing chemical struc-
tures, which searches for the maximal cliques in the association graph as the maxi-
mum common induced subgraph. However, the current version of SIMCOMP can 
also compute the maximum common edge subgraph, which is faster because of the 
small number of nodes in an association graph. The calculation results in 887,883 
interactions having positive similarity between every pair of the drugs. This drug 
similarity network can be represented as a similarity matrix WDr , where an element 
(

WDr

)

i,j
 represents similarity between two drugs dri and drj.

2.2 � Disease Similarity

We collect a phenotypic disease similarity matrix ( WD ) from MimMiner (van Driel 
et al. 2006), where an element 

(

WD

)

i,j
 of the matrix represents the degree of similar-

ity between two disease phenotypes di and dj . The disease phenotypes are OMIM 
records (Amberger et al. 2009). More specifically, the full-text and clinical synopsis 
fields of more than 5000 records that describe genetic disorders were used. Then, a 
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feature vector was built for each OMIM record based on the anatomy and the disease 
sections of the medical subject headings vocabulary (MeSH) (Lipscomb 2000), 
where MeSH concepts serve as phenotype features characterizing OMIM records. 
Finally, the similarity between two disease phenotypes di and dj is calculated by 
cosine of angles of the two corresponding feature vectors. By selecting only k neigh-
bors which have largest similarities for each node, a phenotypic disease similarity 
network can be constructed.

2.3 � Gold‑Standard Sets of Known Drug‑Disease Associations

Known drug-disease associations assembled by Gottlieb et  al. (2011) are consid-
ered as a first gold-standard. This contains 1933 associations between 593 drugs 
collected from DrugBank (Law et al. 2014) and 313 diseases. After mapping Drug-
Bank identifier of these drugs to KEGG (Kanehisa et al. 2009) identifier, and dis-
ease name with title of disease phenotype in OMIM (Amberger et  al. 2009), we 
finally have 1297 associations between 403 drugs and 257 diseases. This first gold-
standard is called as PREDICT gold-standard since this is the name of the method 
proposed in Gottlieb et al. (2011). The second gold-standard of drug-disease asso-
ciations, DNdataset, was collected from Martínez et al. (2015). This contains 1008 
drug-disease associations between 1490 drugs from DrugBank and 4517 diseases 
from disease ontology (DO) (Kibbe et al. 2015). After mapping with KEGG identi-
fier and disease phenotype name from OMIM, we finally obtained 231 associations 
between 149 drugs and 76 diseases.

2.4 � Construction of Artificial Drug‑Disease Associations

Due to the limitation in available gold-standard drug-disease associations, we here 
define an association between a drug and a disease using shared genes/gene prod-
ucts. This definition is derived from underlying mechanisms of drugs and diseases 
that the common biological processes perturbed under disease state by associated 
genes or under drug administration by binding mediated targets may imply potential 
drug repositioning. To construct these associations, we first collect known drug-tar-
get interactions between 1198 drugs and 1421 targets from KEGG (Kanehisa et al. 
2009), and known disease-gene associations between 21,249 diseases and 15,448 
genes from OMIM (Amberger et al. 2009). An association between a drug dr and a 
disease d is defined if there is significant overlap between the known target set of dr 
and the known associated gene set of d using hypergeometric distribution

p =

min(K,n)
∑

i=k

(

K

k

)(

N − K

n − k

)

(

N

n

)



320	 D.-H. Le, D. Nguyen‑Ngoc 

1 3

where

–	 N is number of targets in KEGG database
–	 n is number of known target of drug dr
–	 K is number of gene known to be associated with disease d
–	 k is number of shared target/gene between drug dr and disease d.

By selecting only drug-disease pair having p ≤ 0.05, we finally have 6452 significant 
associations between 785 drugs and 1181 diseases. We denote these associations 
as an artificial set. Figure 1a illustrates the construction of the artificial set of drug-
disease associations.

2.5 � Regularized Least Square for Drug Repositioning (RLSDR)

RLSDR is proposed based on Regularized Least Square (RLS) learning technique 
for inferring novel drug-disease associations. This is a semi-supervised learning and 
global method since it can rank drug-disease associations for all the drugs simul-
taneously without the negative samples. This method was designed to construct a 
continuous classification function which can determine the association probability 
between each drug and a given disease (i.e., the higher this probability is, the more 
each drug is related to a given disease). To this end, a RLS classifier was constructed 
by defining and minimizing a cost function. This cost function was trained in the 
drug similarity network and the disease similarity network, and then it was used 
to optimize the classification function (Chen and Yan 2014). Formally, the optimal 
classifier in these two spaces was defined as follows:

where

–	 F∗
Dr

 and F∗
D
 are optimal classification functions in the drug and disease spaces, 

respectively as follows:

–	 w is the weight between these two spaces. �Dr and �D are trade-off parameters in 
the drug and disease spaces, respectively.

–	 IDr and ID are identity matrices with the same size as matrices WDr and WD , 
respectively.

–	 A(mn) is an association matrix, where (A)i,j = 1 if drug dri is associated with dis-
ease dj, otherwise (A)i,j = 0. m and n are the number of drugs and diseases in the 
drug similarity networks and the disease similarity network, respectively.

F∗ = wF∗T
Dr

+ (1 − w)F∗

D

F∗

Dr
= WDr

(

WDr + �DrIDr
)

AT

F∗

D
= WD

(

WD + �DID
)

A
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Figure 1b demonstrates the integration of drug and disease similarity networks 
and drug-disease associations into a heterogeneous network and how RLSDR ranks 
diseases to find potential candidates to be repositioned for a given drug.

(a)

(b)

Fig. 1   Illustration of RLSDR method for drug repositioning. a Construction of artificial drug-disease 
associations. Known drug-target interactions and known disease-gene associations are collected from 
KEGG and OMIM, respectively. Then, an association between a drug and a disease is determined if there 
is a significant overlap between known target set of the drug and known associated gene set of the dis-
ease. b RLSDR is used to rank candidate diseases to find new uses of a drug dr1 in a framework of a 
heterogeneous network of drugs and diseases
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2.6 � Performance Evaluation

Ranking performance was assessed through the leave-one-out cross-validation 
(Shortly called LOOCV) process for each drug, and then the overall prediction per-
formance of a method is an averaged value over all drugs in a set of known drug-
disease associations. Given a drug dr, a set of known dr-associated diseases (S) and 
a set of candidate diseases (C) are given. A disease s∈D was held out for validation 
and the remaining known drug-associated diseases were specified to a set of source 
nodes (i.e., S = D\{s}) for RWR. For RLSDR and HGBI, (A)dr,s is set to 0. The net-
work-based ranking algorithms were used to prioritize all the candidate diseases. 
This process was repeated by setting every s∈D to a held-out disease. For a reli-
able performance comparison, we drew the receiver operating characteristic (ROC) 
curves and computed the area under the curve (AUC) value based on the rank of 
held-out disease s and diseases in set C∪{s}. More specifically, given a thresholdτ, 
we counted TP (true positives), FN (false negatives), FP (false positives), and TN 
(true negatives), which were formally defined as follows:

where rank(s), rank(c) and I(∙) denote the rank of s, the rank of a candidate disease c 
out of the set C∪{s} and the indicator function, respectively. Then, we defined sensi-
tivity and (1-specificity) as follows:

By varying τ from one to the number of diseases in the set C∪{s}, the relation-
ship between sensitivity and (1-specificity) was plotted. The ROC curve is the curve 
constructed based on those pairs of values, and the AUC is the area under the ROC 
curve. In this study, we considered candidate disease set as all diseases that are not 
known to be associated with the drug dr.

3 � Results and Discussion

Prediction performance was assessed through the leave-one-out cross-validation 
(Shortly called LOOCV) process for each drug, and then the overall prediction per-
formance of a method is an averaged value over all drugs in a set of either artificial 
or gold-standard drug-disease associations.

TP =
∑

s∈S

I(rank(s) ≤ 𝜏) FN =
∑

s∈S

I(rank(s) > 𝜏)

FP =
∑

c∈C

I(rank(c) ≤ 𝜏) TN =
∑

c∈C

I(rank(c) > 𝜏)

Sensitivity =
TP

TP + FN
1−specificity =

FP

FP + TN
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3.1 � Prediction Performance of RLSDR on Artificial and Gold‑Standard Sets 
of Drug‑Disease Associations

In this section, we show how well RLSDR method can predict novel drug-disease 
associations using artificial drug-target association data. More specifically, we com-
pare the prediction performance of RLSDR using the artificial and PREDICT gold-
standard sets of drug-disease associations. To this end, we set �Dr = �D = 1 and vary 
the weight parameter in (0, 1) then calculate the prediction performance in terms 
of AUC value for each drug in each association set. Then, the final performance is 
averaged over all AUC values. Figure 2 shows that RLSDR on the artificial set is 
better than that on the gold-standard set for all weight parameter (w) varied in (0, 1). 
This figure also shows stable performance while changing weight w. In summary, 
the result indicates that artificial drug-disease associations help improve the infer-
ence of new uses of existing drugs.

3.2 � Performance Comparison with Existing Methods

In this section, we compare the prediction performance of RLSDR with two net-
work-based methods. First, a random walk with restart (RWR) model was success-
fully used for prediction of disease-associated genes (Kohler et  al. 2008; Le and 
Kwon 2012; Le and Dang 2016), microRNAs (Le 2015a, b; Le et al. 2017) and pro-
tein complexes (Le 2015c) based on a homogeneous network of genes/proteins/miR-
NAs. We adopted this model to infer novel drug-disease associations using a homo-
geneous network of diseases (i.e., the disease similarity network, see Sect.  2). In 
addition, another heterogeneous graph-based inference (HGBI) method, which was 
successfully used for prediction of drug-target interactions (Wang et al. 2013) and 
disease-associated miRNAs (Chen et al. 2016), is used for drug repositioning. HGBI 
is based on the guilt-by-association principle on a heterogeneous network of drugs 
and diseases and predicts new drug-disease associations by iteratively updating the 

Fig. 2   Performance comparison of RLSDR on artificial and gold-standard drug-disease association 
dataset. The weight parameter is varied in (0, 1). The performance of each method is an averaged AUC 
value over all drugs in each drug-disease association dataset
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measure of strength between unlinked drug-disease pairs by taking all the paths in 
the network into account. Figure 2 demonstrates that the prediction performance of 
RLSDR is stable while changing weight w, therefore we set w = 0.5 when compar-
ing with other existing methods. Experiment result also shows that HGBI is stable 
while we vary the decay factor (α) in (0, 1) (data not shown), thus we set α = 0.5 for 
comparison. For RWR, we also change the back probability in (0, 1) and found that 
the best performances were achieved with � = 0.7 and � = 0.1 for PREDICT gold-
standard and for artificial sets, respectively (data not shown). In addition, due to 
using LOOCV for assessing prediction performance, only drugs known to be associ-
ated with at least two diseases are valid for RWR. Therefore, we also rerun RLSDR 
for drugs having at least two associated diseases when comparing with RWR. First, 
these three methods are compared on artificial drug-disease association dataset with 
the best setting for each method. Figure 3a indicates that RLSDR (AUC = 0.97) is 
better than that of RWR (AUC = 0.76) and HGBI (AUC = 0.62). Then, we compare 
these three methods on gold-standard drug-disease association dataset. Similarly, 
Fig.  3b shows that RLSDR (AUC = 0.93) is superior to both RWR (AUC = 0.79) 
and HGBI (AUC = 0.52). Taken together, our method achieves better prediction 
performance than some other existing methods irrespective of drug-disease associa-
tion datasets. This also indicates that RLSDR, which is based on a semi-supervised 
learning model, has overcome limitations of two classification supervised learning 
models and made use effectively the heterogeneous network framework of network-
based methods.

3.3 � Prediction of Novel Indications for Existing Drugs

In this experiment, we try to predict novel indications of existing drugs. To achieve 
this goal, we use the PREDICT gold-standard drug-disease association set col-
lected from Gottlieb et al. (2011) (see Sect. 2). Then, we infer novel drug-disease 

(a) (b)

Fig. 3   Performance comparison between RLSDR and RW, HGBI methods. a Artificial drug-disease 
associations; b gold-standard drug-disease associations. The performance of each method is an averaged 
AUC value over all drugs in each drug-disease association dataset
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associations for each drug in the set by selecting top 100 ranked diseases for each 
drug. These diseases could be novel promising indications. To validate these indica-
tions, we use another gold-standard dataset of drug-disease associations DNdata-
set collected from Martínez et al. (Martínez et al. 2015) (see Sect. 2). There are 75 
drugs common between the two gold-standard datasets. Table 1 shows novel indica-
tions of nineteen drugs out of them have found DNdataset. For example, octreotide 
(KEGG ID: D00442), which was designed to treat patients with diabetes mellitus, is 
found its new use in patients with acromegaly. Acromegaly is abnormal growth of 
the hands, feet, and face, caused by overproduction of growth hormone by the pitui-
tary gland. Similarly, ciclesonide (KEGG ID: D01703) is known to treat asthma, 
nasal polyps, and aspirin intolerance. However, RLSDR shows that ciclesonide can 
be used for allergic rhinitis. Finally, meclofenamic acid (KEGG ID: D02341) can be 
used for osteoarthritis instead of only for patients having insensitivity to pain with 
hyperplastic myelinopathy as original developed.

4 � Conclusions

Computational drug repositioning has been proven as an effective strategy in drug 
discovery, since it saves both time and cost to get a drug to go to the market. It also 
helps to find new uses of existing/experimental drugs, which have already passed 
toxicity validation. Computational methods for drug repositioning fall into two main 
categories (i.e., machine learning- and network-based approaches), where both of 
them make use of drug- and disease-related information in a form of similarity 
matrix/network. In addition, prior information about known drug-disease associa-
tions also helps infer new uses of drugs effectively. However, this association set is 
very limited because of the high cost and time consumption of current drug discov-
ery pipeline. In addition, a number of approved drugs have been withdrawn from the 
market due to side-effects. Binary classification learning methods proposed for the 
problem also have limitations in defining negative training set as non-drug-disease 
associations. Therefore, in this study, we proposed a novel method, RLSDR, which 
is based on a semi-supervised learning model, thus overcome the limitations of the 
binary classification-based methods. In addition, we constructed an artificial drug-
disease association based on shared target proteins which are both known to be asso-
ciated to a disease as well as known to be targets of a drug. As a result, RLSDR 
performed better on the artificial set compared to the gold-standard set collected 
from a previous study, which then has been used in other studies recently. Moreo-
ver, RLSDR also outperforms some other existing methods on both the drug-disease 
association set. Taken together, RLSDR, which overcomes both limitations of previ-
ous machine learning-based methods and the lack of known drug-disease associa-
tions, could be an effective strategy for drug repositioning.
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