
REGULAR A RTI CLE

The Modellers’ Halting Foray into Ecological Theory:
Or, What is This Thing Called ‘Growth Rate’?

Michael Deveau • Richard Karsten • Holger Teismann

Received: 11 November 2013 / Accepted: 22 January 2015 / Published online: 30 January 2015

� Springer Science+Business Media Dordrecht 2015

Abstract This discussion paper describes the attempt of an imagined group of

non-ecologists (‘‘Modellers’’) to determine the population growth rate from field

data. The Modellers wrestle with the multiple definitions of the growth rate avail-

able in the literature and the fact that, in their modelling, it appears to be drastically

model-dependent, which seems to throw into question the very concept itself.

Specifically, they observe that six representative models used to capture the data

produce growth-rate values, which differ significantly. Almost ready to concede that

the problem they set for themselves is ill-posed, they arrive at an alternative point of

view that not only preserves the identity of the concept of the growth rate, but also

helps discriminate between competing models for capturing the data. This is

accomplished by assessing how robustly a given model is able to generate growth-

rate values from randomized time-series data. This leads to the proposal of an

iterative approach to ecological modelling in which the definition of theoretical

concepts (such as the growth rate) and model selection complement each other. The

paper is based on high-quality field data of mites on apple trees and may be called a

‘‘data-driven opinion piece’’.
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1 Reader’s Guide

Since the reader might find the structure of this note somewhat unusual for a scientific

paper, a few introductory remarks are in order. Rather than giving a traditional account

of new methods and results obtained by the authors, this paper tells a story; the story of

a group of quantitative scientists, newcomers to the field of Ecology, who are trying to

determine the population growth rate from field data. Consequently, the paper

emphasizes the probing/searching character of scientific practice and an outside view

of ecological theory, while dispensing with some of the technical details (which are

partially provided in the Appendix in ESM). A substantial amount of well-known

ground is revisited, but the paper makes no attempt to be comprehensive. Certain gaps

in the discussion and slightly ‘‘cavalier’’ treatments of certain topics are shortcomings

that are tolerated as necessary ills to keep the narrative flowing1. The expert reader is

more than welcome to take issue with the presentation; in fact, this is the primary

purpose of this paper: to ask questions and stimulate discussion. The authors are

therefore pleased and proud that the paper has already generated a substantial amount

of discussion in the review process—some of it quite detailed, deep, and even

emotional. This papes proposes a ‘‘philosophical’’ approach that the authors feel has

the potential of advancing the science (and art) of ecological modelling: basing the

definition of ecological quantities (such as the growth rate) on the constructibility and

robustness of suitable mathematical models. The in-depth discussion of the growth

rate is meant to be an illustration of the general ideas and could be repeated for other

ecological phenomena such as density dependence.

2 Introduction

Imagine a group of quantitative scientists, such as statisticians or mathematicians,

with only a fleeting knowledge of ecology, who are charged with analyzing a dataset

of population counts. Let us call these scientists the ‘‘Modellers’’. The Modellers

feel that, if their analysis is to be relevant to ecologists, it should relate to what they

understand to be the most important notion in population ecology, the population

growth rate. What follows is the story of the Modellers’ journey of discovery, the

difficulties they experience, as well as their attempts at overcoming them.

3 What is the Growth Rate?

Canvassing the literature, the Modellers quickly learn that the notion of the growth

rate seems to be more multifaceted than they had expected. Not only do they find

multiple definitions [(Caughley (1977) lists five on page 109 of his classic book],

but it also remains somewhat unclear to them what rôle the quantity plays in

ecological theory. While the Modellers set out to extract the growth rate from the

1 One such gap is a thorough discussion of other approaches and areas relevant to the topic of this paper,

such as the important and rapidly growing field of bioinformatics.
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data by constructing and applying suitable models, McCallum (2008), e.g., seems to

suggest that the growth rate is used in models as a parameter:

The rate of increase of a population is a parameter basic to a great many

ecological models. [...] Perhaps more than any other parameter, the value

appropriate for use in a model is context-dependent, varying both with the

structure of the model and the model’s purpose.

Sufficiently puzzled, they finally find solace in a quote by Berryman (2003) who

seems to restore the unity of the concept and even elevates it to a fundamental law

of ecology:

The first principle (geometric growth)

Ecologists seem to agree, in general, that geometric (exponential) growth is a

good candidate for a law of population ecology. [...] since geometric growth is

a fundamental and self-evident property of all populations living under a

certain set of conditions (unlimited resources), I prefer to think of it as the first

founding principle of population dynamics [...]

We have no intention here to enter the fray of the extensive debate among ecologists

about whether Berryman’s law (a.k.a. the Malthusian Law) is in fact a Law of

Nature and/or whether ecology has any laws at all2; although we admit that the title

of O’Hara (2005) spirited article on the subject provided some inspiration for the

title of the present paper.

Rather, we imagine the Modellers taking Berryman’s law to be the definition of

the growth rate, according to which it is simply the number r in an exponential-

growth expression of the form N� ert (or the discrete-time version thereof3), where

N ¼ NðtÞ denotes the total number of individuals at time t. As a result, the existence

of a well-defined growth rate is contingent on populations under the condition of

‘‘unlimited resources’’ following an exponential growth law.

But then, what about the Modellers’ data, which are shown in Fig. 1?4 This is a

plot of field data of mites on apple trees, which, at least at the beginning of the

season, do not experience any significant resource limitation. So what are the

Modellers to make of the large oscillations? This does not look like a simple

exponential ert at all. The Modellers speculate that these might be oscillations about

an ‘‘average’’ exponential growth, which they might have to ‘‘filter out’’ to

determine r. However, they put this idea aside for now and start over, looking for

the standard definition of the growth rate.

2 In addition to the quoted paper by Berryman (2003), interested readers might find contributions such as

O’Hara (2005), Ginzburg et al. (2007), Lockwood (2008), Raerinne (2013) useful as potential entry

points into the pertinent literature, which also contain older and widely discussed contributions such as

Levins (1966) and Turchin (2001).
3 In this paper we use continuous-time models throughout. However, the discussion could equally be

applied to discrete-time models.
4 This data set is remarkable for its quality and detail, and it has therefore recently attracted renewed

interest. While various aspects of the data have been described in the literature (Herbert and Sanford

1969; Herbert 1970; Hardman et al. 1985; Marshall and Pree 1991), some of the raw data have apparently

never been analyzed.
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3.1 Census Versus Demographic Growth Rate

In the words of e.g. Sibly and Hone (2002), the standard definition reads

Population growth rate describes the per capita rate of growth of a population,

either as the factor by which population size increases per year, conventionally

given the symbol kð¼ Ntþ1=NtÞ, or as r ¼ log k.
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150 160 170 180 190 200 210 220 230 240 250 260

−0.5

0

0.5

G
ro

w
th

 R
at

e 
r

Julian Date

Instantaneous Growth Rate

160 180 200 220 240 260

50

150

250

350

N

r
N=juveniles+adults+eggs

Fig. 2 Instantaneous growth rate r ¼ log Nðt þ DtÞ=NðtÞð Þ, where NðtÞ ¼ EðtÞ þ JðtÞ þ AðtÞ is the total
number of individuals

102 M. Deveau et al.

123



But when this definition is applied to the data shown in Fig. 1 (mutatis mutandis;

the relevant time step is obviously not a year) the growth rate ‘‘suddenly’’ fluctuates

wildly between positive and negative values (Fig. 2).

Does this mean that a constant growth rate does not exist after all?5 Even if the

environmental conditions are constant (as they are—at least approximately—during

the beginning of the mite season)?

Sibly and Hone continue

In the simplest population model all individuals in the population are assumed

equivalent, with the same death rates and birth rates, and there is no migration

in or out of the population, so exponential growth occurs; in this model,

population growth rate = r = instantaneous birth rate—instantaneous death

rate.

The Modellers are intrigued by the appearance of the term ‘‘model’’ in the

description of the growth rate, but they just read on for now:

Population growth rate is typically estimated using either census data over

time or from demographic (fecundity and survival) data. Census data are

analysed by the linear regression of the natural logarithms of abundance over

time, and demographic data using the Euler–Lotka equation (Caughley 1977)

and population projection matrices (Caswell 2001).

The Modellers, to their dismay, conclude that there are multiple growth rates after

all—according to the quote above at least two kinds: one based on ‘‘demographic

data’’, and one based on ‘‘census data’’. Moreover, the former seems to draw in

other quantities (‘‘fecundity and survival’’), which seem to have to be known

independently/beforehand.

What is more, Sibly and Hone also give two ways of ‘‘analysing’’ census data. In

the first quote above, they present the simple formula r ¼ log Ntþ1=Ntð Þ; i.e., the

formula for the ‘‘instantaneous’’ growth rate (Walthall and Stark 1997). Now they

suggest to use ‘‘linear regression of the natural logarithms of abundance over time’’,

which will result in an averaged or smoothed growth quantity. But will the

numerical value(s) depend on the time interval(s)? If the Modellers are asked to take

averages, how are they going to decide which time interval to use?

3.2 Asymptotic Versus Transient Growth Rate (Population Structure)

Experienced ecologists will readily identify the large oscillations in the data of

Fig. 1 as generational waves, and they will argue that in determining the growth rate

one must account for the (st)age structure of the population.

The Modellers, obediently, consult e.g. Tenhumberg (2010) who uses the

(instantaneous) census-data definition of the growth rate, complete with its

fluctuations during the early season (‘‘transient dynamics’’), and only offers them

the piece of mind of a constant-value growth rate asymptotically.

5 We agree with Chester (2012) who argues that, if the growth rate is allowed to depend on time, it loses

its meaning and utility.
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If nothing else changes, the population eventually reaches the stable stage

distribution and the speed at which the population is growing approaches a

constant rate (the asymptotic population growth rate).

This, of course, refers to the mathematical fact, discovered by Lotka (1922), that

solutions to the appropriate demographic model for structured populations

eventually settle on the stable age distribution and grow exponentially with a rate

that can be computed from the demographic data (‘‘Lotka’s r’’ or ‘‘intrinsic rate of

increase’’). The Modellers are therefore relieved when they realize that the census-

data and demographic growth rates of Sibly and Hone are in this sense actually

identical.

However, this is still unsatisfactory—at least for anyone ready to accept

Berryman’s law: it is, in fact, precisely during the early season that resource

limitations are the least likely to occur; so during this period the exponential-growth

law should work particularly well. Having to wait until the stable age distribution is

assumed seems counter-intuitive—as well as unrealistic and impractical, as many

species will experience diminished growth due to limited resources before they can

even approach the asymptotic state and/or will change their characteristics

altogether due to seasonal behaviour etc.6 The Modellers’ field data exhibit

evidence of both phenomena: the growth of the population slows down and comes

to a halt after what appears to be 20–50 days; and during the final part of the season,

the population crashes, as the mites switch to laying next-season eggs that will not

hatch during the season they are laid (the egg numbers shown in Fig. 1 are for same-

season eggs).

It is an interesting fact, which probably deserves to be better known, that classical

demography itself offers a resolution of this conundrum. Properly ‘‘re-weighting’’ of

the (st)age groups; i.e., considering7

VðtÞ :¼
Z 1

0

vðaÞqðt; aÞda;

does indeed result in an exponential-growth law of the form VðtÞ� ert, where r is

the ‘‘asymptotic growth rate’’ in the parlance of Tenhumberg (i.e. Lotka’s r). The

important point here is that the exponential–growth formula for the aggregate

quantity VðtÞ actually holds for all t, not just for large t, as Tenhumberg’s termi-

nology suggests. Demographers know the function vðaÞ to be Fisher’s (1927) age-

dependent reproductive value8 and VðtÞ to be the total reproductive value. The

resolution of the ‘‘early-season-versus-asymptotic’’ conundrum, therefore, lies in the

6 Taylor (1979) used life-table data of various insect and mite species to estimate the time for the

populations to get within 5% of the stable age distribution (SAD). According to those estimates, it is

conceivable for some species to approach the SAD within a season.
7 In keeping with the the notation used by Lotka and Fisher, we adopt the continuous-time-continuous-

age framework, in which qðt; aÞ represents the number of age–a organisms at time t and the time and age

variables t and a are allowed to vary continuously in ð0;1Þ. Our notation is similar to the one in Cushing

(1998); see also Webb (1985).
8 Although not considered in this note, we mention that in the discrete-time-discrete-age framework of

Leslie matrix models, vðaÞ is given by the dominant left eigenvector of the transition matrix. (The

dominant right eigenvector corresponds to the stable age distribution; the logarithm of the dominant
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realization that only a very specific aggregate population-size quantity (namely

VðtÞ) obeys the exponential-growth law stipulated by Berryman. Other quantities,

such as the total number of individuals NðtÞ ¼
R
qðt; aÞda, will generally not grow

according to a simple exponential.

As an aside, it is amusing to see that applying a very simple, purely heuristic re-

weighting formula of the form WðtÞ ¼ w1EðtÞ þ w2JðtÞ þ w3AðtÞ can reduce the

generational fluctuations in the data significantly, as demonstrated in Fig. 3 (as well

as Figures 10 and 11 in E).

Here the weights wj are computed by taking ratios of life-stage averages (see eq.

(6) in Appendix E) and the step function

wðaÞ :¼
w1; a ¼ eggage

w2; a ¼ juvenileage

w3; a ¼ adultage

8><
>:

serves as a surrogate for vðaÞ.9 This observation provides a non-theoretical illus-

tration of the basic ‘‘re-weighting’’ rationale behind the definition of VðtÞ, which is a

reflection of the fact that in structured populations not all individuals can be

‘‘assumed equivalent’’, as is done ‘‘in the simplest population model’’.

4 The Modellers Go to Work

The Modellers decide that it is high time they finally do some actual modelling.

Maybe studying the data will help them clarify some of the theoretical issues with

which they have been wrestling. They use six different models to capture the data10;

see Table 1.

The number of parameters ranges from 2 for the simple exponential model N0e
rt

to 12 for the most complex seasonal phenomenological model. The modelling of the

data is achieved by standard parameter-fitting methods. The details of the models

and the fitting process are not important for this discussion and are therefore

omitted. Interested readers may consult the supplementary material of the appendix,

which contains some basic information about the models and results. Here it suffices

to say that the four seasonal models considered (III–VI in Table 1) are virtually

indistinguishable in terms of capturing the data (see Fig. 8 of C). By contrast, the

two simple non-seasonal growth models (I and II) are rather crude models of the

data (see Fig. 7), as expected from the discussion above.

Footnote 8 continued

eigenvalue to Lotka’s r.) For more information on matrix models, as well as structured population models

in general, see Caswell (2001).
9 Even if the demographic data (fecundity and mortality) as functions of age are piecewise constant, vðaÞ
is not piecewise constant, but piecewise exponential.
10 All models considered in this paper are continuous in the time variable. Discrete-time models were

also tested, but they did not provide any advantage; neither in terms of modelling, nor in terms of fitting

the data or determining the growth rate.
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The first four models (I–IV) of the table explicitly contain the growth rate as a

parameter. The remaining two are demographic models for which the growth rate is

computed from the model parameters according to the Euler–Lotka equation (see

eq. (4) in B). The results are tabulated below.

Looking at Table 2, it seems inescapable to the Modellers that they have been

chasing a chimera: that one and only growth rate the they set out to find in the data

does not exist. Using 6 models on 3 time intervals each, results in 18 growth rates!

(Although some of the values are fairly close and could be interpreted as

representing the same quantity.) They draw the conclusion that

the concept of growth rate is model-dependent; for any given population, there

may be as many reasonable answers to the question ‘‘what is the population’s

growth rate?’’ as there are reasonable models for its dynamics.
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Fig. 3 Instantaneous growth rate derived from the heuristically re-weighted aggregate population
WðtÞ ¼ w1EðtÞ þ w2JðtÞ þ w3AðtÞ (see text). Compared with Fig. 2, seasonal fluctuations are reduced
significantly

Table 1 Models used

Model Parameters Seasonal Formula (SM)

I Simple exponential 2 No (1), K ¼ 1
II Simple logistic 3 No (1)

III Linear phenomenological 11 Yes (2a)–(2d), K ¼ 1
IV Nonlinear phenomenological 12 Yes (2a)–(2d)

V Linear demographic 10 Yes (3a)–(3d), m ¼ 0

VI Nonlinear demographic 11 Yes (3a)–(3d)

For details see B of the Supplementary Material (SM)
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So is this the end of the story? Will the Modellers have to resign themselves to the

realization that determining the growth rate from population-count data is an ill-

posed problem?

5 An Alternate Point of View

Ecologists in the Berryman camp will probably resist the Modellers’ move from the

enlightened monotheism of one growth rate to the heathen polytheism of many

growth rates. They will argue that the Modellers simply confused ‘‘estimator’’ and

‘‘estimand’’ when they interpreted the second Sibly-and-Hone quote above as saying

that there are ‘‘at least two kinds’’ of growth rates. These ecologists will probably

suggest that the seemingly different growth rates are merely multiple ways of

determining the growth rate—the implication being that the quantity itself still has a

unique ‘‘identity’’. Similarly, they may conclude that what the Modellers interpreted

as model-dependence of the concept, may also be interpreted as multiple ways of

computing the same ecological quantity, the growth rate.

The Modellers recognize that this point of view offers, in fact, an intriguing

possibility of ‘‘turning the table’’ on the problem: if they were to assume that a well-

defined single growth rate does exist after all, could they use this to discriminate

between models?

To describe how the Modellers apply this idea to their data, we need to mention that

the data actually consist of 24 replicates (see Fig. 5 in A); what was shown above were

averaged data. To increase the sample size (which they arbitrarily choose to be 100),

the Modellers use a simple resampling technique11. For this larger data set (see Fig. 6),

they then repeat the exercise described above; that is, they fit the 6 models to each of

the 100 data sets and determine the corresponding growth-rate values. Figure 4 shows

the distributions of those values for the various models.

So, which model should one trust? Or, better , entrust with determining the

‘‘true’’ growth rate (assuming one believes it exists)? Obviously, the width/

narrowness of the distribution would be a factor in making the decision. Given that

the data set is derived from measurements of the same population, one would expect

that the different data sets essentially contain information about the same growth

Table 2 Growth-rate values

derived from various models/

time windows

Model Time window

30 days 50 days 70 days Full season

I 0.1160 0.0686 0.0329

II 0.4615 0.4636 0.4789

III 0.0371 0.0552 0.0419

IV 0.1030 0.0620 0.1255

V 0.0311 0.0210 0.0165

VI 0.0498 0.0445 0.0352

11 Each new data set is the average of 10 randomly selected replicates.
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rate (up to some degree of noise), so one would expect the distribution of r-values to

be fairly narrow as well.

This basically eliminates models II and IV, and probably also model III. Perhaps

surprisingly, the simplest model (I) has fairly tight distributions, which seems to

give it an edge. However, it has a very strong dependence on the time window over

which the fitting is performed. This introduces an unacceptable arbitrariness (how

would one tell which time window is appropriate?), which rules out this one, too.

The best compromise between narrowness of the distribution and independence

of the time window seem to be offered by model VI. So one may be inclined to

declare this the ‘‘winner’’. It is worth noting that the models that perform best in

terms of determining the growth rate r (V and VI) are the ones that do not contain r

explicitly.

Of course, there are other factors (likely many) to be considered in selecting

models in a particular modelling exercise, such as goodness of fit, complexity,
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Fig. 4 Growth-rate distributions for models I–VI (rows 1–6) using three different time windows for each
model. Colour coding of time windows: turquoise—30 days; green—50 days; blue—70 days; black—
full season. (Note the different scale in row 2). (Color figure online)

108 M. Deveau et al.

123



derivability from first principles, purpose etc. (see e.g. Evans et al. 2013 and the

literature therein). More importantly, the point here is not to actually find the best

model for the particular data set shown above. Rather, what we want to point out is

that stipulating the existence (or ‘‘reality’’) of an ecological parameter such as the

growth rate can potentially provide an additional robustness criterion. This turns the

apparent model dependence of that parameter into a tool for model selection12.

Ecologists might want try to identify other ecological quantities that could be

utilized in a similar manner.

6 Conclusion

The story of the Modellers presents us with a choice: either abandon the idea of a

unique growth rate inherent of a given population and accept that this notion

depends on the model used to determine it—or retain the idea of a single growth rate

and reject models that are unable to give robust values for it. For instance,

McCallum (2008) unceremoniously states that ‘‘there is limited value in estimating r

for its own sake’’. On the other hand, in light of Berryman’s Law quoted at the

beginning, a sizeable group of ecologists seems to genuinely hold that the growth

rate is (real and) fundamental. So is it a matter of mere belief—a mode of mind that

many scientists probably feel has no place in scientific inquiry13—on which side we

come down?

Our final argument is that the two alternatives described above may be used in an

iterative manner, much like physicists view the genesis of physical theories. That is,

we may take the position that an ecological quantity, such as the growth rate, can

only reasonably be assumed to have reality/currency if it can be determined

robustly; i.e., if at least one model can be found from which consistent and robust

values of that quantity can be derived. If the quantity has gained this kind of

credibility, it may be utilized as a criterion for model selection as described above.

If one model emerges as particularly suitable in a modelling exercise, it can be

checked again for robustness in providing values for the same and/or other credible

and established quantities of interest.

This approach is by its very definition data-based. So we disagree with the

sentiment that data cannot be used ‘‘to decide between foundational definitions’’,

which has been expressed in response to an earlier version of this paper. On the

contrary, we feel that the discussion of foundational issues should be spurned and

guided by empirical facts and data.

As mentioned at the beginning of this story, we feel no urge (and have limited

expertise) to enter the philosophical debate surrounding the interrelations of reality

(or realism), laws of nature, scientific models etc. and/or the similarities and

12 In fact, for the data set at hand the Modellers were somewhat unsatisfied with the results of standard

model-selection techniques, such as AIC. This motivated them to look for additional criteria such as the

ones described in the present paper.
13 Philosophers, even philosophers of science, may feel differently about this, however: we note with

interest that Nancy Cartwright (1983) uses the word ‘‘believe’’ 15 times in the introductory chapter of her

book alone.
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differences of ecology and the physical sciences. Nor do we make claims about

novelty and originality of the ideas underlying the story of the Modellers. For

instance, the critical role of models and the idea of model robustness have been

discussed by Cartwright (1999) and Raerinne (2012) (following Levins 1966),

respectively, as well as others.

We advocate a pragmatic view, rooted in the simple observation that scientific

practice often proceeds (well) without explicit reference to abstract foundational

thinking.14 We, modellers ourselves, view the concept of a data-driven recursive

definition of ecological quantities based on the constructibility and robustness of

suitable models15 as such a pragmatic approach.
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