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Abstract We describe a prey–predator system incorporating constant prey refuge

through provision of alternative food to predators. The proposed model deals with a

problem of non-selective harvesting of a prey–predator system in which both the

prey and the predator species obey logistic law of growth. The long-run sustain-

ability of an exploited system is discussed through provision of alternative food to

predators. We have analyzed the variability of the system in presence of constant

prey refuge and examined the stabilizing effect on predator–prey system. The steady

states of the system are derived and dynamical behavior of the system is extensively

analyzed around steady states. The optimal harvesting policy is formulated and

solved with the help of Pontryagin’s maximal principle. Our objective is to maxi-

mize the monetary social benefit through protecting the predator species from

extinction, keeping the ecological balance. Results finally illustrated with the help

of numerical examples.
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1 Introduction

Biological conservation is tightly coupled to ecology. Ecology is about the

understanding how the ecosystem works, while biological conservation involves

applying this knowledge to develop scientific basis for conserving and managing the

ecosystem. The aim of biological conservation is to protect the species from

extinction and maintain the ecological balance. Population dynamics is the

dominant branch of mathematical biology that deals with forces affecting changes

in population densities or affecting the form of population growth. It is clear that

predator population depends on their prey species for survival and they lower the

survival and fecundity rate of prey species. Therefore, predator population is

affected by changes in prey population. Refuge used by prey has a stabilizing effect

on predator–prey system. The characteristics of refuges influence the density of prey

species. Predation, inter-specific competition, and prey refuge space affects local

prey diversity (Kar 2005, 2006; Chen et al. 2010; Chakraborty et al. 2011;

Cressmana and Garay 2009; Mchich et al. 2005).

The proportion of refuge space in the habitats determines the responses of prey

diversity to predation and competition (Hixon 1991). Effects of competitive refuges

as well as refuges from predators on prey-diversity responses were also discussed.

Equilibrium density of prey population increases as prey refuge increase while

decrease that of predators and the stability of interior equilibrium is determined by

refuge used by prey species. Prey population reaches its maximum carrying capacity

when refuge used by prey is high enough (Ma et al. 2009). Prey dispersal and

refuges play a vital role on predator–prey dynamics. The system experienced

transitions from predator extinction to predator–prey oscillatory coexistence, to

predator–prey non-oscillatory coexistence, when dispersal between the prey-refuge

and predator–prey habitats increased. The availability of refuges and dispersal of

prey population increased the impact of population (Berezovskaya et al. 2010). Yu

and Sun (2013) described a predator–prey model incorporating a constant prey

refuge with Hassell–Varley type functional response.

The quality and quantity of alternative food supplied to the predators is known to

play a vital role in the prey–predator dynamics. Additional food altered the

interaction of co-occurring predators sharing same primary prey. In presence of

primary prey, two predator species survived but they were failed to reproduce.

When primary prey and alternative food was provided, both predator species

survived and reproduced. There is an important role of predator–predator interaction

on suppression of prey population densities (Onzo et al. 2005). To study the effects

of additional food on the system dynamics, a predator–prey model with type II

functional response with additional food to predator was considered (Srinivasu et al.

2007). It was observed that prey population can be controlled by varying the quality

and quantity of additional food. The quality and supply level of additional food to

predators was discussed in this paper for the benefit of biological control. A long run

dynamics of a prey–predator model with an alternative prey was discussed (Kar and

Chattopadhyay 2010). They have shown that individual harvesting efforts and

digesting factors relative to alternative determine the positive value of the

population in the long run. A two species prey–predator model with alternative
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prey was considered to study the effect of alternative food to predator and

harvesting effort (Kar and Ghosh 2012).

The dynamics of prey–predator system has long been considered to be one of the

dominant themes under mathematical biology (Ghordaf et al. 2004; Chakraborty

et al. 2012; Das et al. 2012; Arditi and Ginzburg 1989; Chakraborty et al. 2013a, b). It

has often been suggested that refuges are a crucial factor allowing prey to persist with

predators, relatively few qualititative studies have directly addressed the patterns or

implications of refuge use. Again, the use of additional food has been widely

recognized by experimental scientists as one of the important tools for biological

conservation. The quality and quantity of additional food supplied to the predators is

known to play a vital role in the controllability of the system. According to our best

knowledge, it is relevant to point out from the existing literature that no attempt has

been made to study the dynamics of a prey predator system which incorporates

constant prey refuge through provision of alternative food to predators.

The paper is organized in the following manner. Mathematical model is formulated

in Sect. 2. The boundedness of the system is discussed in Sect. 3. Existence of

equilibriums points have been examined in Sect. 4. Local stability of the system is

analyzed in Sect. 5. Global stability of the system at the interior equilibrium point has

been studied in Sect. 6. Bionomic equilibrium of the proposed system is analyzed in

Sect. 7. Optimal harvesting policy is discussed in Sect. 8. We have performed

numerical simulation in Sect. 9. A brief conclusion is also provided in the final section.

2 Model Formulation

We consider a prey–predator system with harvesting. It is assumed that prey species

follows logistic law of growth. Let us assume x and y are respectively the size of

prey and predator population at time t. Predator population consumes prey

according to Holling type II functional response. There is a conflict for common

resource (prey) between predators and harvesting agencies. Again, predator

mortality is assumed to be a rate proportional to y2 rather than y. This non-linear

dependency reflects the combined effects of increased predation by super predator

(not considered in the model directly) and the interface or competition among the

predators. So the growth of the predator species in the second equation is limited

due to the presence of the term cy2 and even if the density of the prey is very high. It

is assumed that the prey population incorporates constant prey refuge towards its

protection from predators. The dynamical system of the problem is represented by

following differential equation:

dx

dt
¼ rx 1� x

K

� �
� aðx� mÞy

1þ aðx� mÞ � h1ðtÞ;

dy

dt
¼ syþ abðx� mÞy

1þ aðx� mÞ � cy2 � h2ðtÞ;
ð2:1Þ

where r is the intrinsic growth rate of prey, s is the intrinsic growth rate of the

predator, K is the environmental carrying capacity of the prey, m is the constant prey

refuge, a is the Half saturation constant, a is the maximal relative increase of
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predation, b is the conversion factor, c is the arte of intra-specific competition, h1

(t) and h2 (t) be the amount of resource harvested respectively from prey and

predator population at time t. All the parameters are assumed to be positive.

The term sy in the model represents a growth rate of the predator due to the

availability of alternative food sources. It is quite natural that when focal prey is

low, the predators increase their feeding on alternative prey. But when the focal

prey increases, the predator uses less alternative prey and as focal prey approaches

to its saturation value K, the amount of alternative prey consumed by the predator

tends to zero and then only predation of the focal prey occurs. For this reason, we

modify the term sy, reported in literature, by the factor sy(1 – x/K).

Harvesting has a strong impact on the dynamic evaluation of a population subjected

to it. First of all, depending on the nature of the applied harvesting strategy, the long-run

stationary density of a population may be significantly smaller than the long-run

stationary density of a population in the absence of harvesting. Therefore, while a

population can, in the absence of harvesting, be free of extinction risk, harvesting can

lead to the incorporation of a positive extinction probability and therefore, to potential

extinction in finite time. Secondly, if a population is subjected to a positive extinction

rate then harvesting can drive the population density to a dangerously low level at which

extinction becomes sure no matter how the harvest affects the population afterwards.

The functional form of the harvest is generally considered using the phrase

Catch-Per-Unit-Effort (CPUE) hypothesis (Clark 1990) to describe on assumption

that CPUE is proportional to the stock level. We now take the harvested rate in the

following form

h1ðtÞ ¼ q1Ex;

h2ðtÞ ¼ q2Ey;

where, q1 and q2 are catchability coefficients of the prey and predator population,

E is the combined harvesting effort.

Introducing h1 (t) and h2 (t) in (2.1), the system finally becomes

dx

dt
¼ rx 1� x

k

� �
� aðx� mÞy

1þ aðx� mÞ � q1Ex

dy

dt
¼ sy 1� x

k

� �
þ abðx� mÞy

1þ aðx� mÞ � cy2 � q2Ey

ð2:2Þ

with initial conditions x(0) [ 0, y(0) [ 0.

3 Boundedness of the System

Lemma 1 All the solutions of (2.2) which start in R2
þ are uniformly bounded.

Proof We define the function

x ¼ xþ 1

b
y ð3:1Þ
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The time derivative of Eq. (3.1) is

dx
dt
¼ rx 1� x

k

� �
� sy

b
1� x

k

� �
� c

b
y2 � q1Ex� q2Ey

b

For each t[ 0, upon computing the square separately in x and y the following

inequality holds

dx
dt
þ tx� k

4r
ðtþ r � q1EÞ2 þ 1

4bc
ðtþ s� q2EÞ2 ð3:2Þ

It is clear that the right hand side of inequality (3.2) is bounded for all

ðx; yÞ 2 R2
þ, provided E is bounded. Thus we choose l[ 0 such that

dx
dt
þ tx\l:

Applying the theory of differential inequality, we obtain

0\x x; yð Þ\ l
t

1� e�ttð Þ þ x xð0Þ; yð0Þð Þe�tt ð3:3Þ

which, upon letting t!1, yields 0\x\ l
t.

So, we have, that all the solution of Eq. (2.2) that start in R2
þ are confined to the region

B, where B ¼ ðx; yÞ 2 R2
þ : x ¼ l

t þ e; for any e [ 0
� �

, Birkoff and Rota (1982).

4 Existence of Equilibria

The possible steady states of system (2.2) are as follows:

E0 : ð0; 0Þ;

E1 : ð�x; 0Þ; �x ¼ ðr � q1EÞK
r
;

E2 : ð0; �yÞ; �y ¼ 1

c
sþ abm

1� am
� q2E

� �
;

E3 : ðx�; y�Þ;

where,

y� ¼ s

c
1� x�

K

� �
þ ab x� � mð Þ

c 1þ a x� � mð Þ½ � �
q2E

c
: ð4:1Þ

and x� satisfying the following equation:

p1x�4 þ p2x�3 þ p3x�2 þ p4x� þ p5 ¼ 0 ð4:2Þ

where, p1 ¼ a2r
K
;

p2 ¼ a2r � 2a2mr

K
þ 2ar

K
þ aas

Kc
� q2Ea2;
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p3 ¼ 2ar � 2a2mr � r

K
þ a2m2r

K
� 2amr

K
þ as

Kc
� aams

Kc
þ a2b

c
þ aq2Ea

c

þ 2a2q2Em� 2aq2E;

p4 ¼ r þ a2m2r � 2amr þ 2a2bm

c
þ q2E

a
c
� ma

c
� aam

c
� 1� a2m2 þ 2am

� �
;

p5 ¼
aq2Em2

c
� a2b2m

c
� amq2E

c
:

The ratio r
q

of the biotic potential (r) to the catchability coefficient (q) is known as

the biotechnical productivity (BTP) of the species. It is easy to see that the

equilibrium point E1 exists if E\ r
q1

or E \ BTPx.

Similarly, E2 exists if E\ 1
q2

sþabm
1�am

� �
and m\ 1

a
.

It is to be noted that y�[ 0 if E\ 1
q2

s 1� x�

K

� 	
þ ab x��mð Þ

1þa x��mð Þ½ �

h i
and m\x�\K.

It may also be noted from equation (4.2) that p1 [ 0,

Again, p5 [ 0 if m [ 1þ ab2

Eq2

� �
.

Consequently, it is possible to get at least one positive solution of x� depending

on the sign of p2, p3 and p4.

However, we shall consider such a positive root of x� which satisfies the

conditions for the existence of y�:
Therefore, the interior equilibrium point E3 exists.

5 Local Stability Analysis

We shall now investigate the local behaviour of the model system (2.2) around the

steady states. The variational matrix of the system of Eq. (2.2) is

Vðx; yÞ ¼
r � 2rx

K
� ay

ð1þax�amÞ2 � q1E � aðx�mÞ
1þaðx�mÞ

� sy
K
þ aby

ð1þax�amÞ2 s� sx
K
þ abðx�mÞ

1þaðx�mÞ � 2cy� q2E

2
4

3
5 ð5:1Þ

We now prove the following theorems.

Theorem 5.1 A necessary and sufficient condition that the origin is a stable node

is

E [ max
r

q1

;
1

q2

s� abm

1� am


 �� �
; s [

abm

1� am
and m\

1

a
:

Proof Let us assume that the origin is a stable node then two eigenvalues must be

both negative. The two eigenvalues of variational matrix are

k1 ¼ r � q1E;

k2 ¼ s� abm

1� am
� q2E:
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Eigenvalue k1 will be negative if E [ r
q1

and eigenvalue k2 will be negative if

E [ 1
q2

s� abm
1�am

h i
where, s [ abm

1�am
and m\ 1

a
.

Necessary and sufficient condition that origin is a stable node is

E [ max
r

q1

;
1

q2

s� abm

1� am


 �� �
; s [

abm

1� am
and m\

1

a
:

Theorem 5.2 A necessary and sufficient condition that the steady state �x; 0ð Þ is a

stable node is

E [
1

q2

s� s�x

K
þ ab �x� mð Þ

1þ að�x� mÞ


 �
and �x [ m:

Proof The two eigenvalues of variational matrix V �x; 0ð Þ are

k1 ¼ �
r

k
�x and k2 ¼ s� s�x

K
þ abð�x� mÞ

1þ ð�x� mÞ � q2E:

Obviously k1 \ 0 and if �x; 0ð Þ is a stable node, the other eigenvalue k2 must also

be negative. This requires that

E [
1

q2

s� s�x

K
þ ab �x� mð Þ

1þ að�x� mÞ


 �
and �x [ m:

Theorem 5.3 A necessary and sufficient condition that the steady state (0, �y) is a

stable node is 1
q1

r � a�y

1�amð Þ2
h i

\E\ c
q2

sþ 3abm
1�am

h i
and r [ a�y

1�amð Þ2.

Proof The eigenvalues of variational matrix ð0; �yÞ are

k1 ¼ r � a�y

1� amð Þ2
� q1E and k2 ¼ �s� 3abm

1� am
þ q2

E

c
:

The eigenvalue k1 will be negative if

E [
1

q1

r � a�y

1� amð Þ2

" #
:

The eigenvalue k2 will be negative if

E\
c
q2

sþ 3abm

1� am


 �
:

Therefore necessary and sufficient conditions are

1

q1

r � a�y

1� amð Þ2

" #
\E\

c
q2

sþ 3abm

1� am


 �
and r [

a�y

1� amð Þ2
:
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Theorem 6 A necessary and sufficient condition that the steady state (x�; y�) is a

stable node is r
K

x� þ ay�

ð1þax�amÞ2 [ ay�ðx��mÞ
x�ð1þax��amÞ and x�[ m.

Proof The eigenvalues of the variational matrix V (x�; y�) are

k1 ¼ �
r

K
x� � ay�

ð1þ ax� � amÞ2
þ ay�ðx� � mÞ

x�ð1þ ax� � amÞ and k2 ¼ �cy�:

The eigenvalues of the variotional matrix V (x�; y�) are the roots ki ði ¼ 1; 2Þ of

the quadratic equation

k2 � k
ay�ðx� � mÞ

x�ð1þ ax� � amÞ �
r

K
x� � ay�

ð1þ ax� � amÞ2
� cy�

" #

þ acy�
2

ð1þ ax� � amÞ2
þ rc

K
x�y� � acy�

2ðx� � mÞ
x�ð1þ ax� � amÞ ¼ 0

ð5:2Þ

In Eq. (5.2)

k1 þ k2 ¼ �
r

K
x� � ay�

ð1þ ax� � amÞ2
þ ay�ðx� � mÞ

x�ð1þ ax� � amÞ � cy�

and k1k2 ¼ �
acy�

2ðx� � mÞ
x�ð1þ ax� � amÞ þ

rc
K

x�y� þ acy�
2

ð1þ ax� � amÞ2
:

Assuming that (x�; y�) is a stable node, we must have k1 þ k2\0 and k1k2 [ 0.

This requires the following conditions,

r

K
x� þ ay�

ð1þ ax� � amÞ2
[

ay�ðx� � mÞ
x�ð1þ ax� � amÞ and x�[ m: ð5:3Þ

Hence the conditions (5.3) are necessary for ðx�; y�Þ to be stable.

Hence, the theorem is proved.

6 Global Stability

In this section, we consider the global stability of system (2.2) by constructing a

suitable Lyapunov function. We define a Lyapunov function

Vðx; yÞ ¼ x� x�ð Þ � x� log
x

x�

� �h i
þ d y� y�ð Þ � y� log

y

y�

� �
 �

where d is a suitable constant to be determined in the subsequent steps. It can be

easily verified that the function V is zero at the equilibrium (x�; y�) and is positive

for all other positive values of x, y.

The time derivatives of V along the trajectories of (2.2) is
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dV

dt
¼ x� x�

x

� �
dx

dt
þ d

y� y�

y

� �
dy

dt

¼ x� x�ð Þ r 1� x

K

� �
� aðx� mÞy

x 1þ aðx� mÞð Þ � q1E

� �


� r 1� x�

K

� �
� aðx� � mÞy�

x� 1þ aðx� � mÞð Þ � q1E

� ��

þ d y� y�ð Þ s 1� x

K

� �
þ abðx� mÞ

1þ aðx� mÞ � q2E � cy

� �


� s 1� x�

K

� �
þ abðx� � mÞ

1þ aðx� � mÞ � q2E � cy�
� �

¼ � x� x�ð Þ2 r

K
þ a axx�y� my� maþ 1ð Þð Þ

xx� 1þ a x� mð Þð Þ 1þ a x� � mð Þð Þ


 �


þ x� x�ð Þ y� y�ð Þ s

bK
� a m maþ 1ð Þ � 2ma� ax�ð Þ

x 1þ a x� mð Þð Þ 1þ a x� � mð Þð Þ


 �
þ c

b
y� y�ð Þ2

�

where,

d ¼ 1

b
ð6:1Þ

The above equation can be written as �XT AX where XT ¼ x� x�ð Þ; y� y�ð Þ½ �
and

A ¼
r
K
þ S axx�y�my� maþ1ð Þð Þ

xx�
1
2

s
bK
� S m maþ1ð Þ�2ma x�axx�ð Þ

x

h i

1
2

s
bK
� S m maþ1ð Þ�2ma x�axx�ð Þ

x

h i
c
b

2
64

3
75

where, S ¼ a
1þa x�mð Þð Þ 1þa x��mð Þð Þ

dV
dt

\0, if the matrix A is positive definite.

The matrix A is positive definite if axx�y [ my� maþ 1ð Þ and x� sx½
�SbK m maþ 1ð Þ � 2ma x� axx�ð Þ�2 [ 4c rxx� þ SK axx�y� my� maþ 1ð Þð Þ½ �

The above result can be stated as follows:

Theorem 6.1 The interior equilibrium point E�ðx�; y�Þ is globally asymptotically

stable if the interior equilibrium is locally stable and axx�y [ my� maþ 1ð Þ,
x� sx� SbK m maþ 1ð Þ � 2ma x� axx�ð Þ½ �2 [ 4c rxx� þ SK axx�y� my� maþ 1ð Þð Þ½ � both

the conditions simultaneously hold.

7 Bionomic Equilibrium

The term bionomic equilibrium is an amalgamation of the concepts of biological

equilibrium and economic equilibrium. A bionomic equilibrium is given by

_x ¼ 0 ¼ _y. the economic equilibrium is said to be achieved when TR (the total

revenue obtained by selling the harvested biomass) equals TC (the total cost for the

effort devoted to harvesting).
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Let p1 = constant price per unit biomass of the first species; q1 = constant price

per unit biomass of the s second species; C = constant fishing cost per unit effort

The economic rent (revenue at any time) is given by

p x; y;Eð Þ ¼ p1q1xE þ p2q2yE � CE ð7:1Þ
Although the harvesting cost per unit effort (C) is not a constant, we take it to be

a constant for sake of simplicity. Now

_x ¼ 0) x ¼ 0 or;E ¼ r

q1

� rx

kq1

� ay

q1ð1þ aðx� mÞÞ þ
amy

q1x 1þ aðx� mÞ½ � and

_y ¼ 0) y ¼ 0 or;E ¼ abðx� mÞ
q2 1þ aðx� mÞð Þ þ

s

q2

1� x

k

� �
� cy

q2

Hence the nontrivial equilibrium solution ð _x ¼ _y ¼ 0Þ occurs at a point on the

curve

x3 as

q2

� ar

q1

� �
þ x2 akr

q1

� r

q1

þ amr

q1

� abk

q2

� aks

q2

þ s

q2

� ams

q2

þ akcy

q2

� �

þ x
kr

q1

� amrk

q1

� aky

q1

þ abkm

q2

� ks

q2

þ amks

q2

þ kcy

q2

þ akcmy

q2

� �
þ akmy

q1

¼ 0

ð7:2Þ
The bionomic equilibrium ðx1; y1Þ of the open-access fishery is determined by

(7.2), together with the condition

p ¼ TR� TC ¼ ðp1q1x� p2q2y� CÞE ¼ 0) p1q1xþ p2q2y� C ¼ 0 ð7:3Þ
Eliminating y from Eqs. (7.2) and (7.3),we get

A1x3 þ B1x2 þ C1xþ D1 ¼ 0 ð7:4Þ

where A1 ¼ as
q2
� ar

q1
� akcp1q1

p2q2
2

� �
,

B1 ¼
akr

q1

� r

q1

þ amr

q1

� abk

q2

� aks

q2

þ s

q2

� ams

q2

� kcp1q1

p2q2
2

þ Cakc
p2q2

2

þ akcmp1q1

p2q2
2

� �
;

C1 ¼
kr

q1

� amrk

q
� akC

p2q1q2

þ p1

p2q2

� akmp1

p2q2

þ abkm

q2

� ks

q2

þ amks

q2

þ Ckc

p2q2
2

� akcmC

p2q2
2

� �
;

D1 ¼
akmC

p2q1q2

:

It is to be noted from Eq. (7.4) that A1 [ 0 if s
q2

[ r
q1
þ Kcp1q1

p2q2
2

and D1 [ 0:

It is possible to get at least one positive solution of x from equation (7.4)

depending on the sign of B1 and C1.

Therefore, we may have either at least one bionomic equilibria or no bionomic

equilibria at all.
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8 Optimal Harvesting Policy

The emphasis of this section is on the profit-making aspect of fisheries. It is a

through study of the optimal harvesting policy and the profit earned by harvesting,

focusing on quadratic costs and conservation of fish population by constraining the

latter to always stay above a critical threshold. It is assumed that price is a function

which decreases with increasing biomass. To maximize the total discounted net

revenues from the fishery, the optimal problem can be formulated as:

J ¼
Ztf

t0

e�dt



ðp1 � v1q1ExÞq1Exþ ðp2 � v2q2EyÞq2Ey� cE

�
dt ð8:1Þ

where v1 and v2 are the economic constants and d denotes the instantaneous annual

rate of discount. Our problem (8.1), subject to the state Eq. (2.2) and control

constraints 0�E�Emax, can be solved by applying Pontryagin’s Maximum Prin-

ciple. The convexity of the objective function with respect to E, the linearity of the

differential equations in the control and compactness of the range values of the state

variables can be combined to give the existence of the optimal control.

Suppose Ed is an optimal control with corresponding states xd and yd.

We take A1 x1; y1ð Þ as optimal equilibrium point.

Here we intend to derive optimal control Ed such that

J Edð Þ ¼ max J Eð Þ : E 2 Uf g;

where U is the control set defined byU ¼ E : t0; tf
� 

! 0;Emax½ � Ej
�

is Lebesgue

measurable}.

The Hamiltonian of this control problem is given by

H ¼ ðp1 � v1q1ExÞq1Exþ ðp2 � v2q2EyÞq2Ey� cE½ �

þ k1 rxð1� x

K
Þ � aðx� mÞy

1þ aðx� mÞ � q1Ex


 �

þ k2 syð1� x

K
Þ þ abðx� mÞy

1þ aðx� mÞ � cy2 � q2Ey


 �

where k1ðtÞand k2ðtÞ are adjoint variables.

The transversality conditions give k1ðtf Þ ¼ 0; i ¼ 1; 2:

Now, it is possible to find the characterization of the optimal control Ed.

On the set t 0\EdðtÞ\Emaxjf g, we have

oH

oE
¼ ðp1 � k1Þq1xþ ðp2 � k2Þq2y� c� 2Eðv1q2

1x2 þ v2q2
2y2Þ ¼ 0 at EdðtÞ:

This implies that,

EdðtÞ ¼
ðp1 � k1Þq1xþ ðp2 � k2Þq2y� c

2ðv1q2
1x2 þ v2q2

2y2Þ :

Now adjoint equations at the point ðx1; y1Þ are
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dk1

dt
¼ dk1 �

oH

ox
A1j ¼ dk1 � p1q1E � k1q1E � 2v1q2

1E2x
�

þ k1 r � 2xr

K
� ay

1þ ax� amð Þ2

( )

þ k2

sy

K
þ aby

1þ ax� amð Þ2

( )#
ð8:2Þ

dk2

dt
¼ dk2 �

oH

oy
A1j ¼ dk2 �



p2q2E � k2q2E � 2v2q2

2E2 � 2yck2

þk1 �
aðx� mÞ

1þ aðx� mÞ

� �
þ k2 s� sx

K
þ ab x� mð Þ

1þ aðx� mÞ

� �� ð8:3Þ

Equations (8.2) and (8.3) are first order system of simultaneous differential

equations and it is easy to get the analytical solution of the equations with the help

of initial conditions k1 tf
� 	
¼ 0; i ¼ 1; 2.

Theorem 8.1 There exists an optimal control Ed and corresponding solutions xd

and yd that maximized J over U. Furthermore, there exists adjoint functions k1 and

k2 satisfying the Eqs. (8.2) and (8.3) with transversality conditions give

kiðtf Þ ¼ 0; i ¼ 1; 2. Moreover, the optimal control is given by

EdðtÞ ¼
ðp1 � k1Þq1xþ ðp2 � k2Þq2y� c

2ðv1q2
1x2 þ v2q2

2y2Þ :

8.1 Numerical Simulation to Study the Stability of the System

It may be noted that it is quite difficult to have numerical value of the parameters of

the system based on real world observations. On the other hand, it is necessary to

have some idea regarding the sensitivity of the parameters in connection to the

observed real system. Therefore, the major results described by the simulations

presented should be considered from a qualitative, rather than a quantitative point of

view. However, numerous scenarios covering the breath of the biological feasible

parameter space were conducted and the results shown above display the breadth of

dynamical results collected from all the scenarios tested. MATLAB and Mathem-

atica are the main software used for the purpose of simulation experiments. We,

therefore, take here some hypothetical data with the sole purpose of solving the

system numerically to obtain the results after numerical simulations.

In order to ensure the existence of stable solution of the system, we consider the

following parameter set:

r ¼ 1:5;K ¼ 100; a ¼ 0:8;m ¼ 1:28; a ¼ 0:2; s ¼ 1:2; b ¼ 0:5; c ¼ 0:3; d ¼ 0:01; p1 ¼ 0:6;

p2 ¼ 0:4; q1 ¼ 0:23; q2 ¼ 0:397; v1 ¼ 0:02; v2 ¼ 0:04; c ¼ 0:5; x0 ¼ 0:4; y0 ¼ 0:8; t ¼ 100

It is clearly observed from Figs. 1 and 2 that E3 x�; y�ð Þ is locally asymptotically

stable.
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8.2 Numerical Simulation of Optimal Control Problem

By using the fourth-order Runge–Kutta forward–backward sweep method, the

numerical simulation of optimal control (Workman and Lenhart 2007) under

various parameter sets can be done. The Eq. (2.2) and their corresponding adjoint

Eqs. (8.2) and (8.3) are simultaneously solved. First we make a guess for optimal

control and then solved the system of the state Eq. (2.2) forward in the time using

the Runge–Kutta method with initial condition x0 and y0. The adjoint Eqs. (8.2) and

(8.3) are solved backward in time using the Runge–Kutta method with transversality

conditions. Using the values for the state and adjoint variables, the optimal control

is updated. The updated control replaces the initial control and the process are

repeated until the successive iterative of control values are sufficiently close. The

convergence of such an iterative method is based on the work of Hackbush (1978).

At first, we discretize the interval t0; tn½ � at the point ti ¼ t0 þ ih; i ¼ 0; 1; 2; . . .n,

where h is the time step such thattn ¼ tf . Now a combination of forward and

backward difference approximation is considered to solve the system. The time

derivative of the state variables can be expressed by their first-order forward

difference as follows:

xiþ1 � xi

h
¼ rxiþ1 1� xiþ1

K

� �
� aðxiþ1 � mÞyi

1þ aðxiþ1 � mÞ � q1Eixiþ1

yiþ1 � yi

h
¼ syi 1� xiþ1

K

� �
þ abðxiþ1 � mÞyi

1þ aðxiþ1 � mÞ � cy2
i � q2Eiyi

By using a similar technique, we approximate the time derivative of the adjoint

variables by their first order backward difference and we use the appropriate scheme

as follows:

Fig. 1 Solution curves of prey and predator population with increasing time
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Fig. 2 Phase plane trajectories of prey and predator population beginning with different initial levels
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Fig. 3 Variation of prey population, predator population, harvesting effort and total harvest with and
without refuge (m). The black line corresponds with refuge and red line corresponds without refuge.
(Color figure online)
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kn�i
1 � kn�i�1

1

h
¼ dkn�i�1

1 � p1q1Ei � kn�i�1
1 q1Ei � 2v1q2

1E2
i xiþ1

�

þ kn�i�1
1 r � 2xiþ1r

K
� ayiþ1

1þ axiþ1 � amð Þ2

( )

þ kn�i
2

syiþ1

K
þ abyiþ1

1þ axiþ1 � amð Þ2

( )#

kn�i
2 � kn�i�1

2

h
¼ dkn�i�1

2 �



p2q2Ei � kn�i�1
2 q2Ei � 2v2q2

2E2
i � 2yiþ1ck

n�i�1
2

þkn�i�1
1 � aðxiþ1 � mÞ

1þ aðxiþ1 � mÞ

� �
:

þ kn�i�1
2 s� sxiþ1

K
þ ab xiþ1 � mð Þ

1þ aðxiþ1 � mÞ

� ��
:

Figure 3 describes the variation of prey population, predator population,

harvesting effort and total harvest with increasing time. Prey refuge plays an

important role on the dynamic of the system. It is clearly observed from Fig. 1 that

that prey population has an initial increasing trend in presence of prey refuge. It is to
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Fig. 4 Variation of prey population, predator population, harvesting effort and total harvest with and
without alternative food (s). The black line corresponds with alternative food and red line corresponds
without alternative food. (Color figure online)
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be noted that prey population is decreasing when m = 0. It is further noted that

predator population is increased with time when m = 0. Figure 1 also depicts that

harvesting effort is getting increased. This is due to fact that combined harvesting

effort is used to harvest both the species and at initial stage availability of resource

is ensured in both the situation with and without refuge. As a consequence, total

harvest is also getting increased.

It is noted from Fig. 4 that predator population is increased with time when

alternative food is provided. It is also observed that predator population is decreased

when s = 0. It is interesting to observe that prey population density is increased

with time in absence of alternative food. This is due to the effect of prey refuge in

the system. So the prey population may have got protection up to some extent. It is

further noted that both harvesting effort and total harvest increased with time in both

the condition with and without alternative food which is quite natural.

It is easy to understand that when there is no predation i.e., a = 0, prey

population increased with time. It is clearly observed that predator population is

increased with time in presence of predation. It is also noted that both harvesting

effort and total harvest increased with time when a = 0. This result is clearly

observed in Fig. 5.

The intrinsic growth rate of the population plays an important role on the

dynamics of the system. It clearly observed from Fig. 6 that density of prey
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Fig. 5 Variation of prey population, predator population, harvesting effort and total harvest with and
without predation (a). The black line corresponds with predation and red line corresponds without
predation. (Color figure online)
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population increased with its intrinsic growth rate. Again, in general density of

predator population is inversely proportional to prey population therefore it is

obvious that the density of predator population is getting decreased. It may be noted

that harvesting effort is getting increased. Subsequently, total harvest is also getting

increased.

The impacts of prey refuge are illustrated in Fig. 7. It is observed that prey

population density increased with the increasing value of m whereas density of

predator population is getting decreased. It is to be noted from Fig. 7 that due to the

presence of prey and predator population in the system total harvesting effort is

getting increased. Therefore total present value is increased with increasing

harvesting effort.

Alternative prey has great impact on the dynamic of the system. It is obvious that

with the increasing alternative food density of predator population is getting

increased so predation pressure is also increased. Therefore, prey population density

is decreasing with the increasing alternative food to the predator. However, the

effect of combined harvesting effort is also present in the system so it is natural that

the species can be sustainably managed through controlling alternative food. The

results are clearly observed in Fig. 8.

It is clear from Fig. 9 that the size of prey population available to the predator is

dependent on the intrinsic growth of the prey population. Subsequently, it is to be

0.2 0.4 0.6 0.8 1
1.8

2

2.2

2.4

2.6

Harvesting Effort

P
re

y 
P

op
ul

at
io

n

0.2 0.4 0.6 0.8 1
2.4

2.6

2.8

Harvesting Effort

P
re

da
to

r 
P

op
ul

at
io

n 

0.2 0.4 0.6 0.8 1

1

2

3

Harvesting Effort

T
ot

al
 H

ar
ve

st

0.2 0.4 0.6 0.8 1

5

10

15

20

25

Harvesting Effort

T
ot

al
 p

re
se

nt
 v

al
ue

Fig. 6 Variation of prey population, predator population, total harvest and total present value with
increasing harvesting effort. The black line corresponds to r = 1.5, the blue line to r = 1.0 and red line to
r = 2.0. (Color figure online)
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noted from Fig. 10 that if prey is refusing predator population then functional

response is decreasing with time though at the initial stage it is increasing.

The availability of alternative food to the predator population has a great

influence to the stability of the system. It is to be noted from Fig. 11 that due to

availability of alternative food the consumption of prey by predator is getting

decreased with increasing time for a constant rate of prey refuge. In order to have a

stable system, the availability of alternative food should be increased with less prey

refuge as depicted in Fig. 12. With the increasing rate of prey consumption by

predator, it is obvious that the availability of alternative food to the predator should

be increased which is clearly observed in Fig. 13. It is to be further noted that if the

rate of intra-specific competition of predators is increased then the size of predator

population is getting decreased subsequently the availability of alternative food in

terms of prey should be increased as shown in Fig. 14.

9 Concluding Remarks

This paper deals with a problem of non-selective harvesting of a prey–predator

system in which both prey the prey and predator species obey logistic law of
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Fig. 7 Variation of prey population, predator population, total harvest and total present value with
increasing harvesting effort. The black line corresponds to m = 1.5, the blue line to m = 1.0 and red line
to m = 2.0. (Color figure online)
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Fig. 8 Variation of prey population, predator population, total harvest and total present value with
increasing harvesting effort. The black line corresponds to s = 1.2, the blue line to s = 0.4 and red line to
s = 2.0. (Color figure online)
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Fig. 9 Variation of functional response (prey consumed by the predator) with increasing time. The black
line corresponds to r = 1.5, the blue line to r = 1.0 and red line to r = 2.0. (Color figure online)
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growth. We consider a prey–predator model incorporating constant prey refuge

through provision of alternative food to predators. In this study, it is pointed out that

prey refuge as well as quality and quantity of additional food play a vital role in the

controllability of the system. Our interest is to maximize the monetary social benefit
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Fig. 10 Variation of functional response (prey consumed by the predator) with increasing time. The
black line corresponds to m = 1.5, the blue line to m = 1.0 and red line to m = 0.5. (Color figure online)
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Fig. 11 Variation of functional response (prey consumed by the predator) with increasing time. The
black line corresponds to s = 1.2, the blue line to s = 0.4 and red line to s = 2.0. (Color figure online)
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through protect the predator species from extinction, keeping the ecological balance.

We have determined the steady states of the system and analyzed the dynamical

behavior of the system. Global stability is examined by taking a suitable Lyapunov

function. We are then examined the possibilities of existence of bionomic
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Fig. 12 Variation of alternative food (available to the predator) with increasing time. The black line
corresponds to m = 1.5, the blue line to m = 1.0 and red line to m = 0.5. (Color figure online)
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Fig. 13 Variation of alternative food (available to the predator) with increasing time. The black line
corresponds to a = 0.8, the blue line to a = 0.6 and red line to a = 0.4. (Color figure online)
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(biological as well as economic) equilibria of the system. Next, the optimal

harvesting policy is solved with the help of Pontryagin’s maximal principle.

Also, we analyze the dynamical behavior of the system. It is clear from the

obtained results that existence of refuge has important effects on the predator and

prey population. It is observed that prey population density is increased in presence

of prey refuge. We also noted that predator population is increased in absence of

refuge due to the presence of alternative food. Our analysis also shows that the

impact of intrinsic growth rate on dynamic of the system. We explore the dynamics

of prey–predator system when alternative food is provided to the predators. Our

objective is to examine the consequences of exploitation in this model. It is noted

that predator population is increased with time when alternative food is provided.

Our result also shows that total harvest increases as both the population increase.

Success depends on the quality and quantity of additional food supplied to the

predators as well as appropriate amount of harvesting efforts to both the species.

This study enables us to develop management strategies that determine the supply

amount of alternative food for the biological control of the system.

Acknowledgments First author gratefully acknowledges Director, INCOIS for his encouragement and

unconditional help. This is INCOIS contribution number 188. The internship work would have been

impossible without Joint Science Academies Summer Research Fellowship Programme for 2013. Second

author gladly acknowledges Joint Science Academies for providing financial support.

References

Arditi R, Ginzburg LR (1989) Coupling in predator–prey dynamics: ratio-dependence. J Theor Biol

139:311–326

0 10 20 30 40 50 60 70 80 90 100
2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

Time

A
lte

rn
at

iv
e 

fo
od

γ=0.3

γ=0.2

γ=0.4

Fig. 14 Variation of alternative food (available to the predator) with increasing time. The black line
corresponds to c = 0.3, the blue line to c = 0.2 and red line to c = 0.4. (Color figure online)

204 K. Chakraborty, S. S. Das

123



Berezovskaya FS, Song B, Castillo-Chavez C (2010) Role of prey dispersal and refuges on predator–prey

dynamics. SIAM J Appl Math 70(6):1821–1839

Birkoff G, Rota GC (1982) Ordinary differential equations. Ginn, Boston

Chakraborty K, Chakraborty M, Kar TK (2011) Regulation of a prey–predator fishery incorporating prey

refuge by taxation: a dynamic reaction model. J Biol Syst 19(3):417–445

Chakraborty K, Jana S, Kar TK (2012) Global dynamics and bifurcation in a stage structured prey–

predator fishery model with harvesting. Appl Math Comput 218(18):9271–9290

Chakraborty K, Das S, Kar TK (2013a) On non-selective harvesting of a multispecies fishery

incorporating partial closure for the populations. Appl Math Comput 221:581–597

Chakraborty K, Das K, Kar TK (2013b) Combined harvesting of a stage structured prey–predator model

incorporating cannibalism in competitive environment. C R Biol 336(1):34–45

Chen L, Chen F, Chen L (2010) Qualitative analysis of a predator–prey model with Holling type II

functional response incorporating a constant prey refuge. Nonlinear Anal Real World Appl

11:246–252

Clark CW (1990) Mathematical bioeconomics: the optimal management of renewable resources. Wiley

Series, New York

Cressmana R, Garay J (2009) A predator–prey refuge system: evolutionary stability in ecological

systems. Theor Popul Biol 76:248–257

Das K, Srinivas MN, Srinivas MAS, Gazi NH (2012) Chaotic dynamics of a three species prey–predator

competition model with bionomic harvesting due to delayed environmental noise as external driving

force. C R Biol 335(8):503–513

Ghordaf JE, Hbid ML, Arino O (2004) A mathematical study of a two-regional population growth model.

C R Biol 327(11):977–982

Hackbush W (1978) A numerical method for solving parabolic equations with opposite orientations.

Computing 20(3):229–240

Hixon MA (1991) Species diversity: prey refuges modify the interactive effects of predation and

competition. Theor Popul Biol 39(2):178–200

Kar TK (2005) Stability analysis of a prey–predator model incorporation a prey refuge. Commun

Nonlinear Sci Numer Simul 10:681–691

Kar TK (2006) Modelling and analysis of a harvested prey–predator system incorporating a prey refuge.

J Comput Appl Math 185:19–33

Kar TK, Chattopadhyay SK (2010) A focus on long run sustainability of a harvested prey predator system

in the presence of alternative prey. C R Biol 333:841–849

Kar TK, Ghosh B (2012) Sustainability and optimal control of an exploited prey predator system through

provision of alternative food to predator. Biosystems 109:220–232

Ma Z, Li W, Zhao Y, Wang W, Zhang H, Li Z (2009) Effects of prey refuges on a predator–prey model

with a class of functional responses: the role of refuges. Math Biosci 218:73–79

Mchich R, Bergam A, Raı̈ssi N (2005) Effects of density dependent migrations on the dynamics of a

predator prey model. Acta Biotheor 53(4):331–340

Onzo A, Hanna R, Negloh K, Toko M, Sabelis MW (2005) Biological control of cassava green mite with

exotic and indigenous phytoseiid predators—effects of intraguild predation and supplementary food.

Biol Control 33:143–152

Srinivasu PDN, Prasad BSRV, Venkatesulu M (2007) Biological control through provision of additional

food to predators: a theoretical study. Theor Popul Biol 72:111–120

Workman JT, Lenhart S (2007) Optimal control applied to biological models. Chapman and Hall/CRC,

Boca Raton

Yu X, Sun F (2013) Global dynamics of a predator–prey model incorporating a constant prey refuge.

Electron J Differ Equ 2013(04):1–2010

Biological Conservation of a Prey–Predator System 205

123


	Biological Conservation of a Prey--Predator System Incorporating Constant Prey Refuge Through Provision of Alternative Food to Predators: A Theoretical Study
	Abstract
	Introduction
	Model Formulation
	Boundedness of the System
	Existence of Equilibria
	Local Stability Analysis
	Global Stability
	Bionomic Equilibrium
	Optimal Harvesting Policy
	Numerical Simulation to Study the Stability of the System
	Numerical Simulation of Optimal Control Problem

	Concluding Remarks
	Acknowledgments
	References


