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Abstract Biological processes span several scales in space, from the single

molecules to organisms and ecosystems. Multiscale modelling approaches in biol-

ogy are useful to take into account the complex interactions between different

organisation levels in those systems. We review several single- and multiscale

models, from the most simple to the complex ones, and discuss their properties from

a multiscale point of view. Approaches based on master equations for stochastic

processes, individual-based models, hybrid continuous-discrete models and struc-

tured PDE models are presented.

Keywords Multiscale model � Master equation � Reaction-diffusion

equation � Hybrid modelling � Individual-based modelling � Structured

PDE

1 Introduction

Multiscale modelling first appeared in material engineering problems in the 1990’s.

Modellers in biology have since adapted multiscale techniques to study cancer and

other complex biological systems (Gatenby and Gawlinski 1996; Lesart et al. 2012;

Powathil et al. 2012; Schnell et al. 2007; Spencer et al. 2006; Zhang et al. 2009).
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69622 Villeurbanne, France

e-mail: bernard@math.univ-lyon1.fr

S. Bernard
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Here we present a few approaches to multiscale modelling in biology. Biological

processes span several scales in space, from the single molecules to organisms and

ecosystems, and time, from the nanosecond for protein folding, to hours for cellular

processes up to years or longer for population evolution (Qu et al. 2011). In single-

scale models, processes are well separated in time and space. However, in practice,

it is difficult to keep scales separated, for several reasons. 1. There can be a

mismatch between the available biological data or knowledge and the process of

interest, so that one has to include many scales to take full account of the data. An

example is the problem of predicting the effect of a cancer treatment on a tumour

based on a molecular profile (organisation scale mismatch), or to assess the

likelihood of a species going extinct based on short time observations. 2. It is now

recognised that heterogeneity is a integral part of any biological system, and that

many systems are driven by outliers that cannot be taken into account by averaged

models (Wilkinson 2009). Multiscale approaches allows the modeller to include

relevant biological information from one scale without having to guess what the

effect is at the other scales.

This paper is a short tutorial, aimed at giving an overview of how to build a

multiscale model. Because of the inherent complexity of multiscale models, it is not

possible to introduce all details here. Instead, we try to identify desirable properties

such as description at many scales and interactions among and between scales. We

proceed stepwise, beginning with classical models in mathematical biology, and

introducing progressively richer structures that share more of the features of a

multiscale model. We begin with the Lotka-Volterra predator-prey equations

(Kaplan and Glass 1995). We then introduce the Turing equations for pattern

formation (Turing 1952), and the Keller-Segel equations for chemotaxis (Keller and

Segel 1970). We present contemporary approaches for multiscale modelling:

master-equation-based models, individual-based models, hybrid models, and

structured PDE models. Examples include multiscale models used to probe cancer

growth and treatment strategies (Anderson et al. 2006; Ribba et al. 2006); models

for the cell cycle (Bekkal Brikci et al. 2008; Doumic 2007) and cell differentiation

(Hoffmann et al. 2008); and spatial multi-scale models for tissue and cancer growth

(Drasdo and Höhme 2005; Drasdo et al. 1995; Drasdo and Loeffler 2001; Galle

et al. 2005). We specifically focus on scales in space and organisation, rather than

time (Françoise 2005, Gunawardena 2012, Lahutte-Auboin et al. 2013), although

different time scales are implicitly assumed. Finally, we propose two properties any

model should possess to be multiscale.

2 From Single-scale to Multiscale Models

2.1 A Basic Population Model: Predator-Prey Interaction

Lotka-Volterra equations are a system of two nonlinear ordinary differential

equations describing the interaction between two species, a predator and a prey

(Kaplan and Glass 1995). Their first use in biology date back to 1925 (Lotka) and

1926 (Volterra). The dynamical variables are the populations (numbers) of preys
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(x) and predators (y). Preys find enough food at all times, and predators feed on

prey. The populations evolve according to the equations

x0 ¼ xða� byÞ; ð1Þ
y0 ¼ yðdx� cÞ: ð2Þ

(Here and in the following, time derivatives in ODEs are denoted by the symbol 0

and all coefficient are positive.) At the population scale, Eqs. (1–2) state that the

growth rate of the prey population is constant (a) and the death rate of the preys is

proportional to the number of predators (b y). The death rate of the predators is

constant (c) and the growth rate of the predator population is proportional to the

prey number (d x). The positive fixed point ðx; yÞ ¼ ðc
d
; a

b
Þ is unstable (it is a centre).

The predator-prey population oscillate around the fixed point along closed trajec-

tories (Fig. 1).

This is an example of a population model, and it involves interactions between

objects at a lower scale: individuals. Yet this is clearly not a multiscale model. A

multiscale model should be able to provide information at more than one scale, for

instance, on population (‘‘is the wolf population declining?’’) and on the individual

themselves (‘‘which wolves find prey?’’). The first question can be answered, while

the second one cannot. All the wolves are the same, so are all the hares. What is

missing to the predator-prey model is the ability to characterise individuals. One can

make the predation rates depend on physiological traits of the preys or the predators.

Examples include body-size effect on anti-predator behaviours and foraging

strategies of the preys (Dial et al. 2008), or the fight or flight behaviour in moose

and roe deer (Wikenros et al. 2009).

This example shows that two populations with simple interactions can display a

complex dynamics, oscillations in their number (Fig. 1). It is not multiscale because

there is a single scale, the population, even though the model rests on assumptions

on interactions between individuals. Modelling is about describing interactions

between single objects. By considering a large number of these objects, we obtain

A B

Fig. 1 Lotka-Volterra predator-prey system (1), with a = c = 1, b = 0.01 and d = 0.02, for two
different initial conditions: x0 = 20, y0 = 20 (black) and x0 = 100, y0 = 100 (grey). a Time evolution of
preys and predators numbers. b Solutions shown in panel A lie on distinct, closed trajectories
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population equations. It turns out that this link between organisation at one scale and

the interaction at the lower scale is always present (Fig. 2).

2.2 A Spatial Differentiation Model: Pattern Formation

Alan M. Turing introduced in 1952 a system of two reaction-diffusion equations to

show how spatial patterns (spatially heterogeneous solutions) could arise from

diffusion of chemical substances, when diffusion was thought to promote

homogeneous solutions. In his paper (Turing 1952), Turing discusses a system of

two morphogens regulating each other and diffusing in space. One is an activator

and the other one is an inhibitor. The activator, u, activates itself and the inhibitor.

The inhibitor, v, inhibits itself and the activator. The concentrations of u and v can

show spatial instabilities if the diffusion rate of the activator is much smaller than

the diffusion rate of the inhibitor. When the activation/inhibition are linear, the

equations are

ut ¼ Duuxx þ fuu� fvv; ð3Þ
vt ¼ Dvvxx þ guu� gvv: ð4Þ

We can coarse-grain the space x to consider, for instance, cells, located at

x, characterised by certain amounts of activator and inhibitors. Spatial instabilities,

or Turing patterns, offer an example of lasting heterogeneity, by which cells can be

distinguished or differentiated (Fig. 3). Turing equations provide the first model to

show how a complex pattern at the tissue level can be generated by interaction

Fig. 2 Organisation scales in biology. Single-scale model equations are determined by the interactions at
the lower scale. For example, molecular networks are described by the interaction between molecules.
From this point of view, a tissue is a collection of cells interacting together; a cell is a collection of
networks interacting together; a molecular network is a collection of molecules interacting together.
Scales can go lower (atoms/ions interacting in a single molecule) or higher (organisms interaction in an
ecosystem). ODE ordinary differential equations, PDE partial differential equations, SDE stochastic
differential equations, IBM individual-based modelling, BN boolean network, MD molecular dynamics
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between molecules, two scales down. However, cells are introduced artificially and

they do not interact. Turing equations are not yet multiscale.

2.3 A Cell Movement Model: Chemotaxis

In the multiscale interpretation of the Turing system, cells are static objects. It

would be better if they could move and interact, for instance. Chemotaxis is the

phenomenon by which cells move according to concentration gradients in their

environment. They could be attracted by food, or repelled by poisons. If the cells

themselves secrete chemotactic molecules, we can describe the movement of the

cells by a model Keller and Segel developed in 1970 (Keller and Segel 1970),

ut ¼ duxx � ðuvxÞx; ð5Þ
vt ¼ �vxx þ u� av: ð6Þ

The Keller-Segel equations include two scales: cell density (u) and molecule

concentration (v). Interaction between cells is based on the chemoattractant

A B

Fig. 3 Solution to the Turing equations, with fu = 0.4, fv = 0.5, gu = 1, gv = 0.5, Du = 0.2,
Dv = 10, initial conditions u0ðxÞ; v0ðxÞð Þ ¼ 1þ sinðxÞ; 1þ cosðxÞð Þ and Neumann boundary conditions
(no flux). a Density plot of the solution u(t, x), with increasing concentration values from black to white.
b Solution in x at successive, fixed times. The initial condition is outlined in grey

A B

Fig. 4 Solution to the Keller-Segel equations (5–6), with d = 0.5, � ¼ 0:05; a ¼ 0:1, initial conditions

u0ðxÞ; v0ðxÞð Þ ¼ 2:5 1½�0:9;�0:1� þ 1½0:1;0:9�; 0
� �

and Neumann boundary conditions (no flux). a Density plot

of the solution u(t, x), with increasing values from black to white. White indicates u C 4.0. b Solution in
x at successive, fixed times. The initial condition is outlined in grey. Solution at t = 2.5 is out of bound
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concentration they produce (Fig. 4). Yet, the two scales are not nested, they live in

the same world. Cells and chemoattractant are modelled at the same level, like the

predator and the prey in the Lotka-Volterra model. We do not have yet a multiscale

model.

3 Master Equation-Based Models

To build a simple multiscale model, we proceed in three steps:

1. We consider an individual deterministic or stochastic process y(t).

2. We obtain the master equation by taking a large population of size

N ðyiðtÞÞi2f1;...;Ng of these processes (N can be infinite) and consider what

happens as the population evolve in time. We assume that there is some source

of variability between different individual processes. We get a system with two

scales of description, but there is not interaction between individuals yet.

3. We obtain a multiscale formulation by adding interaction between individuals

and between the individuals and the population. More scales can be added by

repeating these steps.

3.1 Individual Process

We consider yðtÞ 2 C � Rthe state of a system at time t at a particular scale. If we

describe a single cell, y could be mRNA or protein levels, cell mass or gene

expression profile. If we describe a cell population, y could be numbers of quiescent

cells, stem cells, differentiated or tumour cells. We assume that y fluctuates around a

value given by the nonlinear deterministic equation y0 ^ F(y). We add a noise term

to get a nonlinear Langevin equation (Van Kampen 1992),

y0 ¼ f ðyÞ þ gðyÞnðtÞ: ð7Þ

The noise component n(t) is usually a white noise, that is, a time-uncorrelated noise

with zero mean and finite variance, often chosen Gaussian.

3.2 Master Equation

We consider a population of N independent processes ðyiðtÞÞi2f1;...;Ng described by

Langevin equations of the form (7). The probability density function for any yi at

time t, P(y, t) is given by the Fokker-Planck equation

Ptðy; tÞ þ ½f ðyÞPðy; tÞ�y ¼
1

2
½gðyÞ2Pðy; tÞ�yy: ð8Þ

Fokker-Planck equations and Langevin equations are mathematically equivalent

formulations (Van Kampen 1992). When the population N is large, the Fokker-

Planck equation can be interpreted as a population density, i.e.
R

A
Pðy; tÞdy is the

fraction of individual processes in state y 2 A: (It is also possible to consider
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Fokker-Planck and Langevin equations in many variables y 2 R
n:) The Fokker-

Planck equation is a special kind of master equation used as an approximate

description of a Markov process in which jumps are small and the nonlinearities

f and g are smooth. When this is not the case, the formulation by the Fokker-Planck

and Langevin equation duet is not valid. The more general master equation can be

used to describe the probability density of a Markov process. The master equation is

a differential equation local in time but nonlocal in space C:

Ptðy; tÞ ¼
Z

C

fWðyjzÞPðz; tÞ �WðzjyÞPðy; tÞgdz: ð9Þ

The kernel W describes the transition rates (or jumps) from state z to state y, and it is

related to the function f and g, as detailed below. The master equation is a gain-loss

equation for the probability of each state y.

3.3 Multiscale Formulation

The master Eq. (9) is a conservation equation (with appropriate boundary

conditions), the total normalised population is constant
R

Pðy; tÞdt ¼ 1. We now

modify it to allow individual processes to be removed or added; hence we will allow

the total population to fluctuate.

As an illustration of the master equation approach, we study a model in which

cell differentiate by diffusing (i.e. non-directed random movement) into a

differentiation space y 2 R (Hoffmann et al. 2008). The cell population density

n(y, t) obeys an equation derived from a master equation,

ntðy; tÞ ¼
Z

C

pðyjzÞRðzÞnðz; tÞdz� RðyÞnðy; tÞ þ rðyÞnðy; tÞ: ð10Þ

The distribution p(y|z) of jumps in the differentiation space is Gaussian, with a

nonlinear, space-dependent variance r2(z). The rate of jumps is given by

R(y), which is assumed to be correlated to the cell proliferation rate r(y). The

differentiation domain C ¼ R: The associated Fokker-Planck-like equation is found

by calculating the first two jump moments (Van Kampen 1992). The first jump

moment,
R

C rpðyþ rjyÞRðyÞdr ¼ 0; vanishes, and the second moment, a2ðyÞ ¼R
C r2pðyþ rjyÞRðyÞdr ¼ RðyÞr2ðyÞ: The Fokker-Planck-like equation associated to

Eq. (10) is then

ntðy; tÞ ¼
1

2
RðyÞr2ðyÞnðy; tÞ
� �

yy
þrðyÞnðy; tÞ:

Denote by NA(t) the number of cells with y 2 A; where A � R is a subset of cells of

interest:

NAðtÞ ¼
Z

A

nðy; tÞdy: ð11Þ
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We introduce a logistic growth in the following way:

ntðy; tÞ ¼
1

2
RðyÞr2ðyÞnðy; tÞ
� �

yy
þrðyÞ

 

1� NAðtÞ
K

!

nðy; tÞ: ð12Þ

K is the carrying capacity for population A. Cell number is regulated at the cell

population scale through the term NA(t), while the single-cell scale defines how cells

move in C: The associated single-cell Langevin equation is

y0 ¼
ffiffiffiffiffiffiffiffiffi
RðyÞ

p
rðyÞnðtÞ: ð13Þ

The Langevin equation only describes part of Eq. (12): cell movement in C. Arguably,

Eqs. (11–12) form a simple multiscale model. They describe a system at two orga-

nisation scales: the cell (with y 2 C) and the population (with NA(t)), and the inter-

action between the two scale through the logistic term. The two scales are nested, NA is

formed directly by the density n. For the numerical simulation, we take C ¼ ½0; 1� and

A ¼ ½0:8; 1� � C (Fig. 5). The state y 2 A corresponds to differentiated (mature) cells,

and y 2 CnA to progenitor (non-mature) cells. The logistic term in Eq. (12) controls

the global proliferation rate (Fig. 5a). The number of progenitors increases until

NA(t) is sufficiently large and then falls off (Fig. 5b, c). The behaviour of single cells

differs from the process described by the Langevin Eq. (13) alone (Fig. 5d).

A B

C D

Fig. 5 Solution to the multiscale Eqs. (11–12) derived from the Fokker-Planck equation. The domain is
C ¼ ½0; 1�; and A = [yN,1]. Functions are R(y) = r0 ? r1 r(y), r(y) = 4rmax y (1 - y/yN) 1½0;yN �,

r2(y) = s0 ? 4s1 (y - 1/2)2. Parameter values are r0 = 0.01, r1 = 0.20, rmax = 0.01, s0 = 0.005,
s1 = 0.02, K = 0.05, yN = 0.8. a Rate functions. b Density plot of the solution n(y, t), with increasing

values from black to white. c N[0, 1](t) (grey) and NA(t) (black). d Some realisations of Langevin equation
(grey) and their mean (black) compared to the mean differentiation value of the solution n(y, t) (dashed
line)
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4 Individual-Based Models

Individual-based modelling (IBM), or agent-based modelling, has been used in

computer science, social sciences, ecology (Railsback and Grimm 2011) and more

recently in biology (Chauvière et al. 2009). Models are composed of many agents

who can make decisions, learn and adapt, and interact with other agents and the

environment (Macal and North 2005). They are not necessarily multiscale, but they

are flexible enough to allows a multiscale description.

Drasdo and colleague have developed a methodology for simulating proliferating

cells (Drasdo et al. 1995). Cells are modelled as oriented, deformable spheroids that

can move, rotate, change shape, grow in volume and divide into two daughter cells.

Cells interacts mechanically and biochemically through membrane surface mole-

cules. Internal properties of the cell regulate how fast cells grow and divide, and

which type of surface molecules are expressed. Although simulations can be

computationally costly, this kind of modeling is needed to reproduce some of the

key features of a growing tissue, such a 3D cell alignment and movement. This type

of single-cell-based model has had many applications: epithelium (Drasdo et al.

1995; Galle et al. 2005), tumors (Drasdo and Höhme 2005; Ramis-Conde et al.

2009) and more recently liver regeneration (Hoehme et al. 2010). A related method

has been proposed (Newman and Grima 2004).

5 Hybrid Continuous-Discrete Models

This is a popular approach to multiscale modelling, in which cells are discrete

entities and molecular concentrations are given by continuous equations. The space

contains a coarse-grained lattice. At each node, one or many cells can be present.

Each cell is represented individually and is endowed with relevant property: shape,

intracellular state, cycling status, mutation, etc. Cells can move, replicate, die and

interact with other cells, directly, or via an extracellular medium.

Ribba and colleagues have proposed a multiscale model for cancer growth, with

the purpose of optimising therapeutic irradiation protocols (Ribba et al. 2006). The

model incorporates gene regulation, cell kinetics, tissue dynamics, macroscopic

tumour evolutions and radio-sensitivity dependence on cell cycle phase. Intracel-

lular interactions are modelled by a boolean network. The state of the boolean

network determines how cells progress in the cell division cycle and their fate. Cell

can either divide, stop in a quiescent phase, or die by apoptosis. Cell cycle

progression, arrest or death is monitored by a cell cycle status. Cell are laid on a

lattice and are subject to a changing environment, consisting in the local cell density

and the oxygen concentration. Cell fate depends on the local environment. On a

tissue level, a fluid dynamics model is used to describe cell movement. Radiation

therapy affects the molecular network, which in turn affect cell fate, and tumour

progression. Although the model is too complex to reproduce here, we can identify

the multiscale features of the model. The model spans three organisation scales:

genetic/molecular networks, cells and tissues and interactions between scales are
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modelled explicitly. This formalism has been applied to other anti-cancer therapies

(Billy et al. 2009).

Anderson and colleagues have developed a multiscale model for tumour

morphology and phenotypic evolution, in which phenotypic mutations and selection

drive the tumour morphology evolution (Anderson 2005; Anderson et al. 2006).

Discrete cell are laid on a square lattice. Cells are characterised by a life cycle

governing proliferation and death, and by a phenotype with traits describing key

properties of cancer cells like propensity to proliferate or cell-cell adhesion. Cell can

undergo phenotypic mutations that will affect their ability to proliferate and move.

Because resources (space, oxygen) are limited, phenotypic selection operates and

defines the dynamics of tumour evolution. Oxygen and extracellular matrix

concentrations are modelled with PDEs.

A feature of hybrid models is their ability to reproduce relevant biological

phenomena, including spatial and intercellular heterogeneities. To illustrate the

potential of hybrid models, we show how discrete cells with molecular network of

circadian clocks can communicate and synchronise their clocks (Fig. 6). The

circadian clock model is a set of 10 ODEs, which produce damped oscillations in

isolated single cells. Cells integrate clock signals from their neighbours. Provided

there are enough neighbours, the intracellular clock model starts oscillating,

ensuring synchrony (Bernard et al. 2007).

6 Structured PDE Models

Population models structured by molecular content are becoming increasingly

popular (Magal et al. 1936). Structured equations can be derived from Fokker-

Planck equations without noise (for instance, Eqs. (7) and (8) with g = 0).

Doumic presented and analysed a model structured by age a and molecular

content x (Doumic 2007). The equation describes the evolution of the density

n(t, a, x) at time t, of cells aged a with molecular content x. The evolution of the

molecular content x, the structure, and the age are given by a system of ODEs,

x0 = F(a, x) and a0 = 1. Cells are lost with a rate B(a, x) and a boundary conditions

at a = 0 defines the birth rate of new cells. The structured equation is a birth-death

Fig. 6 Synchronisation of circadian clocks in dividing cells induced by cell-cell contact interaction.
Cells (small spheres) move freely, but tend to stay in contact with each other, and express a clock marker
(dark: low, light: high levels). Each cell is represented physically by a visco-elastic ball interacting with
direct neighbours. A system of 13 differential equations in each cell describes the cell division cycle
(Battogtokh et al. 2006), the circadian clock (Bernard et al. 2007) and cell death. Intracellular clocks are
coupled by surface contact, and synchronise with each other
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transport equation describing how cells move, die and are born in the age/structure

space (a, x).

nt þ na þ fFða; xÞngx þ Bða; xÞn ¼ 0;

nðt; a ¼ 0; xÞ ¼ 2

Z1

0

Z

C

bða; x; yÞnðt; a; yÞdyda:

This system of equations involves two scales: the molecular scale given by the

equation x0 = F(a, x) and the population scale, with the death term B(a, x) and the

boundary condition. This model is a simplified version of a population model

structured by cyclins with explicit cell cycle phases (Bekkal Brikci et al. 2008).

Other structured equation models for cell population dynamics have been proposed

(Benzekry 2011; Friedman et al. 2009; Friedman et al. 2012).

7 Discussion and Conclusion

We have presented here several approaches to multiscale modelling, from master

equation-based approaches to individual-based and hybrid models to structured

models. Stochastic and multiscale formalisms share many attributes. Depending on

the point of view, the same equation can describe a stochastic or a multiscale

phenomenon, as with the Fokker-Planck equation. In both multiscale and

stochastic models, there are at least two distinct scales. The choice of the scales

is left to the modeller, but many models incorporate scales ranging from

molecules to the tissue, with the cell as the fundamental modelling unit. One

consequence of multiscale modelling is the need to have a detailed but simple

description of the intracellular dynamics, with mechanisms to create heterogeneity

between cells. Stochastic processes are compatible with the multiscale framework

developed here and have been well studied in the context of intracellular networks

(Kærn et al. 2005; Kepler and Elston 2001; Paulsson 2005; Perkins and Swain

2009; Ribeiro et al. 2009). In a recent review, Byrne and Drasdo discussed the

merits of individual-based models and continuum models of cell populations

(Byrne and Drasdo 2009). More approaches to multiscale modelling and examples

of applications can be found in recent books (Chauvière et al. 2009; Cristini and

Lowengrub 2010; Deisboeck and Stamatakos 2010; Treuil et al. 2008). Based on

the discussions presented here and elsewhere (IMAG 2012) we propose two

properties a computational or mathematical model should possess to be a

multiscale model

• At least two nested organisation scales We should be able to distinguish

attributes of objects at each scale. The lower scale should be imbedded into the

higher scale.

• Interaction between and among scales Emerging behaviour (higher scale) of

interacting particles (lower scale) is not sufficient, the emergent behaviour

should interact with the particles themselves.
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