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Abstract Proposed here is that an overriding principle of nature governs all
population behavior; that a single tenet drives the many regimes observed in nat-

ure—exponential-like growth, saturated growth, population decline, population

extinction, and oscillatory behavior. The signature of such an all embracing prin-

ciple is a differential equation which, in a single statement, embraces the entire

panoply of observations. In current orthodox theory, this diverse range of population

behaviors is described by many different equations—each with its own specific

justification. Here, a single equation governing all the regimes is proposed together

with the principle from which it derives. The principle is: The effect on the envi-
ronment of a population’s success is to alter that environment in a way that opposes
the success. Experiments are suggested which could validate or refute the theory.

Predictions are made about population behaviors.

Keywords Population dynamics � Evolution � Ecology � Biology

1 Traditional Perspective

The acknowledged source of theories about population is the monograph by the

venerable Malthus (1798). His place in history rests largely on these two sentences

from Chapter I,

Population, when unchecked, increases in a geometrical ratio. Subsistence

increases only in an arithmetical ratio.
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The archaic terms ‘geometric ratio’ increase and ‘arithmetic ratio’ increase are

today called ‘exponential growth’ and ‘linear growth’. In this quote he takes pains to

distinguish between these because his thesis is based on the distinction. Malthus was

thinking only of human population. Darwin (1859) took the idea to apply to

populations in ‘‘the whole animal and vegetable kingdoms.’’

The rationale for exponential growth is this: In living systems growth is

proportional to the population because each member (or pair of members) once

produced, begin, themselves, to reproduce. There are more reproducers in a

larger population. So the greater the number in the population, the greater is the

growth. The same for deaths. The rate is proportional to the number available to

die. However, as will be demonstrated in the next section, this analysis is

fallacious.

Malthus didn’t offer equations to express his thoughts but writing them down

reveals the fallacy. Call the number of members in the population, n. At each

moment of time, t, there exist n individuals in the population. So we expect that

n = n(t) is a continuous function of time.

The rate of growth of the population is dn/dt; the increase in the number of

members per unit time. That this is proportional to population number, n, is the

substance of the idea. Call the constant of proportionality, R. Then the differential

equation that embodies the idea of ‘increase by geometrical ratio’ is:

dn=dt ¼ Rn ð1Þ

when R is constant, its solution yields the archetypical equation of exponential

growth.

nðtÞ ¼ n0eRt ð2Þ

The n0 is simply the starting population, n0 = n(0); the number of its members at

t = 0.Again with R a constant and n0 as defined above, linear growth—not a

solution to (1)—is expressed by this equation:

nðtÞ ¼ n0ð1þ RtÞ ð3Þ

These formulas for n(t) exhibit starkly different behaviors. That is why they were

contrasted by Malthus.

Now, common experience tells us that exponential growth cannot proceed

indefinitely. No population grows without end. Suppose the birth rate declines.

Maybe, instead, the death rate increases. Perhaps because the weather gets cold

or food becomes scarce. Conventionally this is accounted for by a new exponent,

say R’; a smaller one. So R is really not a constant. It may vary with time.

R = R(t).

In describing living systems the traditional idea has been to retain that appealing

exponential-like form and seek to explain events by variations in R. ‘‘The problem

of explaining and predicting the dynamics of any particular population boils down

to defining how R deviates from the expectation of uniform growth’’ (Berryman

2003). The concept is that exponential growth is always taking place but at a rate

that varies with time. Put mathematically:
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1

n

dn

dt
¼ RðtÞ ð4Þ

Fisher endows R with its own name, the Malthusian Parameter (Fisher 1930).

Equation (4) is called Darwinian Dynamics by Michod (1999). In connection with

his writing on genotype fitness Michod’s ‘‘Fisherian Fitness’’ is exactly of this form.

Equation (4) is the standard analytical tool for describing population data.

Of course, any theory on how R might depend on n—rather than on t -produces a

theoretical R(t). This is because the differential equation:

dn

dt
¼ nRðnÞ ð5Þ

is completely solvable for n as a function of t. Once we have n(t) we can deduce

R(t) via it’s definition in Eq. (4). This theoretical R(t) may be compared to mea-

surements of (1/n)dn/dt to assess the match of theory to observations. Equations (4)

and (5) or their discrete-time equivalents are ubiquitous in textbooks (Britton 2003;

Murray 1989; Turchin 2003).

An object example of this process is provided by the celebrated Verhulst

equation.

dn

dt
¼ nRðnÞ ¼ nr 1� n

K

� �
ð6Þ

A population history, n versus t, resulting from this equation is the black one of Fig. 1.

What motivated Verhulst (1838) is the common observation that nothing grows

indefinitely. Here the constant, r, is the exponential growth factor and K is the

limiting value that n can have—‘‘the carrying capacity of the environment’’

(Vainstein et al. 2007). The equation insures that n never gets larger than nmax = K.

Because n is understood to be the number in a given physical space it represents, in

fact, a population density (number/space). That this density has a limit is the reason

Fig. 1 Two population histories: number versus time. The black curve is the Verhulst (Logistic)
Equation. The blue curve is one of the solutions to the Opposition Principle differential Eq. (12). (Color
figure online)
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for the association of K with crowding. The name, r/K Selection Theory, derives

from the competing dynamics of exponential growth and of crowding—the r and the

K. The Verhulst equation—often cited as the Logistic Equation—is regularly

embedded in research studies (Nowak 2006; Torres et al. 2009; Jones 1976;

Ruokolainen et al. 2009; Okada et al. 2005; Ma 2010).

2 Shortcomings of the Traditional Perspective

The textbook mathematical structure outlined in the last section has acquired the

weight of tradition. It is certainly appealing. But it has some serious failings.

Assigning all behavior to variations in R seems to preserve the pristine

Malthusian exponential growth idea. But, in fact, allowing R to vary with time

severs the connection to exponential growth.

The idea is dramatized in this example. Malthus makes it clear that if a

population is growing exponentially with time then it is certainly not growing
linearly with time. Linear growth is the antithesis of exponential growth. Equations

(2) and (3) display the difference. But suppose R varies as R(n) = H/n. Using this in

solving the Malthusian Eq. (5), produces exactly linear growth! The constant H is

n0R. Linear growth is variable-rate exponential growth! Any growth at all is
variable-rate exponential growth.

There is no more content in conjectures about R(t) than there is in direct

conjecture about how n might depend on t; n = n(t). Except for the tenacity of

tradition there is no reason to focus on R as the basic parameter of population

dynamics. Because R(t) can be anything so, too, can n(t) be anything. An equation

expressing a true principle of population dynamics would yield only those behaviors

biologically and ecologically possible for n(t). Equation (4) doesn’t do this. It does

no more than substitute one variable for another.

A good reason not to use R concerns extinction. A phenomenon well known to

exist in nature is the extinction of a species. ‘‘… over 99 % of all species that ever

existed are extinct’’ (Carroll 2006). But there exists no finite value of R—positive or

negative—that yields extinction. There is no mechanism for portraying extinction. It

cannot be represented by R except for the value negative infinity; -?. So, in fact

there is good reason to avoid R as the key parameter of population dynamics.

In the continuous-n perspective the mathematical conditions for extinction are

these: n = 0 and dn/dt \ 0. No infinities enter computations founded on these

statements. Hence embracing n(t) directly allows one to explore the dynamics of

extinction.

The eponymous Verhulst Equation (the Logistic Equation) doesn’t derive from

some fundamental biological constraint. It’s motivated only by the observation that

populations never grow to infinity. They are bounded. But there are other ways—not

described by Verhulst’s equation—in which a population may be bounded! For

example, n(t) may oscillate. Or, as in Fig. 1, a curve essentially the same as

Verhulst’s may arise from an entirely different theory where no K = nmax limit

exists. One of the possible population histories resulting from the alternative theory

offered below—which contains no nmax—is shown in blue. Data fit by one curve
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will be fit equally well by the other. The limited validity of r/K Selection Theory has

been noted by researchers over the years (Parry 1981; Kuno 1991).

The most significant failing of the accepted Malthusian Structure of population

dynamics is its limited domain of validity. Many population histories cannot be fit

by exponential growth nor by the Logistic Equation. Oscillatory behavior demands

that a new paradigm be requisitioned; the Lotka-Volterra equations (Lotka 1956;

Volterra 1926) or, because their solutions are not structurally stable, their later

modifications (Murray 1989; Vainstein et al. 2007).

Thus, in current orthodox population theory, to describe the entire range of

population behaviors requires many different equations—each with its own specific

justification. Exponential growth has a limited range of validity, as does the Logistic

Equation, and any other equation of first order. And none of these describe

population oscillations, nor population decline, nor extinction.

No structure exists that embraces—in one single statement—all possible

behaviors. Contemporary theory offers no overriding principle that governs the

gamut of population behaviors. To produce such a structure is the aim of what

follows.

Why is such an undertaking important? The essential virtue of an overriding

structure is that it expresses a principle of nature. The wider the range of

applicability the more valuable the principle. A single mathematical statement that

describes a multitude of phenomena is the signal of such a principle and to achieve

that is the goal here.

The proposed mathematical statement is a second order differential equation. As

long ago as 1972, in a challenge to orthodox convention, Ginzburg (1972) took the

bold step of proposing that population dynamics is best represented by a second

order differential equation. All accepted formulations relied on first order

differential equations as they still do today. He developed his thesis over the years

(Ginzburg 1986, 1992; Ginzburg and Taneyhill 1995; Ginzburg and Inchausti 1997)

culminating in the pithy and persuasive book, ‘‘Ecological Orbits’’ (Ginzburg and

Colyvan 2004).

In the following we take a route different from Ginzbeurg’s and arrive at a

substantially different equation—albeit a second order differential one. We proceed

from a guess at what may be the underlying principle and then derive the second

order differential equation that expresses that principle. If empirical reality is well fit

by the progeny of that equation then we may conclude that the principle is true.

3 Conceptual Foundations for an Overriding Structure

The key equation is built on some foundational axioms. Empirical verification of the

equation they produce is what will measure the validity of these axioms. The axioms

are:

First: Variations in population number, n, are due entirely to environment.

Conceptionally we partition the universe into two: the population under

consideration and its environment. We assume that the environment drives
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population dynamics; that the environment is entirely responsible for time variations

in population number—whether within a single lifetime or over many generations.

The survival and reproductive success of any individual is influenced by heredity

as well as the environment it encounters. This statement doesn’t contradict the

axiom. The individual comes equipped with heredity to face the environment. Both

the environment and the population come to the present moment equipped with their

capacities to influence each other; capacities derived from their past histories.

That the environment molds the population within a lifetime is clear; think of a

tornado, a disease outbreak, or a meteor impact. That the environment governs

population dynamics over generations is precisely the substance of ‘natural

selection’ in Darwinian evolution.

That principle may be summarized as follows: ‘‘… the small selective advantage

a trait confers on individuals that have it…’’ (Carroll 2006) increases the population

of those individuals. But what does ‘selective advantage’ mean? It means that the

favored population is ‘selected’ by the environment to thrive. Ultimately it is the

environment that governs a population’s history. Findings in epigenetics that the

environment can produce changes transmitted across generations (Gilbert and Epel

2009; Jablonka and Raz 2009) adds further support to this notion.

Much productive research looks at traits in the phenotype that correlate with

fitness or LRS (Lifetime Reproductive Success) (Clutton-Brock 1990; Coulson et al.

2006). The focus is on how the organism fits into its environment. So something

called ‘fitness’ is attributed to the organism; the property of an organism that favors

survival success. But environmental selection from among the available phenotypes

is what determines evolutionary success. The environment is always changing so

whatever genetic attributes were favorable earlier may become unfavorable later.

Hence there is an alternative perspective: fitness, being a matter of selection by

the environment, is induced by it and may, thus, be seen as a property of the

environment.

Although, fitness, in some sense, is ‘carried’ by the genome, it is ‘decided’ by the

environment. Assigning a fitness to an organism rests on the supposition of a static

environment; one into which an organism fits or into which it doesn’t fit. A dynamic

environment incessantly alters the ‘fitness’ of an organism.

This is the perspective underlying the axiom that variations in population
number, n, are due entirely to environment.

In this view, although birth rates minus death rates yield population growth they

are not the cause of population dynamics; rather birth and death rates register the
effect of the environment on the population.

Second: An increasing growth rate is what measures a population’s success.

The ‘success’ of a population is an assertion about a population’s time

development; it concerns the size and growth of the population. A reasonable notion

of success is that the population is flourishing. We want to give quantitative voice to

the notion that flourishing growth reveals a population’s success.

Neither population number, n, nor population growth, dn/dt, are adequate to

represent ‘flourishing’. Population number may be large but it may be falling. Such

a population cannot be said to be flourishing. So we can’t use population number as
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the measure of success. Growth seems a better candidate. But, again, suppose

growth is large but falling. Only a rising growth rate would indicate ‘flourishing’.

This is exactly the quantity we propose to take as a measure of success; the growth

in the growth rate. By flourishing is meant growing faster each year.

A corollary of these two foundational hypotheses is that change is perpetual.
Equilibrium is a temporary condition. What we call equilibrium is a stretch of time

during which dn/dt = 0; an interval during which the population neither increases nor

decreases. Hence ‘returning to equilibrium’ is not a feature of analysis in this model.

Another corollary is this: The environment of one population is other

populations. It’s through this mechanism that interactions among populations

occur: via reciprocity—if A is in the environment of B, then B is in the environment

of A. So the structure offers a natural setting for ‘feedback’ via the coupling

between populations (Pelletier et al. 2009). It provides a framework for the analysis

of co-evolution or cooperation, of competition and of predator–prey relations among

populations. All of these obey the same equation differing only in the signs of

interaction coefficients relating any pair of populations.

4 The Opposition Principle: Quantitative Formulation

Based on the understandings outlined above we propose that an overriding principle

governs the population dynamics of living things. It is this: The effect on the
environment of a population’s success is to alter that environment in a way that
opposes the success. In order to refer to it, I call it the Opposition Principle. It is a

functional principle (McNamara and Houston 2009) operating irrespective of the

mechanisms by which it’s accomplished. In the way that increasing entropy governs

processes irrespective of the way in which that is accomplished.

Examples of the Principle abound. We, humans, produce toxins that we breath

and drink. We deplete resources. We fish in order to multiply and, when multiplied,

exhaust the fish. Aphid populations are limited by their own excrement (Matis et al.

2009). Does not every creature pollute and feed on it’s environment?

In wine making, the yeast Saccharomyces cerevisiae is added to grapes and

water. The organism ingests sugar and water and excretes alcohol. Finding itself

amidst plenty in a bath of sugary grapes the fungus—the yeast—multiplies and

rejoices in its prosperity. Finally it produces enough waste to kill itself by alcohol

poisoning. The process is called fermentation. We celebrate our prosperity by

drinking what killed the yeast—they who had, but recently, rejoiced in their

prosperity.

These examples are extreme ones but the postulate here is that such phenomena

exemplify a principle of nature. The principle is not one of doom. That would be a

misunderstanding. Populations can thrive even under this principle. The Opposition

Principle does not say that populations destroy themselves but only that success

never makes the environment more favorable to further success. ‘Success’ has been

carefully defined in the previous section.

The Principle applies to a society of living organisms that share an environment.

The key feature of that society is that it consists of a number, n, of members which
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have an inherent drive to survive and to produce offspring with genetic variation.

Their number varies with time: n = n(t).

Because we don’t know whether n, itself, or some monotonically increasing

function of n is the relevant parameter, we define a population strength, N(n). Any

population exhibits a certain strength in influencing its environment. This population

strength, N(n), expresses the potency of the population in affecting the environment—

its environmental impact. Perhaps this strength, N, is just the number n, itself. The

greater n is, the more the environmental impact. But it takes a lot of fleas to have the

same environmental impact as one elephant. So we would expect that the population

strength is some function of n that depends upon the population under consideration.

Two things about the population potency, N, are clear. First, N(n) must be a

monotonically increasing function of n; dN/dn [ 0. This is because when the

population increases then its impact also increases. Albeit, perhaps not linearly.

Second, when n = 0 so, too, is N = 0. If the population is zero then certainly its

impact is zero. One candidate for N(n) might be n raised to some positive power, p. If

p = 1 then N and n are the same thing. Another candidate is the logarithm of (n ? 1).

We need not specify the precise relationship, N(n), in what follows. Via

experiment it can be coaxed from nature. The only way that N depends upon time is

parametrically through its dependence on n. In what follows we shall mean by

N(t) the dependence N(n(t)). We may think of N as a surrogate for the number of

members in the population.

The population strength growth rate, g = g(t), is defined by

g :¼ dN

dt
ð7Þ

Like N, g too acquires its time dependence parametrically through n(t).

g ¼ dN=dnð Þ dn=dtð Þ
To quantify how the environment affects the population we introduce the notion

of ‘environmental favorability’. We’ll designate it by the symbol, f. It represents the

effect of the environment on the population.

A population flourishes when the environment is favorable. Environmental

favorability is what drives a population’s success. We may be sure that food

abundance is an element of environmental favorability so f increases monotonically

with nutrient amount. It decreases with predator presence and f decreases with any

malignancy in the environment—pollution, toxicity.

But in the last section we arrived at a quantitative measure of success. The rate of

growth of the population strength—‘the growth of growth’ or dg/dt—measures

success. Hence, that a population’s success is generated entirely by the environment

can be expressed mathematically as:

dg

dt
¼ f ð8Þ

By omitting any proportionality constant we are declaring that f may be measured in

units (time)-2. Since Eq. (8) says that success equals the favorability of the envi-

ronment, it follows that f measures not only environmental favorability but also
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population success. One can gauge the strength of the favorability of the environ-

ment—the value of f—by measuring population success.

We’re now prepared to caste the Opposition Principle as a mathematical

statement. The Principle has two parts. 1. Any increase in population strength

decreases favorability; the more the population’s presence is felt the less favorable

becomes the environment. 2. Any increase in the growth of that strength also

decreases favorability.

Put formally: That part of the change in f due to an increase in N is negative.

Likewise the change in f due to an increase in g is negative. Here is the direct

mathematical rendering of these two statements:

of

oN
\0 and

of

og
\0 ð9Þ

We can implement these statements by introducing two parameters. Both w and a
are non-negative real numbers and they have the dimensions of reciprocal time.

(Negative w values are permitted but are redundant.)

of

oN
¼ �w2 and

of

og
¼ �a ð10Þ

These partial differential equations can be integrated. The result is:

f ¼ �w2N� agþ FðtÞ ð11Þ

The ‘constant’ (with respect to N and g) of integration, F(t), has an evident inter-

pretation. It is the gratuitous favorability provided by nature; the gift of nature.

Equation (11) says that environmental favorability consists of two parts.

One part depends on the number and growth of the population being favored: the

N and its time derivative, g. This part has two terms both of which always act to

decrease favorability. These terms express the Opposition Principle.

The other part—F(t)—is the gift of nature. There must be something in the

environment that is favorable to population success but external to that population

else the population would not exist in the first place. This gift of nature may depend

cyclically on time. For example, seasonal variations are cyclical changes in

favorability. Or it may remain relatively constant like the presence of air to breathe.

It may also exhibit random and sometimes violent fluctuations like a volcanic

eruption or unexpected rains on a parched earth. So it has a stochastic component.

All of these are independent of the population under consideration. However, dF/dt

may depend on population number since this is the rate of consumption of a limited

food supply.

Inserting Eqs. (7) and (8) into (11) we arrive at the promised differential equation

governing population dynamics under the Opposition Principle. It is this.

d2N

dt2
þ a

dN

dt
þ w2N ¼ FðtÞ ð12Þ

In the world of physical phenomena this equation is ubiquitous. Depending upon the

meaning assigned to N it describes electrical circuits, mechanical systems, the
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production of sound in musical instruments and a host of other phenomena. So it is

very well studied. The exact analytical solution to (12), yielding N(t) for any given

F(t), is accessible (Marion 1970).

5 Some Consequences

To explore some of the solutions to this differential equation we consider the easiest

case; that the gift favorability is simply constant over an extended period of time.

Assume F(t) = C independent of time. Non-periodic solutions arise if a C 2w. One

of these, displayed in Fig. 1, produces results mimicking the Verhulst equation. If

a\ 2w the solutions to (12) are periodic and are given by:

NðtÞ ¼ C

w2
þ Ae�at=2 sinðxtþ aÞ ð13Þ

where the amplitude, A, and the phase, a, depend upon the conditions of the pop-

ulation at a designated time, say t = 0. And the oscillation frequency, x, is given

by:

x :¼ w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a

2w

� �2
� �s

ð14Þ

In Fig. 2, Eq. (13) is compared to empirical data. The figure shows the population

fluctuations of larch budmoth density (Turchin et al. 2003) assembled from records

gathered over a period of 40 years. The data points and lines connecting them are

shown in black. The smooth blue curve in the background is a graph of Eq. (13) for

particular values of the parameters.

We assumed a is negligibly small so it can be set equal to zero. The frequency, x,

is taken to be 2p/(9 years) = 0.7 per year. The vertical axis represents N. In the

units chosen for N, the amplitude, A, is taken to be 0.6 and C is taken to be 0.6 per

year2. The phase, a, is chosen so as to insure a peak in the population in the year

1963; a = 3.49 radians.

Fig. 2 Observational data on the population fluctuations of larch budmoth density is shown as black
circles and squares. The smooth blue curve is a solution of Eq. (13). (Color figure online)
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Because the fluctuations are so large the authors plotted n0.1 as the ordinate for

their data presentation. The ordinate for the smooth blue theoretical curve is N.

Looking at the fit in Fig. 2, suggests how population potency may be deduced from

empirical data. One might be led to conclude that the population strength, N(n), for

the budmoth varies as the 0.1 power of n. But the precision of fit may not warrant

this conclusion.

The conclusions that may be warranted are these:

Considering that no information about the details of budmoth life have gone into

the computation the graphical correspondence is noteworthy. It suggests that those

details of budmoth life are nature’s way of implementing an overriding principle.

The graphical correspondence means that, under a constant external environmental

favorability, a population could behave not unlike that of the budmoth.

Equation (13) admits of circumstances in which population extinction can occur.

If A [ c/w2 then N can drop to zero. Societies with zero population are extinct ones.

(On attaining zero, N remains zero. The governing differential Eq. (12), doesn’t

apply when N \ 0.)

But the value of A derives from initial conditions; from N(t = 0) and g(t = 0).

So depending upon the seed population and its initial growth rate the population

may thrive or become extinct even in the presence of gift favorability, C. This result

offers an explanation for the existence of the phenomenon of ‘extinction debt’

(Kuussaari et al. 2009) and a way to compute the relaxation time for delayed

extinction.

The case explored reveals that periodic population oscillations can occur without

a periodic driving force. Even a steady favorability can produce population

oscillations.

Among the plethora of solutions to the governing differential Eq. (12), is this

one: Upon a step increase in environmental favorability—say, in nutrient

abundance—the population may overshoot what the new environment can

accommodate and then settle down after a few cycles. Figure 3 illustrates this

behavior. That there are such solutions amounts to a prediction that population

histories like that of Fig. 3 will be found in nature. In fact, already found, is

precisely this behavior in observations on Escherichia coli (Blount et al. 2008).

Experiments to validate or refute the Opposition Eq. (12) are possible. Prepare a

population—say Drosophila melanogaster—in a controlled environment. In such an

environment one may manipulate ‘environmental favorability’, say nutrient level or

Fig. 3 A theoretical population history that can result from the Opposition Principle differential equation
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toxicity level. A controlled step in environmental favorability produces a response

in population numbers. The Opposition equation says that the down-step response

curve is governed by the same parameters as is the rise curve of growth upon a

favorability up-step. Measure the population’s time development following a step
decrease in nutrients. From this, the response curve to a step increase in nutrients

can be deduced and compared with measurement results! Population rise dynamics

and population fall dynamics are predicted to be related. If the relationship found

empirically fails to match predictions the theory will be refuted.

The theory also makes predictions regarding interacting populations. Their

numbers may oscillate—albeit not indefinitely. These oscillations have a relaxation

time—a disappearance time. It’s determined by how strongly the populations interact.

Depending upon whether their co-evolution is cooperative (symbiosis, altruism),

competitive or predator–prey there is a phase relationship between their oscillations.

Theory predicts that predator and prey populations oscillate 90� out of phase with each

other. Competing populations oscillate 180� out of phase. Two symbiotic populations

have 0� phase difference; they grow or decline together as if they were a single

population. Experiments with interacting organisms can test these predictions.

Opposition theory indicates that there are measurable critical parameters leading

to extinction or survival under adverse conditions. These were mentioned in Sect. 5

above. They can be measured in controlled experiments.

6 Conclusion

We noted at least five disparate regimes of population history—each with it’s own

individual and disjoint descriptive equation: exponential-like growth, saturated

growth, population decline, population extinction, oscillatory behavior. It’s argued

here that these regimes can be brought under the embrace of a single differential

equation describing them all.

That equation is the mathematical expression of general concepts about how

nature governs population behavior. Being quantitative it offers us a framework

with which to validate or refute these concepts. The concepts are itemized as axioms

and principles. Some of them run counter to accepted convention thus making

empirical refutation a substantive matter; something worthy of investigation in

experimental ecology. Experiments have been proposed. The author stands ready to

collaborate on any of these.

In short: a refutable proposition about the nature of populations is offered for

assessment by the scientific community. Verification of the proposed equation

would establish a basic understanding about the nature of living organisms.
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Rodà F, Stefanescu C, Teder T, Zobel M, Ingolf Steffan-Dewenter I (2009) Extinction debt: a

challenge for biodiversity conservation. Trends Ecol Evol 24:564–571

Lotka AJ (1956) Elements of mathematical biology. Dover, New York

Ma S (2010) Did we miss some evidence of chaos in laboratory insect populations? Popul Ecol. doi:

10.1007/s10144-010-0232-7

Malthus T (1798) An essay on the principle of population. J. Johnson, London

Marion JB (1970) Classical dynamics of particles and systems. Academic Press, New York. Green’s

Function Method, exibited in Equation 4.83 on page 140

Matis JH, Kiffe TR, van der Werf W, Costamagna AC, Matis TI, Grant WE (2009) Population dynamics

models based on cumulative density dependent feedback: a link to the logistic growth curve and a

test for symmetry using aphid data. Ecol Model 220:1745–1751

McNamara JM, Houston AI (2009) Integrating function and mechanism. Trends Ecol Evol 24:670–675

Michod RE (1999) Darwinian dynamics: evolutionary transitions in fitness and individuality. Princeton

University Press, Princeton

Murray JD (1989) Mathematical biology. Springer, Berlin

Nowak MA (2006) Evolutionary dynamics: exploring the equations of life. Harvard Press, Canada

Okada H, Harada H, Tsukiboshi T, Araki M (2005) Characteristics of Tylencholaimus parvus (Nematoda:

Dorylaimida) as a fungivorus nematode. Nematology 7:843–849

Parry GD (1981) The meanings of r- and K-selection. Oecologia 48:260–264

Pelletier F, Garant D, Hendry AP (2009) Eco-evolutionary dynamics. Phil Trans R Soc B 364:1483–1489
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